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Abstract

Synchronization of neurotransmitter release with the presynaptic action potential is

essential for maintaining fidelity of information transfer in the central nervous

system. However, synchronous release is frequently accompanied by an

asynchronous release component that builds up during repetitive stimulation, and

can even play a dominant role in some synapses. Here, we show that substitution

of SNAP-23 for SNAP-25 in mouse autaptic glutamatergic hippocampal neurons

results in asynchronous release and a higher frequency of spontaneous release

events (mEPSCs). Use of neurons from double-knock-out (SNAP-25,

synaptotagmin-7) mice in combination with viral transduction showed that SNAP-

23-driven release is triggered by endogenous synaptotagmin-7. In the absence of

synaptotagmin-7 release became even more asynchronous, and the spontaneous

release rate increased even more, indicating that synaptotagmin-7 acts to

synchronize release and suppress spontaneous release. However, compared to

synaptotagmin-1, synaptotagmin-7 is a both leaky and asynchronous calcium

sensor. In the presence of SNAP-25, consequences of the elimination of

synaptotagmin-7 were small or absent, indicating that the protein pairs SNAP-25/

synaptotagmin-1 and SNAP-23/synaptotagmin-7 might act as mutually exclusive

calcium sensors. Expression of fusion proteins between pHluorin (pH-sensitive

GFP) and synaptotagmin-1 or -7 showed that vesicles that fuse using the SNAP-23/

synaptotagmin-7 combination contained synaptotagmin-1, while synaptotagmin-7

barely displayed activity-dependent trafficking between vesicle and plasma
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membrane, implying that it acts as a plasma membrane calcium sensor. Overall,

these findings support the idea of alternative syt:SNARE combinations driving

release with different kinetics and fidelity.

Introduction

Synaptic transmission depends on the fusion of synaptic vesicles with the plasma

membrane and the ensuing neurotransmitter release [1]. The triggering speed of

synaptic vesicle fusion varies widely. In the Calyx of Held, the increase and decay

of the release rate takes place within ,1 ms, resulting in a highly synchronized

burst of glutamate release [2]. In contrast, in synapses formed by cholecystokinin-

containing GABAergic interneurons, secretion of neurotransmitter persists for

.100 ms after a single action potential [3–5]. Asynchronous release dominates

during and immediately following trains of stimuli in many synapses [6–9], but is

also measurable following single stimuli [10, 11].

Synaptic vesicle exocytosis depends critically on the ternary SNARE-complex,

which forms between vesicle and plasma membrane [12, 13]. At least

synaptotagmin-1, and -2 (henceforth referred to as syt-1 and syt-2) act as

calcium-sensors for synchronized release in many glutamatergic and GABAergic

synapses [14]. The effect of removing syt-1 or -2 is a loss of synchronous release,

combined with persisting or augmented asynchronous release and – in most but

not all systems – an increase in spontaneous release rate [14].

The identity of the calcium sensor for the asynchronous phases of release has

remained unknown until recently. Synaptotagmin-7 (henceforth referred to as

syt-7) is highly expressed throughout the central nervous system [15, 16],

including in the presynaptic compartment [16, 17]. Syt-7 was first found to

constitute the asynchronous calcium sensor for neurotransmitter release at the

zebrafish neuromuscular junction [18]. In central synapses, deletion of syt-7 does

not affect basal synaptic transmission upon single stimulation [19]. However,

knock-down of syt-7 was recently found to strongly decrease asynchronous release

in syt-1 knockout neurons and to mildly depress asynchronous release during

action potential trains in wildtype neurons [20]. Another investigation also found

that syt-7 elimination inhibited release during high-frequency stimulation, but

further studies led to the conclusion that syt-7 acts upstream of syt-1, as a

calcium-sensor for vesicle replenishment [21].

Syt-7 has previously been shown to be a major vesicular calcium sensor for

dense core vesicle exocytosis in endocrine cells [22–27] and for lysosome fusion

[28]. A moderate delay in neuronal outgrowth from superior cervical ganglion

neurons was identified in a syt-7 knock-out mouse [29]. Overexpression studies

identified different roles for syt-7 splice variants in synaptic vesicle recycling [30].

An unresolved question is how syt-7 interacts with the SNARE-proteins, which

constitute the ‘blue-collar’ workers that execute membrane fusion itself [13].
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Investigations of the interaction between SNAP-25 and syt-1 have identified

negative charged residues on SNAP-25, which appear to interact directly with syt-

1 [31, 32]. These charged amino acid residues are situated around the middle of

the four helical SNARE-bundle, facing the outside of the complex, and their

mutation both copy and occlude syt-1 deletion in adrenal chromaffin cells [33].

However, slow secretion is still present upon mutation of these residues within the

SNAP-25A isoform, and therefore it appears that the alternative calcium sensor in

this case (presumably syt-7 [22]) interacts with the SNAREs in a different mode.

Alternatively, syt-7 might interact with a different set of SNAREs altogether.

Indeed, in previous work using an in vitro docking assay the almost ubiquitously

expressed SNAP-23 associated specifically with syt-7 expressing granules to cause

vesicle docking, whereas docking in the presence of SNAP-25 depended on syt-1

[34].

Here, we studied the molecular basis for a specific form for asynchronous

release, which is induced in SNAP-25 knock-out (KO) hippocampal glutamatergic

neurons after expression of SNAP-23 [35]. By generating a SNAP-25/syt-7 double

knock-out (DKO) mouse we show that SNAP-23 driven asynchronous release

depends on syt-7. These data indicate that syt isoforms associate with specific Q-

SNAREs to trigger exocytosis with different kinetics.

Materials and Methods

Ethics statement

Permission to keep and breed knockout mice for this study was obtained from

The Danish Animal Experiments Inspectorate. The animals were maintained in an

AAALAC-accredited stable in accordance with institutional guidelines as overseen

by the Institutional Animal Care and Use Committee (IACUC). Adult mice were

sacrificed by cervical dislocation; embryos were sacrificed by decapitation. In vivo

experiments were not carried out.

Mouse lines and cell culture

SNAP-25 knock-out (2/2) embryos of either sex expressing endogenous syt-7

were obtained by crossing SNAP-25 heterozygotes and performing cesarean

section on embryonic day 18 (E18). To create embryos of either sex lacking both

SNAP-25 and syt-7, the two knockout mouse lines [19, 22, 36] were crossed and in

the second generation animals knock-out for syt-7 (2/2) and heterozygous for

Snap25 (+/2) were identified by PCR genotyping. These animals were viable, in

agreement with the finding that elimination of syt-7 does not impair survival in

mice [19]. Crossings allowed us to isolate SNAP-25/syt-7 double knock-out

(DKO) embryos at embryonic day 18 (E18). Astrocyte feeder islands and

hippocampal neurons were prepared as described previously [35]. For electro-

physiology, isolated hippocampal neurons were plated on astrocyte microislands

[37] in Neurobasal medium (Invitrogen, Carlsbad, CA) supplemented with B-27
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(Invitrogen), 17.3 mM HEPES, 1% GlutaMax-I (Invitrogen), 1% penicillin/

streptomycin (Invitrogen), 25 mM b-mercaptoethanol. Neurons were allowed to

mature for 10–14 days before they were used for experiments. Only islands

containing single neurons were examined.

Lentiviral vectors

The lentivirus plasmid encoding SNAP-25B or SNAP-23 fused N-terminal to

Enhanced Green Fluorescent Protein (EGFP) has been described before [35]. A 25

amino acid linker separates the EGFP from the complete SNAP-23 or -25 open

reading frame. For experiments carried out in combination with syt-pHluorin

expression, we used Enhanced Cyan Fluorescent Protein (ECFP) fusion proteins,

where the EGFP ORF was replaced with ECFP and remained separated by a 24

amino acid linker from SNAP-25B or SNAP-23. Constructs coding for ecliptic

GFP (pHluorin):synaptotagmin fusion proteins were generated in analogy to

pHluorin-synaptotagmin I reported by Diril et al. [38]. Employing PCR overlap

extension with engineered primers, the coding sequence for each paralog/isoform

(syt-1, syt-7s, and syt-7L; [16]) was N-terminally fused to the sequence of

pHluorin using a short linker that also encoded a Tobacco Etch Virus cleavage site

(amino acid sequence: DYDIPTTENLYFQGELKTVDAD, cleavage site under-

lined). To ensure that the resulting fusion protein is correctly inserted into the

membrane despite its N-terminal modification, we further added the signal

sequence of preprotachykinin to the N-terminus of the open reading frame

(amino acid sequence: MKILVAVAVFFLVSTQLFAEEIGAN). PCR products were

then inserted into the multiple cloning site (restriction sites: Xba I/NheI) of the

p156rrL lentiviral shuttle vector, which carried the WPRE sequence downstream

of the expression cassette. The vector was previously modified to contain the

synapsin promotor for neuron-specific expression. All constructs were verified by

sequencing. Lentiviruses were produced, aliquoted and frozen as previously

described [35]. To investigate the role of syt-7 in synaptic transmission, neurons

from SNAP-25 knockouts (expressing endogeneous syt-7) were infected with

lentiviruses expressing EGFP-SNAP-25 or EGFP-SNAP-23, and compared with

neurons from SNAP-25/syt-7 double-knockouts expressing the same two

constructs.

Immunocytochemistry

Hippocampal neuronal cultures on Poly-Ornithine-Laminin coated coverslips

were fixed for 159 at RT in 3.7% formaldehyde. After three washes in PBS, fixed

cells were permeabilized using 0.5% Triton-X-100 for 5 min and afterwards

incubated in PBS containing 2% goat serum and 0.1% Triton-X-100 for 60 min to

block nonspecific binding. Cultures were incubated for 2 h with primary

antibodies in the presence of goat serum (2%) and 0.1% Triton-X-100. The

primary antibodies used were anti-Syt-1 (1:1000, mouse monoclonal, Synaptic

Systems, Germany, Cat.No. 105 011), and anti-Syt-7 (1:1000, rabbit polyclonal,
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Abcam, USA, Cat.No. 105 173). The cells were washed three times with PBS and

then incubated over night at 4 C̊ with secondary antibodies: Alexa 546-coupled

goat-anti-mouse (Invitrogen) and Alexa 637-coupled goat-anti-chicken

(Invitrogen), both diluted 1:500. Immunofluorescence images were taken with a

confocal microscope (LSM 510 utilizing 488 nm, 543 nm and 633 nm lasers

controlled by LSM 5 software attached to an Axiovert 200; Zeiss, Germany) using

a 636 oil immersion (1.4 NA) objective. For the 546 nm channel, a HFT 488/543

Dichroic Beam Splitter (BS) and a 560–615 BP Filter were used; HFT 488 BS and

505–530 nm BP Filer for the 488 nm channel and a HFT UV/488/543/633

combined with a 650 nm LP filter for the 633 nm channel (all Zeiss, Germany).

Electrophysiology

Autaptic cells between DIV 10 to 14 were used for experiments. The patch-pipette

solution included 135 mM K-gluconate, 10 mM HEPES, 1 mM EGTA, 4.6 mM

MgCl2, 4 mM Na-ATP, 15 mM creatine phosphate, and 50 U/ml phosphocrea-

tine kinase, 300 mOsm, pH 7.3. The standard extracellular medium consisted of

140 mM NaCl, 2.4 mM KCl, 10 mM HEPES, 10 mM glucose, 4 mM CaCl2, and

4 mM MgCl2, 300 mOsm, pH 7.3. Cells were whole-cell voltage clamped at

270 mV with an EPC-9 amplifier (HEKA Elektronik, Lambrecht/Pfalz, Germany)

under control of Pulse 8.80 software (HEKA Elektronik). Currents were low-pass

filtered at 1 or 5 kHz and stored at either 10 or 20 kHz. The series resistance was

compensated 75%. Only cells with series resistances below 20 MV were analyzed.

Pipette resistance ranged from 4 to 6 MV. All recordings were made at room

temperature. EPSCs were evoked by depolarizing the cell from 270 to 0 mV for

2 ms. Solutions were exchanged via a fast local multibarrel perfusion system

(Warner SF-77B, Warner Instruments, USA). The patch pipettes were made of

borosilicate glass and pulled using a multi-step puller (P-87; Sutter Instruments,

Novato, CA). Sucrose experiments were performed with 500 mM Sucrose in

Tetrodotoxin (TTX, 0.5 mM) containing extracellular solution as described by

[39]. Recording of miniature EPSCs (mEPSCs) was performed in the presence of

0.5 mM TTX. Spontaneous events were detected using Mini Analysis program

(Synaptosoft, USA).

Live cell imaging

Hippocampal autaptic cell cultures at DIV 14–21 were used for imaging. Standard

extracellular solution identical to the one used in electrophysiological measure-

ments was used. For the acidification test HEPES in the extracellular solution was

replaced by MES (2-[N-morpholino]ethanesolfonic acid), and the pH was

adjusted to pH 5.5. Ammonium chloride solution was made by substituting

50 mM NaCl with NH4Cl (pH was adjusted to 7.40). Stimulation of cells was

done by superfusing the cells with an extracellular solution where 45 mM NaCl

was substituted with 45 mM KCl to depolarize the membrane. Images of live cells

were taken using a Andor 885 EM-CCD connected on a Zeiss Axio Observer M

SNAP23/syt-7 in Asynchronous Synaptic Transmission
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inverted microscope. To separate ECFP and EGFP signals according to their

excitation spectra, narrow nm-precise light stimulation using a monochromator

(TiLL Polychrome V) was used at 475 and 490 nm, respectively. TILL Live

Acquisition software was used for data acquisition and timing was coordinated

with a gravity driven local application system placed on a stepper motor (Warner

SF-77B) using HEKA Patchmaster Software. A three frame baseline was taken,

followed by a 30 s KCl application and a 10 s acid and ammonium wash. Pictures

were taken at a 1 s interval during baseline and stimulation, and at the end of the

washing steps. SNAP-23/-25 expression was confirmed by ECFP fluorescence.

Statistics

Results are shown as average +/2 SEM, with n referring to the number of cells

from each group, unless otherwise noted in the text. n is given on the bar charts or

the figure legends. We tested the effect of eliminating syt-7 in the presence of

SNAP-25 (the group SNAP-25+syt-7 against the group SNAP-252syt-7), and – in

separate tests – in the presence of SNAP-23 (the group SNAP-23+syt-7 against the

group SNAP-232syt-7). In case of homoscedastic data, the groups were

compared using a Student’s t-test. For heteroscedastic data, non-parametric

Mann-Whitney Test was used. Significance was assumed when p,0.05. Statistical

testing was done using Origin Pro 8 (OriginLabs, USA).

Results

Syt-7 triggers asynchronous release in the presence of SNAP-23

Previous experiments showed that expression of SNAP-23 in SNAP-25 knock-out

(KO) hippocampal neurons restores neuronal survival, as well as neurite and

synapse numbers; however the ensuing evoked release is strongly asynchronous

[35]. Here, we expressed N-terminally EGFP-tagged SNAP-25B – which is fully

functional [40] – or EGFP-SNAP-23 in cultured hippocampal neurons using a

lentiviral expression system [35]. Confocal microscopy showed that both SNAREs

distributed to the entire neuritic tree (Fig. 1A–D), as previously reported [35].

Simultaneous co-staining against syt-1 and syt-7 showed that the former is

enriched in distinct spots, which presumably represents pre-synapses, whereas syt-

7 appears to be more widespread [30], but its distribution overlaps with syt-1,

EGFP-SNAP-25B and EGFP-SNAP-23 (Fig. 1B, D).

To investigate whether specific association of SNAP-23 with syt-7 could explain

asynchronous release in the presence of SNAP-23, we crossed SNAP-25

heterozygote mice with the previously described mouse line bearing a neomycin

cassette in the syt-7 gene [19]. These mice do not express detectable levels of syt-7

and will therefore here be referred to as syt-7 knockouts (KO). Since syt-7 KO

mice are viable, we created a mouse line, which was homozygous knock-out for

syt-7, and heterozygous for SNAP-25. Crossing of these animals made it possible
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to recover SNAP-25/syt-7 DKO mice by cesarean section at E18. As a control, we

performed parallel experiments using SNAP-25 KO E18 animals.

Expression of SNAP-23 in SNAP-25 KO glutamatergic neurons created strongly

asynchronous EPSCs (Fig. 2A, blue trace; see Fig. 2G for explanation of labeling

in this and later figures) with reduced amplitude (Fig. 2B, blue bar) and charge

transfer (Fig. 2C) and increased time-to-peak (Fig. 2D), in agreement with

previous findings [35]. Expression of SNAP-23 in SNAP-25/Syt-7 DKO cells

markedly exacerbated the situation, causing even lower amplitudes (Fig. 2A, B,

green traces/bars) and almost 10-fold longer time-to-peak (Fig. 2D), whereas the

total charge transfer was only slightly and non-significantly reduced by the

elimination of syt-7 (Fig. 2C). In control experiments, we expressed SNAP-25 in

SNAP-25 KO and SNAP-25/Syt-7 DKO cells. These experiments showed

indistinguishable rescue of synchronized release, as judged by amplitudes, charge

and time-to-peak (Fig. 2A–D, black and red traces/bars, respectively). Thus, the

lack of syt-7 has no detectable consequences for single EPSCs in the presence of

SNAP-25, in agreement with previous findings in cortical cultures [19].

Spontaneous release was assessed in naïve neurons that had not been previously

stimulated by high-frequency trains or hypertonic solution (Fig. 2A, E–F). In the

presence of tetrodotoxin (TTX), the frequency of spontaneous release events

(mEPSCs) was significantly increased after expression of SNAP-23 in SNAP-25

KO neurons, and this increase was further significantly augmented by the absence

of syt-7 (from to 11.4¡1.0 Hz to 23.1¡3.1 Hz, p,0.01) (Fig. 2F). In contrast,

the mEPSC frequency was unaffected by syt-7 expression in the presence of

SNAP-25 (Fig. 2F). The amplitudes of mEPSCs were unchanged under all

conditions (Fig. 2E), which shows that the effect of SNAP-23 and syt-7 is

presynaptic in this preparation.

Figure 1. Synaptotagmin-7 staining in cultured hippocampal neurons overlaps with both synaptotagmin-1 and overexpressed SNAP-23/SNAP-25.
A: Hippocampal neuron overexpressing EGFP-SNAP25 (green channel, upper right) and stained for syt-1 (red, upper left) and syt-7 (blue, lower left). Scale
bar510 mm. The lower right panel shows the combined image. B: Close-up image shows that syt-1 is concentrated in spots, which represent presynapses,
whereas both EGFP-SNAP25 and syt-7 have a more wide-spread distribution. Scale bar52 mm. C: Hippocampal neuron overexpressing EGFP-SNAP23
(green channel, upper right) and stained for syt-1 (red, upper left) and syt-7 (blue, lower left). Scale bar510 mm. The combined picture is shown in the lower
right panel. D: Close-up image shows a widespread distribution of both EGFP-SNAP-23 and syt-7, which overlaps with, but is not restricted to, the areas
stained for syt-1. Scale bar52 mm.

doi:10.1371/journal.pone.0114033.g001
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Figure 2. Expression of SNAP-23 in SNAP-25 KO neurons leads to asynchronous release, which is exacerbated by deletion of Synaptotagmin-7.
A, top: Representative EPSC traces of SNAP-25 KO neurons rescued with SNAP-25 (black) or SNAP-23 (blue) and SNAP-25/Syt-7 DKO neurons rescued
with SNAP-25 (red), or SNAP-23 (green). Stimulation is indicated by an arrow. A, bottom: Representative mEPSC traces of SNAP-25 KO neurons rescued
with SNAP-25 (black) or SNAP-23 (blue) and SNAP-25/Syt-7 DKO neurons rescued with SNAP-25 (red), or SNAP-23 (green). B: Expression of SNAP-23 in
SNAP-25 KO neurons (blue) led to reduced peak EPSC amplitudes in SNAP-25 KO neurons, which were further significantly reduced in the absence of Syt-
7 (green). In contrast, syt-7 deletion (red: SNAP-25 expression in SNAP-25/Syt-7 DKO neuron) was without consequence in the presence of SNAP-25
(black: SNAP-25 expression in SNAP-25 KO neuron). C: SNAP-23 rescued neurons displayed a 3–4 fold reduction in the charge transferred upon a
stimulus; this reduction was independent of Syt-7 expression. D: The time-to-peak (EPSC) was prolonged in SNAP-23-rescued SNAP-25 KO neurons.
Additional deletion of Syt-7 leads to a total of 50-fold increase in the time-to-peak. E: Spontaneous mEPSC amplitudes were unchanged in all four
conditions. F: The frequency of mEPSCs was increased when SNAP-23 was expressed in SNAP-25 KO neurons, and further significantly increased when
SNAP-23 was expressed in the SNAP-25/Syt-7 double KO background. G: Explanation of abbreviated labeling, used in Fig. 2–5. *5p,0.05; **5p,0.01;
***5p,0.001.

doi:10.1371/journal.pone.0114033.g002
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The releasable vesicle pool (RRPsuc) size was investigated by application of

hypertonic sucrose solution [39], and – in addition – the subpool of vesicles,

which is available for fast evoked release (RRPev) was estimated by back-

extrapolation of cumulative EPSC amplitudes during a high-frequency train [41]

(Fig. 3A). The size of the RRPsuc was not significantly different between the four

conditions investigated (ANOVA, p.0.85; Fig. 3B, cross-hatched bars), even

though there was a tendency towards lower pool sizes in the presence of SNAP-23,

which was also noted earlier [35]. The pool sizes determined by back

extrapolation of EPSC amplitudes (RRPev) were generally smaller than the

‘sucrose pool’ (Fig. 3B–C, solid bars) [42]. This RRPev was strongly reduced under

SNAP-23 overexpression conditions and further significantly reduced in cells not

expressing syt-7 (p,0.001; Fig. 3A–B). This indicates that the fastest releasing

part of the RRP is selectively diminished in size in the presence of SNAP-23, such

that most vesicles are released ‘reluctantly’ [42, 43]. However, it also has to be

considered that the back extrapolation method is less accurate when the release

probability is low. Indeed, comparison of the charge evoked by a single action

potential with the RRPsuc showed that the vesicular release probability, Pvr, is

lower in SNAP-23 expressing cells (Fig. 3C). The same conclusion was reached

when the evoked charge was compared to the RRPev (Fig. 3C) instead of the

RRPsuc.

Overall, our data identify a positive role for syt-7 in evoked release in the

presence of SNAP-23, whereas the presence of syt-7 acts to clamp the spontaneous

release rate in SNAP-23 expressing neurons.

Syt-7 suppresses a late phase of release during repetitive

stimulation

Asynchronous release components contribute significantly to release during and

immediately following high frequency action potential trains [6, 7, 9, 44]. Data

from the syt-1 knock-out mouse showed that syt-1 clamps an asynchronous

release component driven by one or more alternative calcium sensors, while

stimulating synchronous release [45].

Brief high-frequency stimulation (5 stimuli @ 50 Hz) in neurons containing

SNAP-25 led to short-term synaptic depression of largely synchronized EPSCs

(Fig. 4A–B, black and red traces). The majority (86.5%+/21.3%) of the release

took place during the stimulation period (until 20 ms after the last stimulation),

and this was not changed in the absence of syt-7 (Fig. 4 B–C, red traces and bars).

In the presence of both SNAP-23 and syt-7, the release during the train was

strongly decreased, while the release after the train remained unchanged (Fig. 4A–

C, blue traces and bars). Interestingly, knock-out of syt-7 in the presence of

SNAP-23 shifted almost all release to the period after the train, while the total

amount of release remained unchanged (Fig. 4A–C, green traces and bars). Thus,

even though release is already asynchronous in the presence of SNAP-23, our data

show that syt-7 suppresses an even slower release phase, indicating the existence of

biphasic release even on this very slow time scale. The very slow release phase is

SNAP23/syt-7 in Asynchronous Synaptic Transmission

PLOS ONE | DOI:10.1371/journal.pone.0114033 November 25, 2014 9 / 22



uncovered at high stimulation frequencies, since at lower frequencies (5 stimuli @

5 Hz) the post-train release phase was much smaller (Fig. 4D–E). However, even

at 5 Hz, the post-train release was significantly higher in the absence of syt-7

(Fig. 4E), regardless of the expression of SNAP-23 or SNAP-25.

Longer train stimulations (100 stimuli @ 40 Hz, Fig. 5) led to build-up of

asynchronous release in the presence of SNAP-25 as well as SNAP-23 (Fig. 5A–B).

Deletion of syt-7 in SNAP-25 expressing cells mildly decreased the build-up of

asynchronous release, in agreement with previous studies (compare red and black

curves, Fig. 5B) [21]; however this was not significant when the amount of release

after the end of the train was tested with a t-test (Fig. 5B). However, when tested

with a Mann-Whitney test, the depression was significant (p50.036). It should be

noted that in these experiments we relied on the rescue of SNAP-25 KO and

SNAP-25/syt-7 DKO neurons with EGFP-SNAP-25, and thus our experimental

setting was different from the recent publication [21]. When SNAP-23 was

expressed in cells expressing syt-7, the build-up was overall smaller than in the

presence of SNAP-25 (Fig. 5B, blue trace). However deleting syt-7 in SNAP-23

expressing cells led to a larger build-up (Fig. 5B), and thus around 250 ms (10

APs) the curves of total released charge crossed, with cells lacking syt-7 having a

larger total released charge at later times (Fig. 5C). Overall, repetitive stimulation

demonstrate that syt-7 has a role in limiting late occurring asynchronous release

in the presence of SNAP-23.

Figure 3. Pool sizes and release probabilities of neurons expression SNAP-25 or SNAP-23 in the presence and absence of synaptotagmin-7. A:
Pool sizes estimated by back-extrapolation of cumulative release during a train [41]. The lines are linear fits to the steady state. B: Pool Sizes. Solid Bars:
Estimates from train stimulation and back extrapolation Cross-hatched bars: Estimates from sucrose stimulation. The expression of SNAP-23 reduced the
pool estimate using back-extrapolation, and syt-7 deletion led to a further decrease. C: Release Probabilities, derived by dividing EPSC amplitudes by the
pool size identified by back extrapolation (solid bars), or by dividing the EPSC charge by the charge identified by sucrose application (squared bars). The
expression of SNAP-23 reduced the release probability, but it was not further reduced by deleting syt-7.

doi:10.1371/journal.pone.0114033.g003
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Figure 4. SNAP-23 expressing neurons display asynchronous release, which is shifted to later times
by the lack of synaptotagmin-7. A: Example traces (stimulus artifacts and action potential associated
currents have been blanked); arrows indicate the five stimuli. Color coding as in Figure 2. B: Charge transfer
plotted versus stimuli at 50 Hz. The expression of SNAP-23 reduced the charge, which was further
exacerbated by the deletion of syt-7. C: Charge transferred as a result of 50 Hz stimulation (5 stimuli). ‘‘During
STP’’: Integrated release during the interval from the beginning of the train until 20 ms after the train. ‘‘Post
STP’’: Release after the 5th EPSC (+20 ms) until current has relaxed to baseline. ‘‘Cumulative’’: ‘‘During
STP’’+‘‘Post STP’’. Deletion of syt-7 in the presence of SNAP-23 shifted release to after the short train of
action potentials. D: As (B), 5 Hz instead of 50 Hz. E: As (C), 5 Hz instead of 50 Hz. *: p,0.05; **: p,0.01;
***:p,0.001.

doi:10.1371/journal.pone.0114033.g004
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Vesicles triggered to fuse by SNAP-23 carry syt-1

Recent studies indicated that asynchronous release might be driven by a specific

subpopulation of vesicles carrying VAMP-4 [46], whereas vesicles containing

synaptobrevin-2/VAMP-2 fuse synchronously. This implies that loading of

different SNAREs onto the synaptic vesicle might predetermine the fusion

kinetics. In analogy to this notion, we here asked whether vesicles causing

asynchronous release driven by SNAP-23/syt-7, might carry syt-7 instead of syt-1.

To this end we expressed a fusion construct between a pH-sensitive variant of GFP

– pHluorin [47] – and either syt-1 or syt-7. The linker region of syt-7 is

alternatively spliced, giving rise to different syt-7 isoforms [16, 48]. We chose to

fuse pHluorin to a short and a long isoform of syt-7, which both contain the

calcium-binding C2-domains, but vary in the length of the linker [16](Fig. 6A). In

order to allow imaging of pHluorin constructs in cells expressing SNAP-25 or

SNAP-23, we exchanged the EGFP tag on SNAP-25/-23 for ECFP (Enhanced Cyan

Fluorescent Protein). This allowed visualization of both ECFP (using 475 nm

excitation) and pHluorin (using 490 nm excitation, where ECFP has only 2% of

its maximal excitation) using the same filter set. We combined expression of syt-1,

-7S (short) or -7L (long) with SNAP-25 or SNAP-23 in neurons from SNAP-25

KO mice, creating a total of 6 conditions (Fig. 6).

Application of high-K (45 mM K+-containing) solution to cells expressing

CFP-SNAP-25 and pHluorin-Syt-1 led to a rapid (within 2 s) increase in

pHluorin fluorescence (Fig. 6C), consistent with fast fusion of vesicles with the

plasma membrane. Acid wash (pH 5.5) towards the end of the experiment

Figure 5. Syt-7 limits the build-up of release during prolonged stimulation in the presence of SNAP-23. A: Examples of 40 Hz, 100 AP trains in the
four groups. Color coding as in Figure 2. B: Cumulative release during and after a 40 Hz, 100 AP train. Train stimulation is indicated by a horizontal bar.
Shown are SNAP-25 KO neurons rescued with SNAP-25 (black), or SNAP-23 (blue), compared to SNAP-25/Syt-7 DKO neurons rescued with SNAP-25
(red) and SNAP-23 (green). The thick lines are means of all experiments; thin lines indicate the mean ¡ SEM (number of cells: SNAP-25+syt7, n525 cells;
SNAP-252syt7, n531 cells; SNAP-23+syt7, n519 cells; SNAP-232syt7, 26 cells). C: Zoom-in of the first 0.5 s of (B), showing that in the presence of
SNAP-23, but in the absence of syt-7, release becomes stronger than in the presence of syt-7 at ,0.4 s (train starts at 0.1 s). **: p,0.01.

doi:10.1371/journal.pone.0114033.g005
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markedly reduced the fluorescence, whereas application of an ammonium

chloride solution (pH 7.4), which neutralizes the pH in acidic compartments, led

to maximal fluorescence (Fig. 6C). These findings show that the dynamic

fluorescence signal originated from pHluorin. Following quantification, the

fluorescence signal at low pH was subtracted to isolate the dynamic pHluorin-

signal (Fig. 6E). This analysis clearly showed the rapid increase in fluorescence in

the presence of both SNAP-25 and syt-1, as expected from the fast synchronized

fusion recorded electrophysiologically. In marked contrast, co-expressing

pHluorin-syt-7 – either the short or the long isoform – with SNAP-25 did not

reveal strong differences in fluorescence upon stimulation with high-K solution

(Fig. 6C, E). A small increase in fluorescence in the presence of syt-7S and a small

decrease in the presence of syt-7L were observed (Fig. 6E), but these might be

caused by small changes in focal level when exchanging the solutions.

Nevertheless, these findings do not rule out trafficking of a small fraction of the

syt-7 in response to stimulation, but the fraction of trafficked syt-7 must be much

smaller compared to syt-1, consistent with a previous report on syt-7 linked

pHluorin [49].

Co-expression of pHluorin-syt-1 with CFP-SNAP-23 led to a much slower

fluorescence increase upon stimulation by high-K solution (Fig. 6D, F, compare

to Fig. 6E, left panel). This is in nice agreement with the electrophysiological

findings of strongly asynchronous release in the presence of SNAP-23. However,

the fluorescence overall increased ,2-fold, not much different from the amplitude

encountered in the presence of SNAP-25 (Fig. 6E, left panel), indicating

substantial trafficking of syt-1 also in this case. In stark contrast, trafficking of syt-

7 – short or long isoforms – in the presence of SNAP-23 was again minimal or

absent (Fig. 6F, middle and right panel).

Overall, these experiments show that those vesicles that fuse asynchronously in

the presence of SNAP-23 carry syt-1, rather than syt-7, arguing that the propensity

for SNAP-23 to associate functionally with syt-7 instead of syt-1 is not due to the

recruitment of another vesicle population. Since our electrophysiological data

showed that syt-7 is involved in SNAP-23 mediated secretion, whereas imaging

does not provide evidence for substantial syt-7 trafficking, it appears most likely

that syt-7 acts on SNAP-23 from a location on the plasma membrane.

Figure 6. Vesicles fusing asynchronously in the presence of SNAP-23 carry synaptotagmin-1, not synaptotagmin-7. A: pHluorin constructs. pHluorin
was fused to the N-terminal of syt-1 or syt-7, preceded by a signal peptide from preprotachykinin (ss-ppt), to ensure proper orientation. For syt-7, two
different splice variants were used, a long, and a short. Both have the calcium-binding C2-domains, but they vary in the length of the linker between the
Trans Membrane Region (TMR) and the first C2-domain. B. Experimental paradigm. pHluorin-syt situated in acidified intracellular compartments will not be
fluorescent, but will gain fluorescence upon fusion with the plasma membrane. C. Example images of pH-Syt1, pH-Syt7S (short isoform), pH-Syt-7L (long
isoform) in SNAP-25 KO neurons co-expressing CFP-SNAP-25. At 0 s, the neurons are exposed to high-K solution (45 mM K+) to induce vesicular release.
‘‘Base’’ is the normal extracellular solution. D. Same as C, but cells co-express CFP-SNAP-23. E. Quantification of pHluorin fluorescence in SNAP-25
expressing SNAP-25 KO neurons, for all three pHluorin constructs. High-K exposure has been marked ‘‘KCl’’. The experiment ended with exposure to a
solution with pH 5.5, followed by exposure to an ammonium solution to unquench all pHluorins and reveal the total fluorescence. The fluorescence values
have been subtracted by the fluorescence in pH 5.5 solution. ‘N’ gives the number of cells (number of synapses analyzed: 414 for CFP-SNAP-25/pH-Syt-1,
591 for CFP-SNAP-25/pH-Syt-7S, 511 for CFP-SNAP-25/pH-Syt-7L). F. Same as E, but neurons co-express EGFP-SNAP-23. ‘N’ gives the number of cells
(number of synapses analyzed: 473 for CFP-SNAP-23/pH-Syt-1, 561 for CFP-SNAP-23/pH-Syt-7S, 439 for CFP-SNAP-23/pH-Syt-7L).

doi:10.1371/journal.pone.0114033.g006
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Discussion

Using double-knockout mice and viral transduction we show that exchanging

SNAP-25 for SNAP-23 in glutamatergic hippocampal autaptic neurons renders

neurotransmitter release dependent on endogenous syt-7. These findings identify

a new calcium-dependent pathway for synaptic vesicle exocytosis, which might be

related to the previously identified a-latrotoxin-dependent pathway [50]. In

neurons expressing SNAP-23, syt-7 mediates a distinct asynchronous release

component and thus constitutes a calcium-sensor for asynchronous neurotrans-

mitter release. The properties of this sensor can be summarized as follows:

1. Syt-7 synchronizes release in the presence of SNAP-23, but release remains

much less synchronous than in the presence of SNAP-25/syt-1.

2. Spontaneous release, which is already stimulated by SNAP-23 overexpression,

is further disinhibited by removal of syt7, indicating that syt7 acts as a leaky

clamp on spontaneous release.

3. Syt-7 plays no decisive role in vesicle priming, as total evoked charge and the

size of the ‘sucrose pool’ are largely unaffected by removal of syt-7.

4. Syt-7 determines short-term plasticity in the presence of SNAP-23 during

high frequency stimulation and inhibits delayed release.

The notion that different syt isoforms may act as specific release synchronizers

for distinct sets of SNAREs is strikingly supported by the observation that the

consequences of removing syt-7 in SNAP-23 expressing cells closely match those

found in SNAP-25 expressing cells after eliminating syt-1 or syt-2, except for the

much slower time scale in the presence of SNAP-23 and syt-7. Indeed, the knock-

out of syt-1 or syt-2 has also been shown to desynchronize overall release in all

systems investigated [45, 51–54], whereas in autaptic neurons the overall evoked

charge and the size of the sucrose pool are either slightly reduced or unchanged

[55–58]. The latter result, however, cannot be generalized to non-autaptic

neurons [45, 58]. Likewise, removal of syt-1 or syt-2 cause disinhibition of

spontaneous release in most systems [54, 59–62], although not in autaptic

neurons [58, 62]. Finally, removal of syt-1 also augments delayed release following

action potential trains [45].

The similar consequences of removing syt-7 in the presence of SNAP-23 and

syt-1 in the presence of SNAP-25 argue that the general mechanism of exocytosis

triggering is conserved between different syt/Qbc-SNARE pairs. This indicates that

syt-7 also acts as a calcium sensor, although in the absence of direct mutation of

the calcium-binding sites, we cannot rule out calcium-independent action of syt-

7. However, it seems most likely that syt-1 associates with SNAP-25 to form a fast

calcium-sensor, and syt-7/SNAP-23 constitutes a calcium-sensor with very similar

qualitative properties, but with much slower overall kinetics of action. This

finding agrees with the observation of specific pairing between syt-7 and SNAP-23

in an in vitro docking assay [34]. The observation of specific functional pairing

between syt-7 and SNAP-23 might explain why a previous study failed to restore
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secretion in syt-1 KO autaptic hippocampal neurons by expressing syt-7 or syt-1/

syt-7 chimeric proteins [63].

A previous study indicated that syt-7 located in lysosomes might associate with

plasma membrane SNAP-23 [64]. Neuroendocrine cells such as adrenal

chromaffin cells, pancreatic a- and b-cells and derived cell lines express primarily

SNAP-25, but also smaller amounts of SNAP-23 [65–67]. In these cells, syt-7

contributes significantly to overall release [22–24, 26], suggesting the functional

interplay of endogenous SNAP-23 with syt-7 during endocrine secretion. It was

initially reported that some GABAergic neurons express SNAP-23 instead of

SNAP-25 [68, 69], but later studies indicated that GABAergic neurotransmission

is absent in the SNAP-25 null mouse [35, 70]. However, SNAP-25 is

developmentally down-regulated in some subpopulations of neurons [71], which

might rely on SNAP-23. Finally, a role for postsynaptic SNAP-23 in NMDA

receptor cycling in glutamatergic neurons was recently described [72]. Two recent

studies of central neurons suggested that syt-7 acts as an asynchronous calcium

sensor in the absence of syt-1, or during high-frequency stimulation [20], or as an

upstream calcium-sensor for vesicle replenishment [21]. Interestingly, the

phenotype in adrenal chromaffin combines both findings [22], and we recently

suggested that one and the same protein might perform both actions [73]. It

remains to be seen whether endogenous SNAP-23 might also play a role during

these neuronal functions.

How is the specific coupling between syt-7 and SNAP-23, as indicated by this

study and the previous in vitro investigation [34], established on the molecular

level? This is hard to understand, because the best-studied putative interaction

interfaces between syt-1 and SNAP-25 are largely conserved in syt-7 and SNAP-

23. This includes the charged stretch between loop 1 and loop 2 in the C2B-

domain of syt-1 [74], and the so-called HA-helix at the ‘bottom’ of the C2B-

domain [75]. In SNAP-25, three charges around the middle of the complex, which

are involved in interacting with syt-1 [31, 33], are conserved in SNAP-23. It is

therefore possible that specificity between syts and Q-SNAREs are conferred by

other regions of the protein, for instance the 10 amino acid stretch in the C-

terminal half of the SNAP-25 linker domain, which we found to be decisive for the

different triggering speeds of SNAP-25 and SNAP-23 in adrenal chromaffin cells

[76]. Another possibility is that specificity is indirectly accomplished, via

matching of kinetic properties between Ca2+-sensors and SNAREs. Syt-7, which is

the isoform with the slowest calcium unbinding kinetics [77], might be the only

syt, which can couple calcium to membrane fusion over the same, slow time scale

as SNAP-23 requires to assemble in a SNARE-complex and trigger membrane

fusion.

Our experiments with pHluorin-linked syt-1 and-7 showed that vesicles fusing

asynchronously in the presence of SNAP-23 carry syt-1, whereas syt-7 barely

cycles between intracellular acidic compartments and the plasma membrane. This

finding emphasizes the specificity between SNAREs and syts, as even syt-1

carrying vesicles fuse asynchronously under the influence of syt-7 in the presence

of SNAP-23. The lack of substantial syt-7 cycling indicates that syt-7 might act

SNAP23/syt-7 in Asynchronous Synaptic Transmission

PLOS ONE | DOI:10.1371/journal.pone.0114033 November 25, 2014 16 / 22



from a position on the plasma membrane, even though we notice that roughly

half the protein was present in acidified internal organelles, which might represent

dense-core vesicles or lysosomes [49]. A function for plasma membrane syt-7 in

vesicle recruitment was recently suggested [21], and, indeed, syt-7 was originally

suggested to be a plasma membrane calcium-sensor [16].

In terms of an energy barrier model for the fusion landscape, our data can be

summarized as follows: in the presence of syt-1/SNAP-25, the primed vesicle state

is protected from spontaneous fusion by a relatively large energy barrier, which

can be rapidly removed to elicit fast fusion (Fig. 7). In the presence of syt-7/

SNAP-23, the fusion barrier is not as high, leading to spontaneous release, and

fusion is less synchronous because the barrier cannot be removed as efficiently, or

as fast. Finally, even in the absence of syt-7 (but in the presence of SNAP-23),

there is a – low and thus leaky – fusion barrier, which can be removed slowly to

allow very asynchronous fusion (Fig. 7). The identity of the calcium sensor in this

case remains unknown. We recently showed that the stability of the N-terminal

Figure 7. Schematic drawings of possible arrangements of synaptotagmins and Q-SNAREs result in different energy landscapes of fusion. In the
control situation, syt-1 and SNAP-25 results in a relatively high energy barrier at rest, and an efficient removal of the fusion barrier under stimulation
conditions, leading to fast evoked release and a large difference between evoked and spontaneous fusion rates. In the presence of SNAP-23, syt-7 creates
a lower fusion barrier (leading to a higher frequency of spontaneous release than syt-1), which cannot be as efficiently removed, leading to slower
(asynchronous) evoked fusion. In the presence of SNAP-23 and in the absence of syt-7 the energy barrier for fusion becomes even more ‘squeezed’
between the calcium-independent and calcium-dependent case, leading to high rates of spontaneous fusion and very asynchronous evoked fusion. The
calcium sensor for secretion remains unknown in this situation.

doi:10.1371/journal.pone.0114033.g007
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and the C-terminal part of SNARE-complex play opposing roles for setting the

size of the final fusion barrier [78], such that a looser C-terminal end of the

complex causes less spontaneous release and a lower release probability, whereas a

looser N-terminal end causes more spontaneous release and a slightly higher

release probability. Thus, widespread changes in properties of the SNARE-

complex and the syt isoforms might underlie these different triggering speeds. In

conclusion, our data suggest that cells utilize multiple calcium sensors cooperating

with specific Q-SNAREs to elicit membrane fusion via a conserved mechanism –

but with widely different kinetics.

Supporting Information

Data Set S1. The data (single cell values) used to calculate means and SEMs.

doi:10.1371/journal.pone.0114033.s001 (XLSX)
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