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The nature of the representational code underlying conceptual
knowledge remains a major unsolved problem in cognitive neuro-
science. We assessed the extent to which different representa-
tional systems contribute to the instantiation of lexical concepts in
high-level, heteromodal cortical areas previously associated with
semantic cognition. We found that lexical semantic information
can be reliably decoded from a wide range of heteromodal cortical
areas in the frontal, parietal, and temporal cortex. In most of these
areas, we found a striking advantage for experience-based repre-
sentational structures (i.e., encoding information about sensory-
motor, affective, and other features of phenomenal experience),
with little evidence for independent taxonomic or distributional
organization. These results were found independently for object
and event concepts. Our findings indicate that concept representa-
tions in the heteromodal cortex are based, at least in part, on
experiential information. They also reveal that, in most heteromo-
dal areas, event concepts have more heterogeneous representa-
tions (i.e., they are more easily decodable) than object concepts
and that other areas beyond the traditional “semantic hubs” con-
tribute to semantic cognition, particularly the posterior cingulate
gyrus and the precuneus.

semantic memory | concept representation | lexical semantics | embodied
semantics | representational similarity analysis

he capacity for conceptual knowledge is arguably one of the
most defining properties of human cognition, and yet it is
still unclear how concepts are represented in the brain. Recent
developments in functional neuroimaging and computational
linguistics have sparked renewed interest in elucidating the
information structures and neural circuits underlying concept
representation (1-5). Attempts to characterize the representa-
tional code for concepts typically involve information structures
based on three qualitatively distinct types of information,
namely, taxonomic, experiential, and distributional information.
As the term implies, a taxonomic information system relies on
category membership and intercategory relations. Our tendency
to organize objects, events, and experiences into discrete cate-
gories has led most authors—dating back at least to Plato
(6)—to take taxonomic structure as the central property of con-
ceptual knowledge (7). The taxonomy for concepts is tradition-
ally seen as a hierarchically structured network, with basic-level
categories (e.g., “apple,” “orange”) grouped into superordinate
categories (e.g., “fruit,” “food”) and subdivided into subordi-
nate categories (e.g., “Gala apple,” “tangerine”) (8). A promi-
nent account in cognitive science maintains that such categories
are represented in the mind/brain as purely symbolic entities,
whose semantic content and usefulness derive primarily from
how they relate to each other (9, 10). Such representations are
seen as qualitatively distinct from the sensory-motor processes
through which we interact with the world, much like the distinc-
tion between software and hardware in digital computers.
An experiential representational system, on the other hand,
encodes information about the experiences that led to the for-
mation of particular concepts. It is motivated by a view, often
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referred to as embodied, grounded, or situated semantics, in
which concepts arise primarily from generalization over partic-
ular experiences, as information originating from the various
modality-specific systems (e.g., visual, auditory, tactile, motor,
affective) is combined and re-encoded into progressively more
schematic representations that are stored in memory. Since, in
this view, there is a degree of continuity between conceptual and
modality-specific systems, concept representations are thought to
reflect the structure of the perceptual, affective, and motor pro-
cesses involved in those experiences (11-14).

Finally, distributional information pertains to statistical pat-
terns of co-occurrence between lexical concepts (i.e., concepts
that are widely shared within a population and denoted by a
single word) in natural language usage. As is now widely appre-
ciated, these co-occurrence patterns encode a substantial
amount of information about word meaning (15-17). Although
word co-occurrence patterns primarily encode contextual asso-
ciations, such as those connecting the words “cow,” “barn,” and
“farmer,” semantic similarity information is indirectly encoded
since words with similar meanings tend to appear in similar
contexts (e.g., “cow” and “horse,” “pencil” and “pen”). This
has led some authors to propose that concepts may be repre-
sented in the brain, at least in part, in terms of distributional
information (15, 18).

Whether, and to what extent, each of these types of informa-
tion plays a role in the neural representation of conceptual
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knowledge is a topic of intense research and debate. A large
body of evidence has emerged from behavioral studies, func-
tional neuroimaging experiments, and neuropsychological
assessments of patients with semantic deficits, with results typi-
cally interpreted in terms of taxonomic (19-24), experiential
(13, 25-34), or distributional (2, 3, 5, 35, 36) accounts. How-
ever, the extent to which each of these representational systems
plays a role in the neural representation of conceptual knowl-
edge remains controversial (23, 37, 38), in part, because their
representations of common lexical concepts are strongly inter-
correlated. Patterns of word co-occurrence in natural language
are driven in part by taxonomic and experiential similarities
between the concepts to which they refer, and the taxonomy of
natural categories is systematically related to the experiential
attributes of the exemplars (39-41). Consequently, the empiri-
cal evidence currently available is unable to discriminate
between these representational systems.

Several computational models of concept representation
have been proposed based on these structures. While earlier
models relied heavily on hierarchical taxonomic structure (42,
43), more recent proposals have emphasized the role of experi-
ential and/or distributional information (34, 44-46). The model
by Chen and colleagues (45), for example, showed that graded
taxonomic structure can emerge from the statistical coherent
covariation found across experiences and exemplars without
explicitly coding such taxonomic information per se. Other
models propose that concepts may be formed through the com-
bination of experiential and distributional information (44, 46),
suggesting a dual representational code akin to Paivio’s dual
coding theory (47).

We investigated the relative contribution of each representa-
tional system by deriving quantitative predictions from each sys-
tem for the similarity structure of a large set of concepts and
then using representational similarity analysis (RSA) with high-
resolution functional MRI (fMRI) to evaluate those predic-
tions. Unlike the more typical cognitive subtraction technique,
RSA focuses on the information structure of the pattern of
neural responses to a set of stimuli (48). For a given stimulus
set (e.g., words), RSA assesses how well the representational
similarity structure predicted by a model matches the neural
similarity structure observed from fMRI activation patterns
(Fig. 1). This allowed us to directly compare, in quantitative
terms, predictions derived from the three representational
systems.

Results

In two experiments, participants made familiarity judgments on
a large number of lexical concepts, which were selected from a
broad range of taxonomic categories, while undergoing fMRI
(details in Materials and Methods). Written nouns were pre-
sented, one at a time, on a computer screen, and participants
rated each one according to how often they encountered the
corresponding entity or event in their daily lives, on a scale
from 1 (“rarely or never”) to 3 (“often”). RSAs were conducted
for the following set of cortical areas previously associated with
concept representation (49-51): angular gyrus (AG), supramar-
ginal gyrus (SMG), temporal pole (TP), anterior superior tem-
poral gyrus (aSTG), posterior superior temporal gyrus (pSTG),
anterior middle temporal gyrus (aMTG), posterior middle tem-
poral gyrus (pMTG), anterior inferior temporal gyrus (alTG),
posterior inferior temporal gyrus (pITG), posterior superior
temporal sulcus (pSTS), anterior parahippocampal gyrus
(aPHG), posterior parahippocampal gyrus (pPHG), entorhinal
cortex (EC), inferior frontal gyrus (IFG), caudal middle frontal
gyrus (cMFG), superior frontal gyrus (SFG), precuneus
(PCun), posterior cingulate gyrus (PCG), rostral anterior cingu-
late gyrus (rACG), medial orbitofrontal cortex (mOFC), lateral
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orbitofrontal cortex (IOFC), anterior fusiform gyrus (aFusG),
and posterior fusiform gyrus (pFusG). These regions were ana-
tomically defined following the Desikan-Killiany probabilistic
parcellation map (52), with the border between anterior and
posterior temporal lobe areas determined according to a plane
perpendicular to the lobe’s main axis (53). We also conducted
RSA for a distributed, functionally defined region-of-interest
(ROI) based on the voxel-based meta-analysis by Binder and
colleagues (49) (Fig. 1D; heretofore referred to as “semantic
network ROI”). The semantic network ROI spanned a large
swathe of heteromodal cortex, including most of the aforemen-
tioned cortical areas. The neural similarity structure of
concept-related activation patterns in this ROI reflects not only
information encoded within each cortical area but also informa-
tion encoded in the pattern of activations across different areas,
thus allowing us to examine the representational structure in
the network as a whole.

From the fMRI data, we generated a whole-brain activation
map for each concept, reflecting the unique spatial pattern of neu-
ral activity for that concept (Fig. 1). From these maps, a neural
representational dissimilarity matrix (RDM) was generated for
each ROIL. RDMs consisted of all pairwise dissimilarities (1 — cor-
relation) between the vectorized activation patterns across voxels.
For each representational model investigated, a model-based
RDM was computed, and its similarity to the neural RDM was
evaluated via Spearman correlation. We evaluated six different
representational models: two based on taxonomic information,
two based on experiential information, and two based on distribu-
tional information (see details below). The resulting profile of rel-
ative model performances provided an assessment of the degree
to which each type of information is reflected in the neural activa-
tion patterns corresponding to different concepts. Because the
RDMs from different models were partly correlated with each
other (SI Appendix, Table S1), we also conducted partial correla-
tion RSAs to evaluate the unique contribution of each model to
the neural activation patterns underlying lexical concepts. We
stress that the representational models investigated here are mod-
els of information content (i.e., taxonomic, experiential, or distri-
butional); they are not meant to model the neural architecture
through which information is encoded in the brain (extended
model descriptions in SI Appendix, Supplementary Text).

Taxonomic Models. WordNet is the most influential representa-
tional model based on taxonomic information, having been
used in several neuroimaging studies to successfully model
semantic content (2, 22, 54, 55). It is organized as a knowledge
graph in which words are grouped into sets of synonyms
(“synsets”), with each expressing a distinct concept. Synsets are
richly interconnected according to taxonomic relations, result-
ing in a hierarchically structured network encompassing 81,426
noun concepts (in the English version). Concept similarity is
computed based on the shortest path connecting the two con-
cepts in this network.

In contrast to WordNet, which provides a comprehensive tax-
onomy of lexical concepts, the Categorical model was custom-
ized to encode the particular taxonomic structure of the concept
set in each study, based on a set of a priori categories. There-
fore, the Categorical model ignores concept categories that were
not included in the study, such as “furniture” or “clothing.” To
reduce the level of subjectivity involved in the assignment of
items to categories and in the evaluation of intercategory simi-
larities, we tested 18 a priori versions of the Categorical model,
with different numbers of categories and different levels of hier-
archical structure, for the concepts in Study 1 (S Appendix, Fig.
S1). Each version was tested via RSA against the fMRI data,
and the best-performing version was selected for comparisons
against other types of models. The selected model for Study 1
(model N in ST Appendix, Fig. S1) consisted of 19 hierarchically
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Fig. 1. Representational similarity analysis. (A) An fMRI activation map was generated for each concept presented in the study, and the activation across

voxels was reshaped as a vector. (B) The neural RDM for the stimulus set was generated by computing the dissimilarity between these vectors (1 — corre-
lation) for every pair of concepts. (C) A model-based RDM was computed from each model, and the similarity between each model’s RDM and the neural
RDM was evaluated via Spearman correlation. (D) Anatomically defined ROIs. The dashed line indicates the boundary where temporal lobe ROIs were
split into anterior and posterior portions (see main text for acronyms). (E) Cortical areas included in the functionally defined semantic network ROI (49).

structured categories, as follows: abstract (mental abstract,
social abstract, social event, other abstract), event (social event,
concrete event), animate (animal, human, body part), inanimate
(artifact [musical instrument, vehicle, other artifact], food, other
inanimate), and place.

In Study 2, the Categorical model consisted of two higher-
level categories—object and event—with each consisting of
four subcategories (animal, plant/food, tool, and vehicle; sound
event, social event, communication event, and negative event).

Experiential Models. The Exp48 model consists of 48 dimensions
corresponding to distinct aspects of phenomenal experience,
such as color, shape, manipulability, and pleasantness (S
Appendix, Table S2). This model is based on the experiential
salience norms of Binder and colleagues (40), in which each
dimension encodes the relative importance of an experiential
attribute according to crowd-sourced ratings. Exp48 encom-
passes all perceptual, motor, spatial, temporal, causal, valua-
tion, and valence dimensions present in those norms.

The SM8 model consists of a subset of the Exp48 dimen-
sions, focusing exclusively on sensory-motor information. These
dimensions represent the relevance of each sensory modality
(vision, audition, touch, taste, and smell) and of action schemas
performed with each motor effector (hand, foot, and mouth) to
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the concept. The concept “apple,” for instance, has high values
for vision, touch, taste, mouth actions, and hand actions and
low values for the other dimensions.

Distributional Models. Distributional information was modeled
with two of the most prominent distributional models available.
Namely, word2vec (56) uses a deep neural network trained to
predict a word based on a context window of a few words pre-
ceding and following the target word. In contrast, the model
GloVe (57) is based on the ratio of cooccurrence probabilities
between pairs of words across the entire corpus. In a compara-
tive evaluation of distributional semantic models (17), word2vec
and GloVe emerged as the two top-performing models in pre-
dicting human behavior across a variety of semantic tasks.

Study 1. Study 1 evaluated these 6 models with a set of 300 con-
cepts spanning a wide variety of semantic categories, including
animate objects (e.g., “elephant,” “student”), places (e.g.,
“kitchen,” “beach”), artifacts (e.g., “comb,” “rocket”) and other
inanimate objects (e.g., “cloud,” “ice”), events (e.g.,
“hurricane,” “election”), and highly abstract concepts (e.g.,
“fate,” “hygiene”) (Fig. 24 and SI Appendix, Tables S3 and S4).

In the functionally defined semantic network ROI, the expe-
riential models achieved the highest performance, followed by
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the taxonomic models (Fig. 2 B and C). Exp48 performed sig-
nificantly better than any other model, with no other differ-
ences between models reaching significance. To investigate the
unique contribution of each type of information to the similar-
ity structure of activation patterns, we conducted partial corre-
lation RSAs. These analyses assessed how well each model
explained the neural data after controlling for its similarity to
other models. We conducted RSAs with the RDM of each
model after regressing out the RDMs of all other models. As
shown in Fig. 2B (Center), only Exp48 explained significant var-
iance in the neural data after controlling for the other models.
To verify whether Exp48 individually explains all of the variance
accounted for by each of the other models, we performed pair-
wise partial correlation RSAs (Fig. 2C, Left). These analyses
showed that no other model accounted for any measurable
additional variance after controlling for their similarity to
Exp48. In other words, Exp48 was the only model that made
unique contributions to explaining the representational struc-
ture of lexical concepts in the semantic network ROI, while the
other models only predicted the data to the extent that their
similarity structure correlated with that of Exp48.

We then investigated whether information about the relative
importance of eight sensory-motor modalities, by itself, success-
fully predicted the neural similarity structure of concepts after
controlling for taxonomic and distributional information. The
results showed that, when Exp48 was not included in the partial
correlation analysis, SM8 remained highly significantly corre-
lated with the neural data after controlling for all other models,
while WordNet, word2vec, and GloVe did not (Fig. 2B, Right).
Categorical was the only other model displaying a significant
partial correlation, although it was numerically lower and less
significant than that of SMS. Pairwise partial correlation RSAs
showed that SMS did not explain all of the variance accounted
for by WordNet, word2vec, or GloVe; however, there was a
trend toward stronger partial correlations for SM8 than for any
of the nonexperiential models (Fig. 2C, Right). Together, these
results suggest that experiential information—including but not
restricted to sensory-motor information—plays a fundamental
role in the neural representation of conceptual knowledge in
heteromodal cortical areas, while taxonomic and distributional
representational systems appear to contribute relatively little
independent information.

All six models predicted the similarity structure of concept-
related neural activation patterns in left AG, PCun, SFG, and
IFG (81 Appendix, Figs. S2 and S3). In all of these areas, as well
as in left and right PCG, left PHG, right IFG, and right SFG,
the Exp48 model achieved the strongest correlation. SM8 did
not perform as well as Exp48, and this difference reached signifi-
cance in several ROIs, particularly in the left IFG. The same
areas also showed a significant advantage for Exp48 over Word-
Net. The advantage of Exp48 over the Categorical model
reached significance in left AG, PCun, PC, and PHG, and in
right IFG and SFG. There was a trend toward higher correla-
tions for the Categorical model than for WordNet in most areas,
but this difference only reached significance in the left pSTS,
which was the only area in which the Categorical (or any other)
model significantly outperformed both experiential models.
Besides the pSTS, the Categorical model also achieved the high-
est correlation of any model in the left pFusG, pMTG, pSTG,
and SMG, although this advantage only reached significance rel-
ative to word2vec in pSTG and pMTG and relative to SMS in
PMTG. Several areas showed a trend toward lower performance
for word2vec and GloVe relative to the other models, and in
most areas, these two models performed similarly, with the fol-
lowing two exceptions: in left IFG, GloVe significantly outper-
formed word2vec, while the inverse effect was found in right
PCun. The relatively low correlations for all models found in the
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alTG, aFusG, TP, EC, aPHG, and mOFC may be due to lower
signal-to-noise ratio in those areas (S Appendix, Table S7).

Study 2. Study 2 was designed to further investigate the infor-
mation content of concept-related activation patterns with a
different set of concepts, a larger participant sample size, and
matched subsets of object and event concepts. This study exam-
ined whether the pattern of model performances found in
Study 1 would be observed independently for objects and
events or—given their markedly distinct ontological status—
whether these two types of concepts would differ in the degree
to which they encode experiential, taxonomic, and distribu-
tional information. The 320 concepts included in the study
were selected to be typical exemplars of four categories of
objects (animals, tools, plants/foods, and vehicles) and four cat-
egories of events (sounds, negative events, social events, and
communication events). The larger sample size (36 partici-
pants) allowed for statistical testing across participants as well
as across stimuli (i.e., words).

In the semantic network ROI, Exp48 outperformed all other
models when tested across participants and across stimuli (Fig.
3B, Left, and SI Appendix, Fig. S6, Left), and in both analyses, it
was the only model that retained explanatory power after con-
trolling for the predictions of all other models (Fig. 3B, Center,
and SI Appendix, Fig. S6, Center). SM8 also performed signifi-
cantly better than all nonexperiential models, and the Categori-
cal model outperformed WordNet, word2vec, and GloVe.

Partial correlation RSAs revealed that Exp48 accounted for
all the variance explained by the other models (Fig. 3 B, Center,
and C, Left). When Exp48 was left out of the analysis, the SM8
and Categorical models together accounted for all the variance
explained (Fig. 3B, Right), with SM8 performing significantly
better than Categorical. Confirming the main findings of Study
1, these results indicate that experiential information plays a
central role in the representation of lexical concepts in high-
level heteromodal cortical areas.

Separate analyses for objects and events revealed two main
differences between these two types of concepts (Fig. 4 and S/
Appendix, Figs. S7-S10). First, RSA correlations were substan-
tially higher for events than for objects, across all three types of
representational models, in almost all ROIs. This result reflects
the higher variability of pairwise similarities for the neural rep-
resentations of event concepts, as evidenced by the higher noise
ceiling in this condition (mean noise ceiling across anatomical
ROIs, lower bound = 0.17) relative to object concepts (0.14).
Inspection of the neural RDM (SI Appendix, Fig. S11) reveals a
slightly more pronounced categorical structure for events than
for objects, with particularly high pairwise similarities for com-
munication events and social events.

In all anatomically defined ROIs, RSAs based on the entire
concept set (i.e., all categories included) revealed an advantage
for experiential models relative to taxonomic and distributional
models (SI Appendix, Figs. S4 and S5). As in Study 1, correla-
tions were particularly strong in the left IFG, AG, and PCun,
with the IFG showing substantially stronger correlations than
other ROIs. For all models, correlations were stronger in left
hemisphere ROIs than in their right hemisphere homologs,
which is consistent with left lateralization of lexical semantic
representations. The relatively low correlations found in the
alTG, aFusG, TP, EC, aPHG, and mOFC may be due to lower
signal-to-noise ratio in those areas (SI Appendix, Table S7). In
almost all ROIs examined (45 out of 46), correlations were sig-
nificantly stronger for the experiential models than those for
taxonomic or distributional models. Both experiential models
significantly outperformed all other models in 17 ROIs, and
nowhere did a taxonomic or distributional model perform
significantly better than SM8 or Exp48 (the superiority of the
categorical model in the pSTS observed in Study 1 was not
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tion results for each model while controlling for its similarity with all other models. Right: Partial correlation results when Exp48 was excluded from the
analysis. (C) Pairwise partial correlations for the semantic network ROI, with blue bars representing Exp48 (Left) or SM8 (Right) while controlling for its
similarity to each of the other model-based RDMs; yellow bars correspond to each of the other model-based RDMs while controlling for their similarity to
the model represented in blue. ***P < 0.0005, **P < 0.005, *P < 0.05, Mantel test; solid bar: P < 0.001; dashed bar: P < 0.05, permutation test. All P values
are FDR corrected for multiple comparisons (q = 0.05). Error bars represent the SE.
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Fig. 3. Study 2. (A) Dissimilarity matrices for the representational spaces tested. Rows and columns have been grouped according to the Categorical
model to reveal taxonomic structure. (B) RSA results across participants for the semantic network ROI. Group mean values of the correlations between
each participant’s neural RDM and the model-based RDMs. Full RSA correlations (Left) and partial correlations with Exp48 included (Center) and excluded
(Right). (C) Pairwise partial correlations, with blue bars representing Exp48 (Left) or SM8 (Right) while controlling for its similarity to each of the other
models; yellow bars correspond to each of the other models while controlling for their similarity to the model represented in blue. ***P < 0.0005 ; solid
bar: P < 0.001; dashed bar: P < 0.05; Wilcoxon signed-rank tests. All P values are FDR corrected for multiple comparisons (q = 0.05). Error bars represent
the SEM.
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Fig. 4. Results for object concepts (Left) and event concepts (Right) for the semantic network ROI in Study 2 (across participants). (A) RSA results. (B) Par-
tial correlations. (C) Pairwise partial correlations for Exp48. (D) Partial correlations with Exp48 excluded from the analysis. (E) Pairwise partial correlations
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replicated here). Exp48 significantly outperformed SMS in left
aSTG, pSTG, AG, pMTG, IFG, pFusG, cMFG, and SFG and
in right AG, SMG, pSTS, cMFG, and SFG. No significant dif-
ferences between the two experiential models were found in
the other ROIs.

Except for the left AG, WordNet appears to perform worse for
events than for objects in all other ROISs, both in absolute terms
and in relation to other models. This difference, which was stron-
gest in the PCG, is likely due to taxonomic trees for events being
relatively shallower in this model (mean tree depth for objects and
events is 10.6 and 8.1, respectively), resulting in a narrower range
of possible pairwise similarities. Apart from WordNet, the overall
profile of relative model performances was similar across objects
and events. For both types of concepts, experiential models
achieved the strongest RSA correlations in most anatomical
regions, with no ROIs showing significantly stronger correlations
for any taxonomic or distributional model. Partial correlation
RSAs in the semantic network ROI showed that, for object con-
cepts, Exp48 accounted for all the variance explained by any other
model (Fig. 4 B and C). For events, SM8 and GloVe maintained
relatively weak but statistically significant correlations after con-
trolling for Exp48. SM8 was second to Exp48 in explaining the
most variance for both objects and events (Fig. 4 D and E).

Validation Analyses. While the experiential feature ratings
included in Exp48 and SMS8 were meant to capture particular
qualities of phenomenal experience, it is possible that the rat-
ings themselves were influenced by other types of information
as well, including more abstract knowledge about the target
concept or about contextually associated concepts. Therefore, it
is conceivable that a model based on semantic features that do
not focus on experiential information could also outperform
the taxonomic and distributional models. To assess this possibil-
ity, we conducted another set of analyses in which we included
a model based on semantic features that are not explicitly
focused on experiential information. This model was based on
the Semantic Feature Production Norms (SFPN), which are the
largest and best-known effort to characterize word meanings in
terms of descriptive semantic features (58-60). These features
are derived from descriptive properties generated by human
participants in a property listing task, resulting in concept
depictions based on thousands of features. They encode various
types of information, including taxonomic (e.g., “is a
mammal”), functional (e.g., “used for cooking”), and contextual
association, as well as more elaborate features (e.g., “lays eggs,”
“lives in the water™).

These analyses were based on the concepts included in our
studies for which SFPN features are available (220 concepts in
Study 1 and 196 concepts in Study 2). The results show that
SFPN was the worst-performing model of the seven models
tested and that both Exp48 and SMS significantly outperformed
it in both studies (SI Appendix, Fig. S12). These results indicate
that the high performance of Exp48 and SMS relative to the
other models is indeed due to their focus on experiential
information.

Discussion

In two studies, we conducted a quantitative assessment of the
degree to which the three main information structures proposed
for concept representation are encoded in fMRI activation
patterns corresponding to individual lexical concepts. We found
that Exp48—a representational model based on 48 distinct
experiential dimensions grounded in known neurocognitive sys-
tems—consistently outperformed taxonomic and distributional
models in predicting the neural similarity structure of a large
number of lexical concepts (524 across both studies), spanning
a wide variety of semantic categories. Additionally, SMS, a
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relatively impoverished experiential model based on only eight
sensory-motor dimensions reflecting the relative importance of
neural systems dedicated to vision, hearing, touch, taste, and
smell, as well as motor control of the hands, mouth, and feet,
exceeded the performance of the best-performing taxonomic and
distributional models in the semantic network ROI in study 2.
SMS8 significantly outperformed those models in 17 anatomical
ROIs, while matching their performance in the remaining ones.
These results provide compelling evidence that experiential infor-
mation grounded in sensory, motor, spatial, temporal, affective,
and reward neural systems is a fundamental aspect of the repre-
sentational code underlying conceptual knowledge—not only in
sensory-motor cortical areas, as indicated in previous studies, but
also in high-level association areas.

In both experiments, Exp48 was the only model whose pre-
dictions correlated with the neural similarity structure of the
entire concept set when controlling for the predictions of all
other models, and in Study 2, this was also true for object con-
cepts in particular. For event concepts, SMS8 was the only other
model that independently accounted for variance in the neural
data. The fact that taxonomic and distributional models did not
predict the neural RDM when controlling for the predictions of
Exp48 alone (Figs. 2C and 3C, Left) indicates that those models
provide no measurable additional information about concept
similarity structure. This suggests that taxonomic information,
while seemingly central to the organization of conceptual
knowledge, may be represented only indirectly, via its interde-
pendency with experiential information (40).

Another important finding was that RSA correlations in the
PCG and in the PCun were among the strongest across all
ROIs examined, rivaling or even surpassing those found in the
AG and in the temporal lobe. PCG and PCun are not typically
included in discussions of cortical semantic hubs (3, 4, 28),
although they have been consistently associated with semantic
processing in functional neuroimaging studies (30, 49, 61, 62).
This finding, replicated across studies 1 and 2, indicates that
these regions play an important and yet unrecognized role in
semantic cognition.

One limitation of the present study is that the representa-
tional spaces used to model experiential information content
are relatively coarse. Neural concept representations must
encode detailed information about aspects of the phenomenal
experience associated with different lexical concepts, such as
particular colors, shapes, or motor schemas, but Exp48 and
SMS only encode the relative importance of each kind of expe-
rience. In other words, these models represent information
about how much the neural system underlying a particular pro-
cess (e.g., color perception or motor control of the hand)
contributes to a given lexical concept, but it contains no infor-
mation about the particular experiences contributed by each
system (e.g., different hues or different motor schemas). This
coarseness, which results from practical limitations in obtaining
participant ratings about fine-grained experiential attributes,
imposes limitations on our ability to detect experiential infor-
mation in the neural data. Nevertheless, it is still surprising that
these models performed so well compared to some of the most
sophisticated taxonomic and distributional models available,
pointing to the development of more detailed experiential mod-
els as a promising direction for future work.

Although most researchers agree that the representation of
conceptual information per se should be independent of the
modality of the stimulus, concept-related neural activation pat-
terns elicited by nonverbal stimuli may differ to some extent
from those elicited by words. We used words as stimuli primar-
ily for methodological reasons. First, unlike pictures, word
forms are arbitrarily associated with conceptual content. The
visual, motor, or auditory representations of a word form carry
no information about the semantic properties of the lexical
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concept associated with it. Pictorial stimuli, on the other hand,
carry information about visual properties of the concept, which
can bias participants to focus on those properties at the expense
of properties that are not explicitly conveyed by the stimulus.
Second, word stimuli allow for the inclusion of relatively
abstract concepts (e.g., “belief” and “year”) that are not easily
conveyed via other stimulus modalities. Finally, in most experi-
ential, taxonomic, and distributional model implementations,
concepts are labeled exclusively using word forms.

Task requirements can also have an influence on activation
patterns. For example, asking participants to make decisions
about the stimulus based on a particular semantic criterion
(e.g., living vs. nonliving, large vs. small, or natural vs. man-
made) emphasizes those aspects of meaning to the detriment of
all others. Our approach was to use a task that would be as
neutral as possible regarding the conceptual content of the
items. We see no reason to believe that our task favors some
particular aspect of meaning over another, although that possi-
bility has not been experimentally ruled out.

Together, the present results indicate that concept-related
fMRI activation patterns in heteromodal cortical areas encode
information about features of phenomenal experience
grounded in sensory-motor, spatiotemporal, affective, and
reward systems. While other studies have shown that areas
involved in sensory perception and motor control are activated
during concept retrieval (13, 28, 30), our results imply that
information pertaining to these systems is directly encoded in
high-level association areas during concept retrieval. The idea
that concepts are neurally represented as amodal symbols
whose representational code is independent of modality-
specific systems has a long history (23, 37); however, the finding
that taxonomic and distributional models performed signifi-
cantly worse than both SM8 and Exp48 in Study 2 challenges
that view. While our results do not rule out the notion that con-
cepts are organized in hierarchical taxonomic networks, they
are more aligned with a view in which concept representations
emerge from the multimodal integration of signals originating
in modality-specific systems during concept acquisition, and in
which taxonomic organization emerges from correlations
between experiential features (14, 30). In this framework, con-
cept retrieval consists of the transient activation of a neuronal
cell assembly distributed across the heteromodal cortical hubs
that make up the semantic network, with possible downstream
activation of the relevant modality-specific assemblies depend-
ing on contextual demands. Further research is required to
determine the extent to which different experiential features
contribute to concept representation in different parts of the
semantic network and how their relative importance varies
across ontological categories.

The present study focused on the overall nature of the infor-
mational code underlying conceptual knowledge; therefore, in
both experiments, the analyses included a wide variety of
semantic categories. Our results, however, do not imply that all
portions of the semantic network contribute equally to different
categories. In fact, an experiential view of concept representa-
tion would predict otherwise, and this issue should be explored
in future studies.

It is worth noting that the detection of concept-related simi-
larity structure in a given brain region does not necessarily
implicate that region in the long-term storage of concept repre-
sentations. In principle, the activation patterns detected in a
region during concept retrieval may reflect information
received from other regions. In the present study, this is likely
to be the case for prefrontal cortical areas, which are typically
implicated in executive control functions. If prefrontal areas
are involved in the controlled retrieval or short-term mainte-
nance of multimodal semantic representations, we should
expect them to be tuned to particular sensory-motor and
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affective features at a relatively fine spatial scale and to tran-
siently reflect representational structures stored elsewhere.
Further studies are required to characterize the precise compu-
tational role played by the various cortical areas that constitute
the general semantic network.

In addition to their implications for the nature of the represen-
tations underlying conceptual knowledge, the present results are
also relevant to computational approaches to natural language
processing in the field of artificial intelligence. They suggest that
incorporating experiential information into computational models
of word meaning could lead to more human-like performance.
These findings can also inform the development of brain-
machine interface systems by demonstrating that information
about the experiential content of conceptual thought can be
decoded from the spatial distribution of neural activity through-
out the cortex.

Materials and Methods

Study 1. This study was designed for RSA across stimuli rather than across par-
ticipants, with a large number of trials (1,800 trials) and long scanning times,
which allowed sufficient power to be achieved with a relatively small sample
size (n = 8).

Participants. Eight native speakers of English (four women), ages 19 to 37
(mean = 28.5), took part in study 1. Participants were all right-handed
according to the Edinburgh Handedness Scale (63), had at least a high
school education, and had no history of neurological or psychiatric condi-
tions. All participants provided written informed consent. This study was
approved by the Medical College of Wisconsin Institutional Review Board.
Stimuli. Stimuli included 300 English nouns of various categories, including
concrete and abstract concepts. Nouns were relatively familiar, with mean
log-transformed Hyperspace Analogue to Language (HAL) frequency of 8.7
(range, 4.0 to 12.7) and mean age of acquisition of 6.7 y (range, 2.7 to 13.8;
English Lexicon Project [https:/elexicon.wustl.edu]) (64) (S/ Appendix, Tables
S3 and S4).

Task. Participants rated each noun according to how often they encountered
the corresponding entity or event in their daily lives, on a scale from 1 (“rarely
or never”) to 3 (“often”). The task was designed to encourage semantic proc-
essing of the word stimuli without emphasizing any particular semantic fea-
tures or dimensions. Participants indicated their response by pressing one of
three buttons on a response pad with their right hand. On each trial, a noun
was displayed in written form on the center of the screen for 500 ms, followed
by a 3.5-s blank screen. Each trial was followed by a central fixation cross with
variable duration between 1 and 4 s (mean = 2 s). The entire stimulus set was
presented six times over the course of the study. In each presentation, the
order of the stimuli was randomized. Each presentation was split into 3 runs
of 100 trials each. The task was performed over the course of three scanning
sessions on separate days, with two presentations (six runs) per session. Each
run started and ended with an 8-s fixation cross.

Equipment. Scanning was performed on a GE Healthcare Discovery MR750 3T
MRI scanner at the Medical College of Wisconsin’s Center for Imaging
Research. Stimulus presentation and response recording were performed via
E-prime 2.0 software running on a Windows desktop computer and a Psychol-
ogy Software Tools Serial Response Box. Stimuli were back-projected on a
screen positioned behind the scanner bore and viewed through a mirror
attached to the head coil.

Scanning protocol. MRI scanning was conducted over three separate sessions
on different days. Each session consisted of a structural T1-weighted magneti-
zation-prepared radio-frequency pulses and rapid gradient-echo (MPRAGE)
scan, a structural T2-weighted Cube scan, 3 pairs of T2-weighted spin echo
echo-planar scans (5 volumes each) acquired with opposing phase-encoding
directions (for correction of geometrical distortions in the functional images),
and 6 gradient echo echo-planar runs using simultaneous multislice acquisi-
tion (8x multiband, repetition time = 1,200 ms, echo time = 33.5 ms, 512
volumes, flip angle = 65, matrix = 104 x 104, slice thickness = 2.0 mm, axial
acquisition, 72 slices, field-of-view = 208 mm, voxel size =2 x 2 x 2 mm).

Data analysis. The fMRI images were preprocessed (slice timing correction,
motion correction, distortion correction, volume alignment, and scaling) using
the software package Analysis of Functional Neurolmages (AFNI) (65). Statisti-
cal analyses were conducted in each participant’s original coordinate space.
Activation (beta) maps were generated for each noun relative to the mean
signal across all other nouns using AFNI's 3dDeconvolve. Response time z
scores, and head motion parameters were included as regressors of no inter-
est. Anatomically defined ROIs were created based on the probabilistic
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Desikan-Killiany parcellation atlas included in AFNI (TT_desai_dk_mpm; S/
Appendix, Fig. $12). The functionally defined semantic network ROI corre-
sponded to the 1% most consistently activated voxels in an activation likeli-
hood estimate meta-analysis of 120 neuroimaging studies of semantic
language processing (49) (Fig. 1D). All ROl masks were created in standard
coordinate space (MNI152 2009¢) and nonlinearly aligned to each participant’s
anatomical scan using AFNI's 3dQwarp. Neural RDMs were computed for each
ROI as the Spearman correlation distance (1 — rho) for all pairs of concepts. A
group-averaged neural RDM was computed by averaging the neural RDMs of
all participants. A model-based RDM was computed from each model (except
WordNet) as the cosine distance (1 — cosine) for all pairs of concept vectors. The
WordNet RDM was based on the Wu & Palmer similarity metric (WPsim), which
relies on the depth of the two synsets in the taxonomic tree and that of their
Least Common Subsumer (LCS; i.e., their most specific common hypernym):

WPsim = 2 x depth(LCS(sL sZ))/(depth(sU + depth(sZ))

We used the package Natural Language Toolkit (NLTK 3.4.5; https:/www.nltk.
org) to compute WPsim; WordNet dissimilarity was computed as 1 — WPsim.

The RSAs computed the Spearman correlation between the group-
averaged neural RDMs and each model-based RDM. Statistical significance
was tested using the Mantel test with 10,000 permutations. Differences in RSA
correlations between models were assessed for significance via permutation
tests. Significance was controlled for multiple comparisons via false discovery
rate (FDR) with g = 0.05. Since the model-based RDMs can be strongly corre-
lated between models (S/ Appendix, Table S1), these analyses were supple-
mented with partial correlation analyses to reveal the unique contribution of
each model after controlling for other models.

We also conducted a temporal signal-to-noise ratio (tSNR) analysis to assess
data quality across the cortical mantle. A general linear model (GLM) was con-
ducted with parametric regressors for word concreteness, word length,
response time, and head motion parameters and a binary regressor for trial
onset. Each regressor was convolved with a canonical hemodynamic response
function (HRF to generate the design matrix. A GLM was conducted on the
scaled, smoothed (6 mm) imaging data for each participant, and a tSNR map
was computed by dividing the mean signal by the SD of the residuals. The indi-
vidual maps were warped into the MNI152 2009c template via affine transfor-
mation and averaged together to generate a group-averaged tSNR map (S/
Appendix, Fig. S13).

Study 2. Study 2 was designed to assess the contribution of each representa-
tional system separately for object and event concepts in the semantic net-
work ROl and to achieve sufficient power for model comparisons within
anatomically defined ROIs with RSA across participants as well as across stim-
uli, which required a substantially larger sample size (n = 36).

Participants. A total of 36 native speakers of English (21 women), ages 20 to
41 (mean = 28.7) took part in study 2. Participants were all right-handed
according to the Edinburgh Handedness Scale (63), had at least a high school
education, and had no history of neurological or psychiatric conditions. None
of the participants took part in study 1. All participants provided written
informed consent. This study was approved by the Medical College of Wiscon-
sin Institutional Review Board.

Stimuli. Stimuli included 160 object nouns (animals, foods, tools, and
vehicles—40 of each) and 160 event nouns (social events, verbal communica-
tion events, nonverbal sound events, and negative events—40 of each) (S/
Appendix, Tables S5 and S6). Of the 320 concepts included in study 2, 62
objects and 34 events were also used in study 1.
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Task. Task instructions were identical to study 1. On each trial, a noun was dis-
played in written form on the center of the screen for 500 ms, followed by a
2.5-s blank screen. Each trial was followed by a central fixation cross with vari-
able duration between 1 and 3 s (mean = 1.5 s). The entire stimulus set was
presented six times over the course of the study in randomized order. Each
presentation was split into 4 runs of 80 trials each. The task was performed
over the course of three scanning sessions on separate days, with two presen-
tations (eight runs) per session. Each run started and ended with an 8-s fixa-
tion cross.

Equipment. Scanning was performed on a GE Healthcare Premier 3T MRI scan-
ner with a 32-channel Nova head coil at the Medical College of Wisconsin's
Center for Imaging Research. Stimulus presentation and response recording
were performed with Psychopy 3 software (66) running on a Windows desk-
top computer and a Celeritas fiber optic response system (Psychology Soft-
ware Tools, Inc.). Stimuli were displayed on an MRI-compatible LCD screen
positioned behind the scanner bore and viewed through a mirror attached to
the head coil.

Scanning protocol. MRI scanning was conducted on three separate visits.
Each session consisted of a structural T1-weighted MPRAGE scan, a structural
T2-weighted CUBE scan, 3 pairs of T2-weighted spin echo echo-planar scans (5
volumes each) acquired with opposing phase-encoding directions, and 8 gradi-
ent echo echo-planar functional scans (4x multiband, TR = 1,500 ms, TE = 33
ms, 251 volumes, flip angle = 50, in-plane matrix = 104 x 104, slice thickness =
2.0 mm, axial acquisition, 68 slices, field-of-view = 208 mm, voxel size =2 x 2 x
2 mm).

Data analysis. Data preprocessing and statistical analysis were performed as
described in study 1. RDMs for the models tested in study 2 are depicted in Fig.
3 (main text), and intermodel correlations are displayed in S/ Appendix,
Table S1.

RSAs were conducted across stimuli (i.e., words) and across participants. In
the analysis across stimuli, voxel-based RDMs from all participants were com-
bined into a group-averaged neural RDM, and for each model, a single corre-
lation was computed between this RDM and the model-based RDM. These
correlations were tested for significance via the Mantel test with 10,000 per-
mutations. In the analysis across participants, a correlation was computed, for
each model, between each participant’s neural RDM and the model-based
RDM. The Fisher Z-transformed correlation coefficients were then averaged
across participants to compute the group mean rho, and significance was
tested via Wilcoxon'’s signed-rank test.

Differences in RSA correlations between models were tested across words
via the permutation test (Mantel) and across participants via Wilcoxon's
signed-rank test. Significance was controlled for multiple comparisons via FDR
with g = 0.05.

A group-averaged tSNR map was computed as in study 1.

Data Availability. Anonymized blood oxygen level-dependent MRI data have
been deposited in the Open Science Framework (67) (http://osf.io/HB6DE). Pre-
viously published data were used for this work (https://code.google.com/
archive/p/word2vec; https://github.com/doomlab/\Word-Norms-2).
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