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Abstract: The aim of this study is to fabricate reactive oxygen species (ROS)-sensitive nanoparticles
composed of succinyl β-cyclodextrin (bCDsu), memantine and thioketal linkages for application in
Alzheimer’s disease, and to investigate the suppression of N-methyl-D-aspartate (NMDA) receptor
1 (NMDAR1) in cells. Thioketal diamine was attached to the carboxyl group of bCDsu to produce
thioketal-decorated bCDsu conjugates (bCDsu-thioketal conjugates) and memantine was conjugated
with thioketal dicarboxylic acid (memantine-thioketal carboxylic acid conjugates). Memantine-
thioketal carboxylic acid conjugates were attached to bCDsu-thioketal conjugates to produce bCDsu-
thioketal-memantine (bCDsuMema) conjugates. SH-SY5Y neuroblastoma cells and U87MG cells were
used for NMDAR1 protein expression and cellular oxidative stress. Nanoparticles of bCDsuMema
conjugates were prepared by means of a dialysis procedure. Nanoparticles of bCDsuMema conjugates
had small particle sizes less than 100 nm and their morphology was found to be spherical in
transmission electron microscopy observations (TEM). Nanoparticles of bCDsuMema conjugates
responded to H2O2 and disintegrated or swelled in aqueous solution. Then, the nanoparticles
rapidly released memantine according to the concentration of H2O2. In an in vivo animal imaging
study, thioketal-decorated nanoparticles labelled with fluorescent dye such as chlorin e6 (Ce6)
showed that the fluorescence intensity was stronger in the brain than in other organs, indicating that
bCDsuMema nanoparticles can efficiently target the brain. When cells were exposed to H2O2, the
viability of cells was time-dependently decreased. Memantine or bCDsuMema nanoparticles did
not practically affect the viability of the cells. Furthermore, a western blot assay showed that the
oxidative stress produced in cells using H2O2 increased the expression of NMDAR1 protein in both
SH-SY5Y and U87MG cells. Memantine or bCDsuMema nanoparticles efficiently suppressed the
NMDAR1 protein, which is deeply associated with Alzheimer’s disease. Fluorescence microscopy
also showed that H2O2 treatment induced green fluorescence intensity, which represents intracellular
ROS levels. Furthermore, H2O2 treatment increased the red fluorescence intensity, which represents
the NMDAR1 protein, i.e., oxidative stress increases the expression of NMDAR1 protein level in both
SH-SY5Y and U87MG cells. When memantine or bCDsuMema nanoparticles were treated in cells,
the oxidative stress-mediated expression of NMDAR1 protein in cells was significantly decreased,
indicating that bCDsuMema nanoparticles have the capacity to suppress NMDAR1 expression in
brain cells, which has relevance in terms of applications in Alzheimer’s disease.

Keywords: Alzheimer’s disease; reactive oxygen species; memantine; cyclodextrin nanoparticles;
ROS-sensitive drug delivery
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1. Introduction

Oxidative stress in the human body is associated with inflammatory pathways and the
progression of various kinds of disease such as cancer, neurodegenerative disease, diabetes
and hypertension [1–6]. Among them, oxidative stress has a diverse relationship with the
severity and progression of neurodegenerative disease such as Alzheimer’s disease, Parkin-
son’s disease, many other neural disorders and aging [4,7,8]. An imbalance of reactive
oxygen species (ROS) induces the degeneration of biomolecules such as DNA, proteins and
lipids, which leads to the neurodegeneration and/or apoptotic death of neuronal cells [7–9].
Paradoxically, oxidative stress derived from elevated levels of ROS can be considered as a
biomarker since various molecular receptors including the N-methyl-D-aspartate (NMDA)
receptor can be altered through the molecular pathway of oxidative stress [10–14]. For
example, the NMDA receptors in neuronal and/or brain endothelial cells are known to
be upregulated according to the increase in oxidative stress [13,15]. Betzen et al. reported
that oxidative stress in the cerebrovascular endothelium is associated with disruption of
the blood–brain barrier (BBB) [13]. The presence of NMDA receptor upregulation induced
by oxidative stress can be used as a biomarker for Alzheimer’s disease [15]. Furthermore,
oxidative stress can be used to diagnose and target Alzheimer’s disease [16]. Otherwise,
various kinds of agents have been developed to treat Alzheimer’s disease [17–21]. Among
them, NMDA inhibitors have been investigated as one of the solutions for the treatment of
Alzheimer’s disease since the activation of NMDA receptors and amyloid-β (Aβ) toxicity
is associated with synapse density and memory formation [22]. There is no curative option
for Alzheimer’s disease up to now and these regimens are still limited to palliative therapy.
Regarding these regimens, unwanted side effects of therapeutic agents for Alzheimer’s
disease including memantine, a typical NMDA antagonist, are frequently problematic
in clinical trials [23,24]. Furthermore, the blood–brain barrier (BBB) is still considered
as an obstacle for the brain delivery of therapeutic agents even though BBB function is
normally disrupted in patients of Alzheimer’s disease [25,26]. These hurdles make difficult
to manage Alzheimer’s disease.

Nano-dimensional carriers such as nanoparticles, liposomes, peptide-drugs and/or
polymeric drugs have been investigated for the improvement of drug delivery across the
BBB [27–30]. Nano-dimensional carriers are characterized by small particle sizes, diversity
of customized form, ease of lipophilic drug encapsulation, increased half lives in the body,
and targeting of the drug to specific sites of action [31]. In particular, nanoparticles are
considered as a promising device to treat neuro-degenerative disease through enhanced
drug delivery across the BBB [32–35]. Liu et al. reported that zeolitic imidazolate frame-
work 8-coated Prussian blue nanocomposite could penetrate the BBB and then released
quercetin [34]. They showed that nanocomposites significantly increased the level of
adenosine phosphate, reduced the oxidative stress and reversed dopaminergic neuronal
damage. Berberine-encapsulated mesoporous silica nanoparticles effectively inhibited
amyloid fibrillation and decreased the level of malondialdehyde [36]. Lee et al. reported
that redox-responsive nanoparticles have sensitivity to ROS formation in cancer cells and
that the release rate of anticancer drugs can be controlled by intracellular oxidative stress
in cancer cells [37]. Stimuli-sensitive nanoparticles, which sensitively respond to the mi-
croenvironments of specific organ/tissues and then release the bioactive agents, have great
potential for drug targeting because they can specifically deliver cytotoxic agents to disease
sites while minimizing unwanted side-effects against normal tissues or organs [37–40].
For example, antibacterial agents could be specifically released from nanoparticles with
ROS-sensitive linkages when the ROS levels were increased in the urinary tract by bacterial
infection [38]. It was found that the ligand-peptide of low-density lipoprotein receptor-
decorated nanoparticles can penetrate into brain across the BBB and then effectively reduce
the activation of microglia cells [39]. Balance et al. showed that particle-based drug deliv-
ery systems can be designed in response to ROS levels in the disease sites of neurological
disorders [40].



Int. J. Mol. Sci. 2021, 22, 12309 3 of 18

In this study, we designed ROS-sensitive nanoparticles for the brain delivery of NMDA
antagonists. For this purpose, we synthesized succinyl β-cyclodextrin-thioketal-memantine
conjugates for the fabrication of the ROS-specific delivery of memantine followed by the
inhibition of NMDA receptors. Since the thioketal linkage can be disintegrated in the
presence of ROS, the thioketal linkage was introduced in a conjugated form to liberate
memantine in an ROS-specific manner [40]. We investigated the efficacy of nanoparticles
in terms of brain delivery and NMDA inhibition.

2. Results
2.1. Synthesis of bCDsuMema Conjugates

To synthesize bCDsuMema conjugates, bCDsu was conjugated with thioketal diamine,
as shown in Figure 1a. The carboxylic acid group of bCDsu was activated with the
EDAC/NHS system and then an excess amount of thioketal diamine was added. Specific
peaks of bCDsu were confirmed between approximately 2 and 5 ppm, while specific peaks
of thioketal diamine, such as those of the amine groups, were confirmed at 1.6 ppm for
the CH3 group and 8.4 ppm for the CH2 group, respectively. Furthermore, specific peaks
of thioketal dicarboxylic acid were also confirmed at 1.6 ppm and 12.6 ppm, respectively,
as shown in Figure S1. Synthesis of bCDsu-thioketal conjugates was confirmed using 1H
NMR spectra, as shown in Figure 1b. The specific peaks of bCDsu-thioketal were obtained
between approximately 1.0 and 5.0 ppm, i.e., the methyl proton of the thioketal group
was observed at 1.4~1.6 ppm, while specific peaks of bCDsu were confirmed between
approximately 2.0 and 5.0 ppm, as shown in Figure 1b. Prior to attaching memantine to
these conjugates, memantine was primarily conjugated with thioketal dicarboxylic acid
to produce memantine-thioketal carboxylic acid conjugates, as shown in Figure 2a. The
carboxylic group of the memantine-thioketal carboxylic acid conjugates was activated with
the EDAC/NHS system, and was then conjugated with bCDsu-thioketal conjugates, as
shown in Figure 2a. As shown in Figure 2b, specific peaks of bCDsu, the thioketal group
and memantine were confirmed between approximately 0 and 5.0 ppm. Peaks of bCDsu
were observed between approximately 2.5 and 5.0 ppm, while specific peaks of the thioketal
group and memantine were obtained at 1.6/1.8~3.4 ppm and 1.7~1.8 ppm/0.9~1.5 ppm,
respectively (Figure 1b). As shown in Figure S1, the proton NMR spectra of memantine
itself was confirmed at 0.8~8.4 ppm. These results showed that the bCDsuMema conjugates
were successively synthesized.
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2.2. Fabrication and Characterization of Nanoparticles

To measure the contents of memantine, nanoparticles were incubated with excess
amounts of H2O2 and then dissolved in DMSO. As shown in Table 1, the experimental
contents of memantine in the bCDsuMema conjugates were slightly lower than the the-
oretical levels. To check whether or not the bCDsuMema conjugates formed nano-sized
vehicles, bCDsuMema conjugates were dissolved in DMSO/water mixtures and then dia-
lyzed against water. Since they formed a slightly turbid aqueous solution, they were used
for the characterization of nanoparticles of bCDsuMema conjugates as well as in a drug
release study. As shown in Figure 3a, the diameters of the bCDsuMema conjugates and the
average particle sizes were less than 100 nm, i.e., the bCDsuMema nanoparticles showed
monomodal size distributions and their average particle sizes were 82.8 ± 12.3 nm. Further-
more, when their morphologies were observed with TEM, they showed almost spherical
shapes, as shown in Figure 3b. These results indicated that bCDsuMema conjugates formed
spherical nanoparticles in the aqueous solution.

To assess ROS sensitivity, bCDsuMema nanoparticles were incubated with PBS solu-
tion in the presence of H2O2, as shown in Figure 4. As can be seen in Figure 4a, according to
the H2O2 concentrations, the boundaries of the nanoparticles developed indistinct shapes
in the presence of H2O2, while their boundaries otherwise showed relatively distinct
shapes. Furthermore, in the presence of H2O2, debris of nanoparticles was observed, and
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this increased with the increasing of the H2O2 contents. These results indicated that the
nanoparticles could be disintegrated by oxidative stress. When H2O2 was added, the size
distribution became relatively broad and a multi-modal pattern appeared as compared to
the distribution observed in the absence of H2O2, as shown in Figure 4b. These results indi-
cated that bCDsuMema nanoparticles responded to the ROS environment in the aqueous
solution. The addition of H2O2 induced the acceleration of the release of memantine from
bCDsuMema nanoparticles, as shown in Figure 4c. In the absence of H2O2, the liberation of
memantine from nanoparticles was less than 20% (w/w) for 96 h, while more than 80% (w/w)
and 90% (w/w) of memantine in the nanoparticles was released at H2O2 concentrations
higher than 5 mM and 10 mM, respectively. These results indicated that bCDsuMema
nanoparticles have ROS-sensitivity and ROS-sensitive drug release capacity in aqueous
environments. The properties of size distribution shown in Figure 4b are abbreviated in
Table 2. As shown in Table 2, the main peaks of the particle sizes were relatively increased
according to the increase in H2O2 contents, and second peaks were also observed.

Table 1. Characterization of nanoparticles of bCDsuMema conjugates.

Memantine Contents (%, w/w)
Particle Size (nm)

Theoretical * Experimental

bCDsuMema
conjugates 9.4 9.1 82.8 ± 12.3

* Theoretical contents of memantine in the bCDsuMema conjugates were calculated based on the feeding amount
of memantine in the synthesis scheme.
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Table 2. Changes of particle size distribution caused by the addition of H2O2 (derived from Figure 4a).

H2O2 Contents (mM)
Particle Size Distribution

PolydispersityDiameter ± S.D.
(nm) % Intensity

1
103.7 ± 35.68 93.1

0.271
4603 ± 826.2 6.9

5
31.32 ± 7.833 9.7

0.283
155.3 ± 74.28 90.3

10
137.5 ± 80.97 96.9

0.268
4599 ± 828.3 3.1

2.3. In Vivo Biodistribution of Nanoparticles

To assess the in vivo fate of nanoparticles, Ce6, as a near-infrared fluorescent dye,
was attached to bCDsu-thioketal conjugates (bCDsuTHCe6), as shown in Figure S2a. Fur-
thermore, Ce6-thioketal amine was prepared and conjugated with bCDsu (bCDsuCe6), as
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shown in Figure S2b. Figure 5 shows the biodistribution of bCDsuTHCe6 nanoparticles
(Figure 5a) and bCDsuCe6 nanoparticles (Figure 5b). As shown in Figure 5a, the fluores-
cence intensity of bCDsuTHCe6 nanoparticles was significantly higher in the brain than
that in other organs. Otherwise, bCDsuCe6 nanoparticles revealed lower fluorescent in-
tensity in the brain compared to bCDsuTHCe6 nanoparticles. In the case of bCDsuTHCe6
nanoparticles, the fluorescence intensity was stronger in the brain and liver while the
fluorescence intensity of the bCDsuCe6 nanoparticles was relatively lower in the brain
than that in other organs. These results indicated that bCDsu-thioketal conjugates have
excellent brain drug delivery.
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effect of H2O2 on the particle size distribution of bCDsuMema nanoparticles. (c) The effect of H2O2

on the release of memantine from nanoparticles. The memantine concentration was adjusted to
0.1 mg/mL in PBS with or without H2O2.

2.4. The Effect of Oxidative Stress on the NMDAR1 Expression in SH-SY5Y Neuroblastoma Cells
and U87MG Cells

To study the effect of ROS on the viability and NMDAR1 protein expression, H2O2
was exposed to SH-SY5Y cells and U87MG cells as shown in Figures 6–10. Figure 6 shows
the effect of H2O2, memantine and bCDsuMema nanoparticles on the viability of SH-SY5Y
cells and U87MG cells. As shown in Figure 6a, human neuroblastoma SH-SY5Y and glioma
U87MG cells treated with 100 µM H2O2 for 0 h, 6 h, or 24 h resulted in a time-dependent
decrease in viability. On the other hand, memantine or bCDsuMema nanoparticles with 5
or 10 µg/mL memantine concentration had no cytotoxicity against SH-SY5Y and U87MG
cells (Figure 6b). These findings suggested that the viability of SH-SY5Y and U87MG cells
was affected by ROS, but not by memantine and bCDsuMema nanoparticles.
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synthesis schemes of bCDsuTHCe6 and bCDsuCe6 nanoparticles are illustrated in Figure S2. For
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mice. The injection dose was 10 mg Ce6/kg mouse. Injection solution was sterilized with a 0.8 µm
syringe filter. Injection volume was 100 µL. After 24 h of injection, the mice were sacrificed and then
each organ was observed with a MaestroTM 2 small animal imaging instrument.
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nanoparticles on the viability of cells. Cell (1 × 104 cells in 96 wells) were exposed to H2O2 (final
concentration: 100 µM) in serum-free media for 6 h or 24 h. For treatment of memantine or nanopar-
ticles, cells were treated with 5 and 10 µg/mL of memantine or bCDsuMema nanoparticles for 24 h.
All cell culture experiments were triplicated and then expressed as average ± standard deviation
(S.D.). * p < 0.05, compared with the SH-SY5Y cell control. # p < 0.05, compared with the U87MG
cell control.

Figure 7 shows the effect of H2O2 (100 µM) treatment on the expression of the NM-
DAR1 protein in SH-SY5Y and U87MG cells. As shown in Figure 7a, treatment with
H2O2 induced in increase in NMDAR1 protein expression in both SH-SY5Y and U87MG
cells in a time-dependent manner. When memantine or bCDsuMema nanoparticles were
treated, the expression levels of NMDAR1 proteins in both SH-SY5Y and U87MG cells were
decreased as compared to H2O2 treatment only (Figure 7b). These results indicated that
NMDAR1 protein expression was time-dependently increased when cells were exposed to
ROS. However, the increase in the cellular expression of NMDAR1 protein can be efficiently
reversed by treatment with memantine. Furthermore, these results showed that, as well as
memantine, the bCDsuMema nanoparticles also possessed the capability to suppress the
NMDAR1 protein in cells.
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100 µM H2O2 for 6 h. After that, cells were stained with CM-H2DCFDA.
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Figure 9. The effect of oxidative stress on the expression of NMDAR1 at SH-SY5Y cells (a) and
U87MG cells (b). SH-SY5Y cells (1 × 105) or U87MG cells (1 × 105) were treated with H2O2 for 6 h.
After that, cells were fixed with 4% paraformaldehyde and stained with anti-NMDAR1 antibody.
The cells were incubated with a Cy3 (red fluorescence) goat anti-rabbit antibody diluted 1:500 in
blocking buffer for 2 h, and a Phalloidin was added for incubation (F-actin, Alexa Fluor 488, green
fluorescence) for 30 min. The use of red, green and blue color represents the staining of the NMDAR1
protein, actin and nucleus in cells.

Since the western blot assay showed ROS-mediated expression of the NMDAR1 pro-
tein, the intracellular ROS formations in the SH-SY5Y and U87MG cells were stained using
the ROS-sensitive fluorescent dye CM-H2DCFDA and then observed with fluorescence mi-
croscopy, as shown in Figure 8. As shown in Figure 8a, the green fluorescence intensity was
gradually increased according to the concentration of H2O2, indicating that the intracellular
level of ROS gradually increased with incubation of cells using H2O2. Furthermore, the
intracellular ROS levels in U87MG cells were also increased according to the concentration
of H2O2 (Figure 8b). These results indicated that the intracellular ROS levels were increased
by pretreatment with H2O2 and then affected by the physiological changes of the cellular
component.



Int. J. Mol. Sci. 2021, 22, 12309 10 of 18

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 11 of 19 
 

 

NMDAR1 protein in cells. As shown in Figure 10b, the ROS-induced NMDAR1 protein 
expression in U87MG cells was also suppressed by treatment with memantine or 
bCDsuMema nanoparticles. These results indicated that bCDsuMema nanoparticles are 
able to suppress the oxidative-stress-induced expression of the NMDAR1 protein in SH-
SY5Y neuroblastoma cells or U87MG glioblastoma cells as well as free memantine. 

 
Figure 10. The effect of memantine and/or bCDsuMema nanoparticles on the expression of 
NMDAR1 in SH-SY5Y cells (a) and U87MG cells (b) under oxidative stress. For the observation of 
NMDAR1 changes of cells, U87MG cells (1 × 105) or SH-SY5Y cells (1 × 105) were pre-treated with 
memantine or bCDsuMema nanoparticles for 1 h and then treated with 100 µM H2O2 for 6 h. Im-
munofluorescence staining of cells was performed in a similar manner to that shown in Figure 9. 
Nano = bCDsuMema nanoparticles. 

3. Discussion 
The physiological state of the brain is quite different to that of other organs because 

the BBB is a primary obstacle for drug delivery to the brain [25,26]. For this reason, various 
delivery platforms have been investigated to improve the penetration and/or transport of 
bioactive agents [26–36,41–47]. For example, surfactants such as polysorbate 80 have been 
used to allow nanoparticles or drug carriers to penetrate the BBB [41–46]. For example, 

Figure 10. The effect of memantine and/or bCDsuMema nanoparticles on the expression of NMDAR1
in SH-SY5Y cells (a) and U87MG cells (b) under oxidative stress. For the observation of NMDAR1
changes of cells, U87MG cells (1 × 105) or SH-SY5Y cells (1 × 105) were pre-treated with memantine or
bCDsuMema nanoparticles for 1 h and then treated with 100 µM H2O2 for 6 h. Immunofluorescence
staining of cells was performed in a similar manner to that shown in Figure 9. Nano = bCDsuMema
nanoparticles.

Since H2O2 pretreatment induces the expression of the NMDAR1 protein in SH-SY5Y
and U87MG cells, as shown in Figure 7a, the expression of the NMDAR1 protein in cells was
fluorescently observed, as shown in Figure 9. As shown in Figure 9a, the pretreatment of
H2O2 induced the increase in red fluorescence intensity in SH-SY5Y cells, i.e., the expression
level of the NMDAR1 protein was dose-dependently increased according to the increase in
H2O2 concentration. In addition, NMDAR1 protein expression in U87MG cells were also
increased dose-dependently according to the concentration of H2O2, as shown in Figure 9b.
These results indicated that H2O2 treatment clearly induces the expression of NMDAR1
protein. These results support the results shown in Figure 7a and, furthermore, indicated
that oxidative stress induces the expression of the NMDAR1 protein in neuronal cells.
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The effect of memantine and/or bCDsuMema nanoparticles on the expression of
the NMDAR1 protein in cells was observed fluorescently, as shown in Figure 10. Since
memantine or bCDsuMema nanoparticles efficiently suppressed the ROS-mediated expres-
sion of NMDAR1 protein in SH-SY5Y or U87MG cells, as shown in Figure 7b, the cells
were stained fluorescently and the changes in their NMDAR1 expression were observed
with a fluorescence microscope, as shown in Figure 10. As shown Figure 10a, the red
fluorescence intensity efficiently decreased as a result of treatment with memantine or
bCDsuMema nanoparticles, i.e., the H2O2-induced expression of NMDAR1 in SH-SY5Y
cells gradually decreased following treatment of Mema or bCDsuMema nanoparticles.
These results also support the findings shown in Figure 7b, and indicated that bCDsuMema
nanoparticles efficiently suppress the ROS-mediated expression of the NMDAR1 protein in
cells. As shown in Figure 10b, the ROS-induced NMDAR1 protein expression in U87MG
cells was also suppressed by treatment with memantine or bCDsuMema nanoparticles.
These results indicated that bCDsuMema nanoparticles are able to suppress the oxidative-
stress-induced expression of the NMDAR1 protein in SH-SY5Y neuroblastoma cells or
U87MG glioblastoma cells as well as free memantine.

3. Discussion

The physiological state of the brain is quite different to that of other organs because
the BBB is a primary obstacle for drug delivery to the brain [25,26]. For this reason, various
delivery platforms have been investigated to improve the penetration and/or transport
of bioactive agents [26–36,41–47]. For example, surfactants such as polysorbate 80 have
been used to allow nanoparticles or drug carriers to penetrate the BBB [41–46]. For ex-
ample, Alyaudtin et al. reported that poly(butylcyanoacrylate) nanoparticles overcoated
with polysorbate 80 can be used for interaction with the BBB and can be used for brain
drug delivery [41]. They found that polysorbate 80-coated nanoparticles can be efficiently
delivered to rat cerebral endothelial cells, but un-coated nanoparticles cannot. Koffie et al.
reported that polysorbate 80-coated nanoparticles were used to deliver BBB-impermeable
molecules with various molecular weights from 500-Da to 150,000-Da tagged immunoglob-
ulins into the mouse brain [43]. Monoclonal antibodies such as OX-26 can be used to
decorate nanoparticles for the brain delivery of bioactive agents [44]. Liu et al. reported
that zeolite imidazolate framework 8-based nanocomposites delivered quercetin to the
brain, reduced oxidative stress and reversed dopaminergic neuronal damage [34]. They
argued that nanocomposites can be used for neurodegenerative diseases without any
damage to the normal tissues according to the results found in a mouse model. Amino
acid-based molecules were also studied to in relation to BBB transport and to delivery of
anticancer agents [45,46]. Furthermore, poly-amine materials such as polyamidoamine
(PAMAM) dendrimers were also reported as a platform for brain drug delivery [47–49].
Fana et al. reported that PAMAM nanocarriers can be used to deliver bioactive molecules
for the treatment of glioblastoma [48]. Pereira et al. reported that recombinant-precursor
microRNA (pre-miR-29b) was delivered to the brain with the aid of nanocarriers based
on chitosan/polyethyleneimine (PEI) [49]. They argued that chitosan-based nanocarriers
can deliver pre-miR-29b across the BBB more efficiently than PEI-based carriers. Posi-
tively charged cationic polymers could promote electrostatic interactions with negatively
charged RBE cells and then transport bioactive agents across the BBB. In our study, the
bCDsuTHCe6, amine-group-decorated conjugates could be efficiently delivered to the
brain, and then showed significantly higher fluorescence intensity, while the bCDsuCe6
conjugates had higher fluorescence intensity in other organs, as shown in Figure 5. These
results indicated that thioketal amine-decorated bCDsuMema nanoparticles can also be de-
livered to the brain for applications in Alzheimer’s disease. Sánchez-López et al. reported
that memantine-loaded PEGylated polylactic-co-glycolic (PLGA) nanoparticles showed
a slower release profile and then showed a reduced drug-administration frequency [50].
They argued that memantine-loaded PLGA/PEG nanoparticles were delivered to the brain
across the BBB and, in behavioral tests using transgenic APPswe/PS1dE9 mice, were
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demonstrated to enhance the benefit of decreased memory impairment compared to the
free memantine. In addition, their memantine-loaded nanoparticles suitably reduced the
β-amyloid plaques and the associated inflammation caused by Alzheimer’s disease.

Imbalances in ROS levels in the biological system induce oxidative stress and then
induce various neurodegenerative disorders [9]. Oxidative stress is known to have a strong
relationship with the progression of Alzheimer’s disease and, furthermore, upregulates the
expression of NMDA receptors on the cerebrovascular endothelium, which is a biomarker
of Alzheimer’s disease [8–10]. Betzen et al. reported that oxidative stress induced by
superoxide, peroxynitrite or hydrogen peroxide stimulated the NMDAR in bEnd3 cells
and then decreased the monolayer impedance [13]. Furthermore, oxidative stress is known
to have a co-relationship with neurodegenerative disorders such as Alzheimer’s disease,
Parkinson’s disease and amyotrophic lateral sclerosis since the brain is more vulnerable
to oxidative stress compared to other organs, and thus, is more susceptible to damage by
these means [14]. Chiang et al. reported that the activation of NMDA receptors plays a
critical role in learning and memory [15]. Additionally, they found that NMDA receptor
enhancers such as sodium benzoate changed the activity of antioxidants, and thus, af-
fected to the physiological status of the brain [15]. The aggravation of neurodegenerative
disorders has a diverse relationship with oxidative stress in the brain [15–18]. Oxidative
stress in the brain leads to neuronal cell death in the brain; moreover, NMDAR expression,
mediated by oxidative stress, is believed to be a driving force of synapse dysfunction [22].
Our study also showed that oxidative stress increased the expression of the NMDAR1
protein in both SH-SY5Y and U87MG cells according to the increase in intracellular ROS
levels, as shown in Figures 7–10 and Figure S3. As shown in Figure 4, bCDsuMema
nanoparticles exhibited ROS-sensitivity, i.e., the memantine release rate was increased
according to the increase in ROS in the release media. In addition, the bCDsuMema
nanoparticles suitably suppressed the expression levels of the NMDAR1 protein in both
SH-SY5Y and U87MG cells (Figures 7 and S3). Kamat et al. reported that the inhibition of
oxidative stress and/or synapse dysfunction induced in the NMDAR can be applicable
in the treatment of Alzheimer’s disease [22]. Hu et al. reported that antioxidants such
as Kukoamine A efficiently suppress the expression of NMDAR in SH-SY5Y cells and
modulate the apoptosis-related proteins [51]. Furthermore, the pretreatment of natural caf-
feoylquinic acid derivatives against SH-SY5Y cells attenuates hydrogen peroxide-induced
apoptosis and oxidative stress [52]. Rosini et al. also reported that ferulic acid-memantine
conjugates represent the suppression of NMDAR-mediated neurotoxic events that are
mediated by amyloid-β burden and oxidative stress [53]. bCDsuMema nanoparticles
suitably suppressed the ROS-derived expression of NMDAR1 protein in cells, as shown in
Figures 7 and 10. Our study showed that bCDsuMema nanoparticles have ROS-sensitivity,
delivery capacity across the BBB and anti-Alzheimer’s disease activity.

4. Materials and Methods
4.1. Chemicals

Memantine HCl, succinyl β-cyclodextrin (bCDsu), N-(3-dimethylaminopropyl)-N’-
ethylcarbodiimide hydrochloride (EDAC), N-hydroxy succinimide (NHS), 3-(4,5-dimethyl-
2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and hydrogen peroxide (H2O2)
were purchased from Sigma Aldrich Chem. Co. (St. Louis, MO, USA). Thioketal di-
amine and thioketal dicarboxylic acid were purchased from RuixiBiotech Co. Ltd. (Xi’an,
China). Chlorin e6 (Ce6) was purchased from Frontier Sci. Co. (Logan, UT, USA). Dialysis
membranes (Molecular weight cutoffs size (MWCO): 1000, 2000 and 8000 g/mol) were
purchased from Spectra/ProTM Membranes. A syringe filter (0.8 µm, Millex® AA, MF-
MilliporeTM MCE Membrane) was purchased from Merck Millipore Ltd. (Carrigtwohill,
IRL). Dimethyl sulfoxide (DMSO), triethyl amine (TEA) and other organic solvent were
used at an ultra-pure grade.
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4.2. Synthesis of bCDsu-Thioketal-Memantine Conjugates

bCDsu-thioketal amine conjugates: 183 mg of succinyl β-cyclodextrin (bCDsu) was
dissolved into 10 mL of H2O/DMSO mixtures (1/9). Seven equivalent quantities of EDAC
and NHS were added to this solution and then stirred magnetically for 9 h. Following
this, 680 mg of thioketal diamine (35 equivalents mole vs. bCDsu, 5 equivalents vs. each
carboxylic acid of bCDsu) was dissolved in 10 mL DMSO and then added to bCDsu
solution. This solution was magnetically stirred for 24 h. To obtain the synthesized
conjugates, reactants were introduced into a dialysis tube (MWCO = 2000 g/mol) and then
dialyzed against water for 2 days. To remove the organic solvent, deionized water was
exchanged at 2–3 h intervals for 2 days. The resulting solution was freeze-dried for 2 days
and then lyophilized power was obtained as a bCDsu-thioketal amine conjugate, as shown
in Figure 1.

bCDsu-thioketal-memantine conjugates: for the synthesis of bCDsu-thioketal-
memantine conjugates, memantine-thioketal carboxylic acid conjugates were primarily
synthesized. First, 22.4 mg of thioketal dicarboxylic acid was dissolved in 10 mL DMSO
with 1 equivalent quantity of EDAC and NHS with trace amounts of TEA. To this solution,
1 equivalent quantity of memantine HCl (21.6 mg) was added and then stirred for 12 h
to obtain memantine-thioketal carboxylic acid. To activate the carboxylic acid end of the
memantine-thioketal carboxylic acid, 19.2 mg of EDAC and 11.5 mg of NHS was added
to the solution. This solution was further stirred for 6 h at room temperature. Follow-
ing this, 153 mg of bCDsu-thioketal amine, dissolved in 10 mL of DMSO, was added to
this solution and then magnetically stirred for 24 h. Finally, the resulting solution was
introduced into a dialysis tube (MWCO: 2000 g/mol) and then dialyzed against deionized
water for 2 days with an exchange of water at 2–3 h intervals. bCDsu-thioketal-memantine
conjugates (abbreviated as bCDsuMema conjugates) were obtained by lyophilization
for 2 days. The yield of final product was approximately 92 wt.%. Yield = ((weight of
bCDsu-thioketal-memantine conjugates)/(weight of memantine-thioketal carboxylic acid
conjugates + weight of bCDsu-thioketal amine conjugates)) × 100.

4.3. H Nuclear Magnetic Resonance (NMR) Spectra Measurement

Chemical composition and synthesis procedures were monitored using 1H NMR
spectra (500 mHz superconducting Fourier transform (FT)-NMR spectrometer, Varian
Unity Inova 500 MHz NB High-Resolution FT NMR; Varian Inc., Santa Clara, CA, USA).
Each of the chemicals in the synthesis procedures were dissolved in DMSO or D2O/DMSO
mixtures and then analyzed.

4.4. Fabrication of bCDsuMema Nanoparticles

Quantities of 20 mg of bCDsuMema conjugates (20 mg) were dissolved in 5 mL
DMSO/water mixtures (4/1 v/v). This solution was introduced into the dialysis tube
(MWCO = 2000 g/mol) and then dialyzed against deionized water. To prevent saturation
of the solvent, deionized water was exchanged at 3 h intervals for 12 h and then at 6 h
intervals for 24 h. Following this, the volume of dialyzed solution was adjusted to 20 mL
(1 mg nanoparticles/mL water) and used for analysis or drug release experiments.

The drug contents in the nanoparticles were measured as follows: 5 mg nanoparticle
solution prepared as described above was reconstituted in 5 mL of phosphate-buffered
saline (PBS, 0.01 mM pH 7.4) and then added H2O2 (the final concentration of H2O2 was
20 mM). This solution was incubated more than 48 h. Following this, the absorbance of the
resulting solution was measured with a UV spectrophotometer (UV-1601PC UV/VIS spec-
trophotometer, Shimadzu CO., Kyoto, Japan) at 230 nm (Figure S4). For comparison, the
free memantine and bCDsu-thioketal amine conjugates, dissolved in phosphate-buffered
saline (PBS, 0.01 M, pH 7.4) with H2O2, were also measured.

Memantine content (wt.%) = (Memantine weight/total weight of nanoparticle)/100. (1)
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4.5. Characterization of Nanoparticles

The morphologies of nanoparticles were observed using transmission electron mi-
croscopy (TEM) (H-7600, Hitachi Instruments Ltd., Tokyo, Japan). One drop of the nanopar-
ticle solution was placed onto the carbon-film-coated grid. Then, this was dried at room
temperature. The observation was carried out at 80 kV.

Particle sizes were measured with a Zetasizer Nano-ZS (Malvern, Worcestershire, UK).
For measurement of the particle sizes, the concentrations of nanoparticles were adjusted to
0.1–1 mg/mL.

4.6. Drug Release Study

Nanoparticles (5 mg) prepared as described above were reconstituted into 5 mL PBS
(0.01 M, pH 7.4) in the absence or presence of H2O2. This solution was introduced into
the dialysis tube (MWCO = 2000 g/mol) and then put into a conical tube with 45 mL PBS
(final H2O2 concentration was adjusted to 0.1 mM~10 mM). This solution was incubated
in a shaker incubator (SI-600R, Jeiotech Co., Daejeon, Korea) at 100 rpm and 37 ◦C. The
whole media was taken and replaced with fresh media to prevent saturation of the drug.
Media were used to measure the memantine concentration using a UV spectrophotometer
(UV-1601PC UV/VIS spectrophotometer, Shimadzu CO., Kyoto, Japan) at 230 nm. To avoid
interference by conjugates, bCDsu-thioketal amine conjugates were also adapted for the
release study, and their release media were used for the blank test. All the results were
triplicated and expressed as mean ± standard deviation (S.D.).

4.7. Cell Culture

SH-SY5Y neuroblastoma cells were purchased from American Type Culture Collec-
tion (ATCC, Manassas, VA, USA), maintained in Eagle’s minimum essential medium/F12
(1/1 mixtures (Gibco, Grand Island, NY, USA)), and supplemented with 10% heat-inactivated
fetal bovine serum and 1% penicillin/streptomycin. U87MG glioblastoma cells were pur-
chased from the Korean Cell Line Bank (Seoul, Korea). U87MG cells were maintained
with Dulbecco’s minimum essential medium (DMEM, Gibco, Grand Island, NY, USA)
supplemented with 10% fetal bovine serum and 1% antibiotics. All cells were cultured in a
5% CO2 incubator at 37 ◦C.

4.8. MTT Assay

Cells (1 × 104 cells/well) seeded in 96 wells were cultured overnight in a CO2 incu-
bator (5% CO2) at 37 ◦C. After that, the cells were exposed to H2O2 (final concentration:
100 µM) in serum-free media for 6 h or 24 h. To assess the cytotoxicity of the nanoparticles,
cells (1 × 104 cells/well) were treated with 5 and 10 µg/mL of memantine or nanoparti-
cles for 24 h. The viability of U87MG and SH-SY5Y cells was determined by EZ-CyTox
(tetrazolium salt, WST-1) assay (Daeil Lab Inc, Seoul, Korea) (EZ3000). Absorbance was
measured at 570 nm, and cell viability was expressed as the fraction of surviving cells rela-
tive to untreated controls. All cell culture experiments were triplicated and then expressed
as average ± standard deviation (S.D.).

4.9. Antibodies

The primary antibodies used were anti-rabbit antibodies against NMDAR1 (ab109182),
obtained from Abcam (Alomone Laboratories, Ltd., Jerusalem, Israel), and β–actin (a5316),
obtained from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA).

4.10. Western Blot Assay

For the analysis of NMDAR1 expression, cells were treated with H2O2 (final concen-
tration: 100 µM) for 6 h or 24 h. To assess the effect of drugs on the expression of NMDAR1,
cells were pre-treated with memantine, or nanoparticles were treated for 1 h and then
exposed to H2O2 (final concentration: 100 µM) for 6 h. After that, cells were harvested,
washed twice with ice-cold PBS (0.01 M, pH 7.4), resuspended in lysis buffer and sonicated
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briefly. The protein extraction buffer consisted of 50 mM Tris-HCl (pH 7.2), 5 mM EDTA,
150 mM NaCl, 1% Nonidet P-40, 0.1% SDS, protease inhibitor cocktail (GenDEPOT, P3100-
001) and phosphatase inhibitor cocktail (GenDEPOT, P3200-001). After centrifugation,
supernatants were obtained containing the protein extracts; the protein concentrations
were measured using a Pierce® BCA Protein Assay Kit (Pierce Biotechnology, Inc., Rockford,
IL, USA). Concentrations of 30 µg of protein were separated on 12% sodium dodecyl sulfate
polyacrylamide gels, and the proteins were transferred onto nitrocellulose membranes. The
blots were blocked at room temperature for 2 h with 5% skim milk in PBS buffer containing
0.1% Tween-20 (PBST). The blot was then incubated with the primary antibody (1:2000)
(antiNMDAR1 antibody, abcam co., Cambridge, MA, USA) overnight at 4 ◦C, followed
by incubation of the secondary antibody (1:2500), followed by incubation with anti-rabbit
horseradish peroxidase-conjugated antibodies, as described previously [54]. The labeling
was visualized using an enhanced chemiluminescence system.

4.11. Fluorescence Microscopy

Intracellular ROS levels were measured in accordance with the manufacturer’s in-
structions. U87MG cells (1 × 105) or SH-SY5Y cells (1 × 105) cells were seeded in 4-well
chambers and, following 24 h incubation at 37 ◦C, the cells were treated with 100 µM H2O2
for 6 h. After that, the cells were washed twice with PBS and were then stained with CM-
H2DCFDA. These were washed twice with PBS and then fixed with 4% paraformaldehyde
for 10 min at room temperature. These were washed twice with PBS and then immobilized
with ProLong Gold Antifade Reagent with DAPI.

For observation of the NMDAR1 changes in cells, U87MG cells (1 × 105) or SH-SY5Y
cells (1 × 105) were seeded in 4-well chambers. Then, the cells were pre-treated with
memantine or bCDsuMema nanoparticles for 1 h and then treated with 100 µM H2O2
for 6 h. Following this, the cells were washed with PBS twice and then fixed with 4%
paraformaldehyde for 10 min at room temperature. Following this, the cells were washed
with PBS twice and were then stained with anti-NMDAR1 antibody diluted 1:300 in
blocking buffer for 24 h at 4 ◦C. After washing, the cells were incubated with a Cy3 (red
fluorescence) goat anti-rabbit antibody (Life Technologies, Carlsbad, CA, USA), diluted
1:500 in blocking buffer for 2 h, and a Phalloidin was added for incubation (F-actin, Alexa
Fluor 488, green fluorescence) for 30 min. After washing, the coverslips were mounted
onto microslides using a ProLong Gold Antifade Reagent with DAPI (Life Technologies
Corporation). Images were captured using an LSM 510 confocal microscope (Carl Zeiss,
Jena, Germany).

4.12. In Vivo Fluorescence Imaging

For fluorescence imaging of the nanoparticles, nude BALb/C mice (male, 20 g, 5 weeks
old) was used. Quantities of 20 mg of bCDsuTHCe6 or bCDsuCe6 nanoparticles were
reconstituted in 4 mL PBS (0.01 M, pH 7.4). This solution was sterilized through filtration
with a 0.8 µm syringe filter and then administered intravenously via the tail veins of the
mice. The injection volume was 100 µL. After 24 h of injection, the mice were sacrificed
and each organ was observed with a MaestroTM 2 small animal imaging instrument.

4.13. Statistical Analysis

Statistics of the experimental results were evaluated with the Student’s t-test and p
values lower than 0.05 were considered as statistically significant.

5. Conclusions

Nanoparticles of bCDsuMema conjugates were synthesized to investigate their effect
on the expression of the NMDAR1 protein in SH-SY5Y neuroblastoma cells and U87MG
glioblastoma cells. bCDsuMema nanoparticles had small particle sizes less than 100 nm
and their morphology was spherical. H2O2, a typical ROS, disintegrated or swelled the
nanoparticles in the aqueous solution, and then release rate of memantine was accelerated
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according to the concentration of H2O2. In the in vivo animal imaging study, thioketal-
decorated nanoparticles showed efficient brain targeting. Memantine or bCDsuMema
nanoparticles had practically no effect on the viability of the cells, while the cells were
affected by treatment with H2O2. The western blot assay showed that the oxidative
stress produced in cells using H2O2 increased the expression of the NMDAR1 protein
in both SH-SY5Y and U87MG cells. Memantine and bCDsuMema nanoparticles both
efficiently suppressed the ROS-mediated expression of the NMDAR1 protein in cells. In
the fluorescence microscopy observations, H2O2 treatment increased the intracellular ROS
levels, and then the oxidative stress increased NMDAR1 protein expression in brain cells.
When cells were treated with memantine or bCDsuMema nanoparticles, the oxidative-
mediated expression of the NMDAR1 protein in cells was significantly decreased, indicating
that bCDsuMema nanoparticles have the capacity to suppress NMDAR1 expression in
brain cells, which has relevance to applications in Alzheimer’s disease. These results
suggested that bCDsuMema nanoparticles are a promising candidate for the inhibition of
Alzheimer’s disease.
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