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Background and Objective: Although depression is one of the most common

non-motor symptoms in essential tremor (ET), its pathogenesis and diagnosis biomarker

are still unknown. Recently, machine learning multivariate pattern analysis (MVPA)

combined with connectivity mapping of resting-state fMRI has provided a promising way

to identify patients with depressed ET at the individual level and help to reveal the brain

network pathogenesis of depression in patients with ET.

Methods: Based on global brain connectivity (GBC) mapping from 41 depressed

ET, 49 non-depressed ET, 45 primary depression, and 43 healthy controls (HCs),

multiclass Gaussian process classification (GPC) and binary support vector machine

(SVM) algorithms were used to identify patients with depressed ET from non-depressed

ET, primary depression, and HCs, and the accuracy and permutation tests were used to

assess the classification performance.

Results: While the total accuracy (40.45%) of four-class GPC was poor, the four-class

GPC could discriminate depressed ET from non-depressed ET, primary depression, and

HCs with a sensitivity of 70.73% (P < 0.001). At the same time, the sensitivity of using

binary SVM to discriminate depressed ET from non-depressed ET, primary depression,

and HCs was 73.17, 80.49, and 75.61%, respectively (P < 0.001). The significant

discriminative features were mainly located in cerebellar-motor-prefrontal cortex circuits

(P < 0.001), and a further correlation analysis showed that the GBC values of significant

discriminative features in the right middle prefrontal gyrus, bilateral cerebellum VI, and

Crus 1 were correlated with clinical depression severity in patients with depressed ET.

Conclusion: Our findings demonstrated that GBC mapping combined with machine

learning MVPA could be used to identify patients with depressed ET, and the GBC
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changes in cerebellar-prefrontal cortex circuits not only posed as the significant

discriminative features but also helped to understand the network pathogenesis

underlying depression in patients with ET.

Keywords: essential tremor, depression, multivariate pattern analysis, global brain connectivity, resting-state

functional magnetic resonance imaging

INTRODUCTION

Essential tremor (ET) has been gradually noted to contain
numerous non-motor features such as depression, cognitive
deficits, sleep disturbance, and anxiety, and depression is one
of the most common non-motor symptoms (Chandran et al.,
2012; Louis, 2016). Growing studies (Louis et al., 2016; Achey
et al., 2018) pointed out that 35% of patients with ET had mild to
severe depressive symptoms, and these symptoms would worsen
the poor quality of life in patients with ET. However, to date, the
pathogenic mechanisms in ET, let alone ET with depression are
still unclear.

Using the local functional connectivity (FC) (Fang et al.,
2013), seed-based FC (Fang et al., 2016), and independent
component analysis (Fang et al., 2015) of resting-state functional
magnetic resonance imaging (Rs-fMRI), our previous studies
demonstrated that dysfunctions in the cerebellum and its output
motor and prefrontal cortices circuits were associated with
tremors and cognitive impairment in patients with ET. More
recently, using local FC (Duan et al., 2021) and graph theory
analyses (Li et al., 2021) of Rs-fMRI, we and Li et al. found that the
cerebellar-prefrontal cortices circuits were also associated with
patients with depressed ET. Moreover, a diffusion tensor imaging
study (Sengul et al., 2019) showed that the microstructure
changes in the amygdala, hippocampus, and caudate nucleus
were observed in patients with depressed ET. However, due to
traditionally mass univariate analyses, all these above studies
could not be used to diagnose the individual patient with
depressed ET and had difficulty in sensitively identifying the
change in spatially distributed patterns of these Rs-fMRI data.

Recently, the application of multivariate pattern analysis
(MVPA) to neuroimaging data has gained increasing attention.
Compared with the traditional group-level univariate analysis,
MVPA not only could extract stable and identifiable features
from Rs-fMRI data to distinguish subjects at the individual
level but also have the advantage of being more sensitive to
subtle and spatially distributed information due to taking the
intercorrelation between voxels into consideration (Pereira et al.,
2009). This method has been used to identify individual patients
with schizophrenia (Xiao et al., 2017), Parkinson’s disease (PD)
(Tang et al., 2018), and patients withmajor depression (Guo et al.,
2020). To the best of our knowledge, no study has combined
machine learning MVPA with Rs-fMRI to identify patients with
depressed ET.

In this study, we explored whether voxel-wise global brain
connectivity (GBC) mapping of Rs-fMRI combined with
machine learning MVPA [i.e., multiclass and binary Gaussian
process classification (GPC) and binary support vector machine
(SVM)] could be used to identify patients with depressed ET from

non-depressed ET, primary depression, and healthy controls
(HCs). We expected that these classification models could
achieve good accuracy, and these brain regions of the significant
discriminative features would help to reveal the large-scale brain
network pathogenesis of depression in patients with ET.

MATERIALS AND METHODS

Subjects
Our subjects consisted of 41 (i.e., 26 males and 15 females)
patients with depressed ET, 49 patients with non-depressed ET,
45 patients with primary depression, and 43 age- and sex-
matched HCs. Each subject signed an informed consent form
approved by the Ethics Committee of the First Affiliated Hospital
of Chongqing Medical University (Chongqing, China), and this
study was performed in accordance with the Declaration of
Helsinki of the World Medical Association. Several subjects
included in this study have been reported by our previous MRI
study (Duan et al., 2021). All these subjects fulfilled the following
criteria: (1) the patients with ET met the diagnosis of definite or
probable ET according to the Movement Disorders Consensus
Criteria (Deuschl et al., 1998), and all the patients with ET
had annual follow-ups through the outpatient department or by
telephone; (2) the patients with probable ETwere followed-up for
at least 3 years to confirm the diagnosis; (3) the patients with ET
had an onset age between 18 and 55 years old, and patients with
earlier or later onset were not included; (4) the patients with ET
were not treated with any anti-ET or antidepressant medications,
and the patients with primary depression were not treated with
any antidepressant medications before the baseline fMRI scan
(only the baseline fMRI scan data were used in this study); (5)
the patients were without any apparent cognitive impairment
[Mini-Mental State Examination (MMSE) scores > 24] and were
right-handed; (6) the patients with ET presented with moderate
or greater amplitude kinetic tremor (tremor rating ≥ 2 during
at least three tests); (7) the patients with ET were without PD,
dystonia, psychogenic tremor, thyroid disease, stroke, epilepsy,
head injury, or any other neurological dysfunction; and (8) the
patients with depressed ET and patients with primary depression
met the diagnostic and statistical manual of mental disorders
version four (DSM-IV) criteria (Cooper, 1995), i.e., all the
patients had to have one or both of the two main symptoms (i.e.,
depressed mood, loss of interest, or pleasure) that had lasted for
more than 2 weeks.

The depression severity of each patient was evaluated by
the 17-item Hamilton Depression Rating Scale (HDRS-17), and
all patients with a score of at least 7 points were considered
depressive (Bobo et al., 2016). Tremor severity was assessed
using the Fahn-Tolosa-Marin Tremor Rating Scale (TRS)
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(Fahn et al., 1988) and the Essential Tremor Rating Assessment
Scale (TETRAS) (Elble et al., 2012). TheHamiltonAnxiety Rating
Scale (HARS-14) (Bruss et al., 1994) was used to assess the anxiety
severity of all the participants. The MMSE was used to briefly
assess cognitive function and to screen for dementia.

MRI Data Acquisition
All MR images were acquired using a GE Signa Hdxt 3T
scanner (General Electric Medical Systems,Waukesha,WI, USA)
equipped with a standard 8-channel head coil. Foam padding
and earplugs were used to minimize head motion and to reduce
scanner noise. During RS-fMRI scanning, all subjects were told to
relax, to remain still with their eyes closed, and to remain awake
(which was immediately confirmed via post-scan debriefing). RS-
fMRI data were acquired using an echo-planar imaging (EPI)
pulse sequence with the following parameters: 33 axial slices, slice
thickness/gap = 4.0/0mm, matrix = 64 × 64, repetition time
(TR) = 2000ms, echo time (TE) = 40ms, flip angle = 90◦, field
of view (FOV)= 240× 240mm, and a total of 240 volumes were
obtained (duration = 8min). High-resolution 3D T1-weighted
images (TR = 8.3ms, TE = 3.3ms, flip angle = 15◦, slice
thickness/gap = 1.0/0mm, FOV = 240 × 240mm, and matrix
= 256 × 192) and T2-weighted FLAIR images (TR = 8,000ms,
TE = 126ms, TI = 1,500ms, slice thickness/gap = 5.0/1.5mm,
FOV = 240 × 240mm, and matrix = 256 × 192) were also
acquired. We did not use the T2-weighted FLAIR images for data
processing, but they were used for image evaluation and data
quality assessment.

Data Preprocessing
Data preprocessing was conducted using the DPARSFA
toolbox version 2.2 (http://rfmri.org/DPARSF) on MATLAB
(MathWorks Inc., Natick, MA, USA) platform as previously
described, and the preprocessing steps were as follows: (1)
removal of the first 10 time points. For scanner stabilization and
the acclimation of subjects to the MR scanning environment,
the first 10 volumes were discarded, and the remaining 230 time
points were included in the subsequent data preprocessing; (2)
slice timing correction. This was used to correct for a different
acquisition time across slices in a volume; (3) realignment. This
was used to realign the subsequent functional images to the first
volume to correct for within-run head motions, resulting in
six rigid-body head motion parameters. These parameters were
employed to assess the head movement and ensure the quality
of RS-fMRI data; (4) T1 segmentation and spatial normalization.
3D T1-weighted images were segmented into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) probability
maps using SPM DARTEL segmentation. All the GM, WM, and
CSF images were resampled to 1.5 × 1.5 × 1.5 mm3, spatially
normalized to the MNI space using both affine transformation
and non-linear deformation, and later, resampled to 3 × 3 × 3
mm3 voxel resolution with RS-fMRI, and the deformation field
was applied to the RS-fMRI data (before step 4, the 3D-T1 images
were co-registered to the mean RS-fMRI data for each subject);
(5) removal of six head motion parameters and the mean time
series of global, WM, and CSF signals; and (6) detrending and
filtering. These steps removed the extremely low-frequency drift

and the high-frequency physiological noises. For detrending,
we used first-order polynomial functions; and for filtering, we
adopted band-pass filtering (0.01Hz < f < 0.08Hz) to the time
series for each voxel. Additionally, the image quality met a mean
framewise displacement (FD) head motionless than <0.3mm,
and scrubbing of head motion volumes <50% volumes (115
volumes) (note: we just calculated a scrubbing of head motion
volumes, used the scrubbing of head motion volumes <50%
volumes as quality control criterion, and did not perform
scrubbing in data processing).

Head Motion Control
Due to the intrinsic BOLD signal contaminated by head motion
and non-neuronal physiological processes being the major
obstacle in the analysis of Rs-fMRI data, we performed systematic
tactics to deal with head motion. First, we regressed six head
motion parameters including translational (i.e., x, y, and z axes)
and rotational (i.e., pitch, yaw, and roll). Second, we regressed
nuisance signals, such as WM and CSF, and also global signals.
Third, we also dealt with the volume-to-volume head motion,
also called FDs. Using mean FDpower > 0.3mm as a threshold
(not FDJenk), the scrubbing volumes and the maximal scrubbing
volumes were counted in this study, and one-way ANOVA and
post-hoc t-test were performed to explore whether these head
parameters exist significant differences among the four groups.
The results showed that the maximal scrubbing volumes were
27 volumes (27/230 = 11.73%) in this study. No significant
difference in scrubbing volumes and the mean FDpower among
the four groups was observed (scrubbing volumes: 13.6585 ±

6.3270, 13.6829 ± 5.5337, 13.6976 ± 5.1248, and 14.5556 ±

5.6510; mean FDpower: 0.086 ± 0.0404, 0.0757 ± 0.0404, 0.0749
± 0.0430, and 0.089 ± 0.0612; F = 0.2630, P = 0.8520; F =

0.6450, and P = 0.5870). Finally, a Pearson correlation analysis
was performed between the mean FD power values and GBC
values of regions of interest (ROIs) in patients with depressed
ET, no significant correlation was observed, and we also used the
mean FDpower values as a covariate in the correlation analysis
between GBC values of ROIs and HDRS-17 scores in patients
with depressed ET.

Calculation of Voxel-Wise GBC Mappings
We adopted degree centrality as a metric to calculate the voxel-
wise GBCmappings as Zuo et al. (2012) and our previous studies
(Wang et al., 2018) described. In brief, an individual Pearson
correlation coefficient (r) matrix was obtained by computing
the Pearson correlation coefficient between each pair of voxels
in an SPM8 prior probabilistic brain GM template as the mask
(54,326 voxels; voxel size: 3 × 3 × 3 mm3) from each subject,
and the threshold for the Pearson correlation coefficient was set
at r ≥ 0.25. To improve normality, correlation matrix of each
individual was transformed into a Z-scorematrix using Fisher’s r-
to-z and Z transformation. Then, the individual degree centrality
mapping was formed, smoothed with a 6 × 6 × 6 mm3 full-
width at half-maximum (FWHM) Gaussian smoothing kernel
(the data preprocessing without smoothing), and selected for
further analysis in this study.
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Machine Learning Classification: MVPA
The multiclass and binary GPC and binary SVM algorithms
of MVPA were performed using PRoNTo version 2.1.1 (http://
www.mlnl.cs.ucl.ac.uk/pronto/) on MATLAB (MathWorks Inc.,
Natick, MA, USA) platform, and we adopted four-class GPC to
identify depressed ET, non-depressed ET, primary depression and
HCs, and binary GPC and binary SVM for depressed ET vs. non-
depressed ET, depressed ET vs. primary depression, depressed
ET vs. HCs, and primary depression vs. HCs, based on their
respective individual GBC mapping. In brief, these machine
learning MVPA were composed of five main analysis modules,
namely, data set specification, feature set selection, model
specification, model estimation, and weight computation. In the
data set specification and feature set selection, the individual
GBC mapping was inputted into machine learning algorithms as
features, and the mean DARTEL GM mask was used to exclude
uninteresting features. In the model specification and model
estimation, the features were mean-centered, and multiclass
GPC, binary GPC, and binary SVM were used to test whether
the individual GBC mapping could be used to discriminate these
subjects. These subjects were divided into training and testing
sets, and a leave-one-subject-out-cross-validation (LOSOCV)
was used. We took the sensitivity, specificity, accuracy, balanced
accuracy, total accuracy, positive predictive value, negative
predictive value, and receiver operating characteristic (ROC)
curve (only in binary GPC and binary SVM) into account to
evaluate the performance of these classification models. We used
the permutation test to assess the significance of the performance
of these models and to locate the significant discriminative
features. More specifically, we repeated the permutation cross-
validation procedure test 1,000 times and counted how many
times the value of these accuracy measures was equal to or
higher than the correct one. The p-value was then calculated by
dividing this number by the number of permutations (1,000).
To locate the significant discriminative features, the contribution
of each voxel to classification was calculated, the P-value of
voxels was calculated by dividing this number by the number
of permutations (1,000), then it was projected to generate the
discriminative map, and the cluster size> 30 voxels was adopted.

Correlation Analysis Between GBC Values
of Significant Discriminative Features and
Clinical Depression Severity
Finally, a univariate analysis was further used to investigate the
correlations between the GBC values of significant discriminative
features and the HDRS-17 scores in patients with depressed ET.
In brief, these clusters of the significant discriminative features
were defined as an ROI, we abstracted the mean GBC values
of these ROIs, and a Pearson correlation analysis between the
mean GBC values of these ROIs and the HDRS-17 scores of
the patients with depressed ET was performed with Bonferroni
multiple comparison corrections.

In addition, we also performed post-hoc analyses to evaluate
the potential impact of HARS-14 scores and education year
differences between primary depression and depressed ET on the
results. A univariate two-sample t-test with the age, education

years, and scores of the MMSE and HARS-14 as covariates was
performed, and the significant discrimination features of primary
depression vs. depressed ET were used as a mask (to consider
that we only focused on whether these significant discrimination
features were influenced by these above covariates, and we did
not use a GMorwhole-brainmask) with permutation (1,000) and
threshold-free cluster enhancement (TFCE)multiple comparison
correction (corrected P < 0.001). Meantime, in the univariate
correlation analysis, we also used age, education years, and scores
of the MMSE and HARS-14 as covariates and a partial Pearson
correlation was performed.

RESULTS

Demographic and Clinical Characteristics
Demographic and clinical information is shown in Table 1, and
the age, education level, tremor of onset, and scores on TRS
parts A and B, TRS part C, TETRAS, TETRAS-ADL, MMSE,
HDRS-17, and HARS-14 in patients with depressed ET showed
a normal distribution (P = 0.63, 0.12, 0.32, 0.66, 0.33, 0.45, 0.27,
0.06, 0.97, and 0.06, respectively), and the tremor duration in the
patients with depressed ET showed a non-normal distribution (P
= 0.035). Among these clinical data, a significant correlation was
observed between TRS parts A and B and TETRAS and TRS part
C and TETRAS-ADL (Pearson’s: r= 0.61, P= 3.542E-5; r= 0.47,
P = 0.003, respectively), and a marginally significant correlation
was observed between HDRS-17 scores and education level
(Pearson’s: r = 0.27, P = 0.09) in patients with depressed ET.

Multiclass GPC Classification
Using GBC mapping, the four-class GPC machine learning
MVPA achieved a total accuracy of 40.45% and a balanced
accuracy of 41.16% for the whole four classes of depressed ET,
non-depressed ET, primary depression, andHCs, the accuracy for
depressed ET, non-depressed ET, primary depression, and HCs
was 70.73, 18.37, 75.56, and 0.00%, respectively, and statistically
significant accuracy was P < 0.001, 0.922, 0.001, and 1.000,
respectively (Supplementary Figure 1).

Binary GPC and SVM Classification
Based on voxel-wise GBC mapping, these binary GPC and
binary SVM machine learning MVPA were able to discriminate
depressed ET vs. HCs, depressed ET vs. non-depressed ET,
depressed ET vs. primary depression, and primary depression
vs. HCs, and the results of SVM were better than GPC and the
following presented with binary SVM results. Figure 1 shows
the classification of depressed ET vs. HCs with a balanced
accuracy of 87.80% and permutation test with statistically
significant balanced accuracy, sensitivity, and specificity at P
< 0.001; the classification of depressed ET vs. non-depressed
ET with a balanced accuracy of 81.48% and permutation test
with statistically significant balanced accuracy, sensitivity, and
specificity at P < 0.001; the classification of depressed ET vs.
primary depression with a balanced accuracy of 82.47% and
permutation test with statistically significant balanced accuracy,
sensitivity, and specificity at P < 0.001; and the classification of
primary depression vs. HCs with a balanced accuracy of 79.64%
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TABLE 1 | Demographic and clinical features of depressed ET, non-depressed ET, HCs, and DP.

Measure DET(41) ET(49) HCs(43) DP(45) Statistic P-value

DET vs. ET DET vs. HCs DET vs. DP DP vs. HCs

Demographic

Age 47.85 ±

15.66

46.16 ±

14.52

46.60 ±

13.45

45.20 ±

13.25

F = 0.50 0.37 0.47 0.24 0.64

Sex (male/female) 26:15 32:17 27:16 20:25 x2 = 6.54 0.85 0.95 0.80 0.09

Education (year) 14.73 ± 4.17 12.18 ± 3.95 12.28 ± 3.49 11.95 ± 4.40 F = 4.43 0.03 0.06 0.02 0.71

Handedness (R/L) 41:0 49:0 43:0 45:0 x2 = 0 1 1 1 1

Clinical of psychology and cognitive

HDRS-17 18.98 ± 6.35 3.27 ± 1.60 2.09 ± 1.19 25.31 ± 7.12 F = 258.21 1e-6 1e-6 0.25 1e-6

MMSE 26.00 ± 1.40 26.67 ± 1.71 28.70 ± 1.35 25.67 ± 1.77 F = 31.99 0.05 1e-6 0.33 1e-6

HARS-14 7.56 ± 3.47 3.73 ± 1.90 2.02 ± 1.18 9.29 ± 4.93 F = 48.47 1e-6 1e-6 0.01 1e-6

Clinical of tremor

Tremor of onset 34.93 ±

11.84

34.43 ±

10.16

NA NA T = 0.21 0.83 NA NA NA

Tremor duration 13.90 ± 9.40 12.69 ± 7.02 NA NA T = 0.70 0.49 NA NA NA

TRS-parts A&B 22.66 ± 7.28 20.90 ± 7.35 NA NA T = 1.14 0.26 NA NA NA

TRS-part C 14.05 ± 4.74 11.82 ± 5.80 NA NA T = 1.97 0.05 NA NA NA

TETRAS 18.32 ± 8.27 17.63 ± 6.75 NA NA T = 0.57 0.57 NA NA NA

TETRAS-ADL 21.39 ± 6.51 20.91 ± 5.66 NA NA T = 1.31 0.19 NA NA NA

ET, essential tremor; DET, depressed ET; HCs, healthy controls; DP, primary depression; HDRS-17, 17-item Hamilton Depression Rating Scale; MMSE, Mini-Mental State Examination;

HARS-14, 14-item Hamilton Anxiety Rating Scale; TRS, Fahn-Tolosa-Marin Tremor Rating Scale; TETRAS, Essential Tremor Rating Assessment Scale; TETRAS-ADL, Essential Tremor

Rating Assessment Scale-Activities of Daily Living.

FIGURE 1 | Confusion matrix and ROC curve of the binary SVM algorithm. ET, essential tremor; HCs, healthy controls; ROC, receiver operating characteristic; AUC,

area under the curve; SVM, support vector machine.

and permutation test with statistically significant balanced
accuracy, sensitivity, and specificity at P < 0.001.

Figures 2, 3 show the corresponding significant
discriminative features of these classifications with permutation

test at P < 0.001. In depressed ET vs. HCs, positive (mean
depressed ET > HCs) discriminative features located in the
bilateral supplementary motor cortices, bilateral precentral
cortices, bilateral anterior cingulate cortices, bilateral precuneus
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FIGURE 2 | The brain regions of significant discriminative features in classification of depressed ET vs. non-depressed ET and depressed ET vs. HCs. ET, essential

tremor; HCs, healthy controls.

gyri, right middle frontal gyrus, and left superior frontal gyrus,
and negative (mean depressed ET < HCs) discriminative
features located in bilateral cerebellum VIII, bilateral cerebellum
VI, and left cerebellum IV–V; in depressed ET vs. non-
depressed ET, positive (mean depressed ET > non-depressed

ET) discriminative features located in the bilateral anterior
cingulate cortices, bilateral precuneus gyri, right middle frontal
gyrus, and right cerebellum IV–V, and negative (mean depressed
ET < non-depressed ET) discriminative features located in
bilateral cerebellum VI and Crus I and left cerebellum IV–V; in
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FIGURE 3 | The brain regions of significant discriminative features in classification of depressed ET vs. primary depression, and primary depression vs. HCs. ET,

essential tremor; HCs, healthy controls.

depressed ET vs. primary depression, positive (mean depressed
ET > primary depression) discriminative features located in
the bilateral supplementary motor cortices, bilateral precentral
cortices, bilateral precuneus gyri, bilateral middle frontal
gyri, bilateral superior frontal gyri, bilateral anterior cingulate

cortices, and bilateral inferior parietal lobules, and negative
(mean depressed ET < primary depression) discriminative
features located in bilateral cerebellum VIII, bilateral cerebellum
VI and Crus I, and left cerebellum IV–V; and in primary
depression vs. HCs, positive (mean primary depression >
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HCs) discriminative features located in the bilateral cerebellum
VIII and bilateral cerebellum VI, and negative (mean primary
depression < HCs) discriminative features located in bilateral
supplementary motor cortices, bilateral precentral cortices,
bilateral middle frontal gyri, bilateral superior frontal gyri,
bilateral anterior cingulate cortices, bilateral inferior parietal
lobules, and bilateral amygdale. In addition, the results of the
univariate two-sample t-test with the age, education years, and
scores of the MMSE and HARS-14 as covariates between primary
depression and depressed ET were similar to the results of
machine learning.

Correlation Between GBC Values and
HDRS-17 Scores
Twelve clusters of the significant discriminative features
(permutation test at P < 0.001) in the classification of depressed
ET vs. HCs were observed, and 12 ROIs were further defined.
A Pearson correlation analysis showed a significant positive
correlation between GBC values of ROIs in the right middle
prefrontal cortex and the HDRS-17 scores in patients with
depressed ET, a significant negative correlation between GBC
values of ROIs in right cerebellum VI and Crus 1 and the
HDRS-17 scores in patients with depressed ET, and a marginally
significant negative correlation between GBC values of ROIs
in left cerebellum VI and Crus 1 and the HDRS-17 scores in
the patients with depressed ET (Figure 4) (Bonferroni multiple
comparison corrections, corrected P < 0.05/12 × (12 – 1)/2).
In addition, the results of partial Pearson correlation were
also similar.

DISCUSSION

Voxel-wise GBC mapping of Rs-fMRI combined with machine
learning (i.e., multiclass GPC, binary GPC, and binary SVM)
MVPA, the following three main findings were obtained: (1)
although the four-class GPC achieved a totally poor classification,
the four-class, binary GPC, and binary SVM could be used
to discriminate depressed ET from non-depressed ET, primary
depression, and HCs; (2) the significant discriminative features
of these binary SVM and binary GPC MVPA mainly located in
cerebellar-motor-prefrontal cortices circuits; and (3) the voxel-
wise GBC values of significant discriminative features in right
middle prefrontal gyrus and bilateral cerebellum VI and Crus 1
were correlated with clinical depression severity in patients with
depressed ET.

Machine Learning in Patients With ET
Before this study, very few studies combining clinical behavioral
symptoms and signs, such as voice tremor (Suppa et al.,
2021), motor task dysfunction (DeSimone et al., 2019), tremor
parameters (Zheng et al., 2019), and balance and gait disorders
(Moon et al., 2020), with machine learning approaches had
achieved good classifications of ET vs. HCs, ET vs. PD, and ET
vs. dystonia. However, these clinical behavioral symptoms were
not more stable, direct, and precise as biological or physiological
biomarkers, especially neuroimaging data, the most potential
and easy to acquire biomarkers, and all above studies were

binary classification approaches and did not involve the non-
motor symptoms including depression in ET.More recently, only
Benito-León et al. (2019) adoptedMRI-derived brain volume and
cortical thickness data to discriminate ET vs. orthostatic tremor
and achieved a good classification. Therefore, this study was
the first to combine neuroimaging data with machine learning
algorithms to discriminate depressed ET from non-depressed ET,
primary depression, and HCs and further to explore the large-
scale neural network mechanisms for these diseases. Although
the total and balanced accuracies for the four classes were poor
(40.45 and 41.16%, respectively), the four-class classification had
achieved a good accuracy for depressed ET (70.73%) and primary
depression (75.56%) vs. the remaining three classes.

Depression May Be a Primary
Phenomenon in ET
It is still on the debate that whether depression is a primary
or a secondary feature in ET. Based on the scores of Hamilton
Depression Rating Scale being correlated with the scores
of Fahn-Tolosa-Marin TRS parts A and B in patients with
depressed ET, some studies (Chandran et al., 2012) highlighted
that depression in ET was merely a secondary phenomenon
in response to tremor severity. However, many studies (Louis
et al., 2016; Huey et al., 2018) did not observe this correlated
relationship. Consistent with these studies, this study failed
to find any significant correlation between depression severity
and other clinical characteristics, including the Fahn-Tolosa-
Marin TRS parts A and B and TETRAS scores in the patients
with depressed ET. Moreover, our findings showed that the
multiclass GPC, binary GPC, and binary SVM MVPA could
be used to discriminate depressed ET from non-depressed ET,
primary depression, and HCs, these results showed that the
spatially distributed patterns of voxel-wise GBC in patients
with depressed ET were different from non-depressed ET,
primary depression, and HCs, and the significant discriminative
features in cerebellar-prefrontal cortices circuits were observed.
Particularly, a growing body of study (Galts et al., 2019)
suggested that the etiology of primary depression was extremely
complicated, including monoaminergic and glutamatergic
disturbances, neuroplasticity changes, hypothalamic-pituitary-
adrenal axis dysfunction, neuroinflammation, and brain network
reconfiguration. The interaction of molecular, biochemical,
and functional changes was believed to contribute to the
development of primary depression. However, previous ET
studies failed to find the same dopaminergic neuron abnormality
as observed in primary depression. Importantly, our findings
of different connectivity patterns of cerebellar and its output
cortices circuits between depressed ET and primary depression
lent support to the view that there was different pathophysiology
between depressed ET and primary depression. Although the
HARS-14 scores and education years were significantly different
between primary depression and depressed ET, the results of
our additional analyses showed that the brain network change
differences between primary depression and depressed ET were
not related to the HARS-14 scores and education year differences,
and these variables could not be confounding factors to hinder
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FIGURE 4 | Results of correlation analysis between the GBC values of significant discriminative features and the HDRS-17 scores in patients with depressed ET.

Bonferroni multiple comparison corrections, corrected P < 0.05/12 × (12–1)/2. Left: the cluster of the significant discriminative features. Middle: mean GBC values in

the significant discriminative regions among DET, ET, HC, and DP groups. Right: the scatter plots for the correlation analysis in patients with depressed ET. GBC, global

brain connectivity; PFC, prefrontal cortex; zGBC, z-transformed global brain connectivity; zHDRS-17 scores, z-transformed Hamilton Depression Rating Scale 17-item

scores; DET, depressed essential tremor; ET, essential tremor; HCs, healthy controls; DP, primary depression; HDRS-17, 17-item Hamilton Depression Rating Scale.
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exploring the large-scale brain network changes between primary
depression and depressed ET in this study. Therefore, due to
the large-scale neural network spatially distributed pattern
difference, we further suggested that depression in ET may be
a primary manifestation of the disease rather than secondary
to impaired motor functions and decreased quality of life due
to tremor.

The Cerebellar-Prefrontal Cortices Circuits
Are a Key Pathogenesis Network
Associated With Depression in Patients
With ET
Recently, the adoption of Rs-fMRI to explore large-scale
brain network changes gave advances in understanding the
relationship between depression pathogenesis and cerebellar-
prefrontal cortices circuits. Growing studies demonstrated that
the changes of local, seed-based, and voxel-wise whole-brain
FC in cerebellar-prefrontal cortices circuits were associated
with depression symptoms in primary depression (Song et al.,
2016) and movement disorders with depression, such as
PD (Wang et al., 2018), Huntington’s disease (Garcia-Gorro
et al., 2019), and ET (Duan et al., 2021). Consistent with
these studies, our findings demonstrated that voxel-wise GBC
changes in cerebellar-prefrontal cortices circuits not only were
the significant discriminative features in the classification of
depressed ET from non-depressed ET, primary depression,
and HCs but also voxel-wise GBC values in right middle
prefrontal gyrus and bilateral cerebellum VI and Crus 1 were
correlated with clinical depression severity in patients with
depressed ET. So, we adhered that the cerebellar-prefrontal
cortices circuits were a key pathogenesis network associated
with depression in patients with ET. Meantime, previous studies
(Gong and He, 2015) have found that connectivity disruption
involved multiple brain regions in primary depression and
is mainly located in the prefrontal-limbic-cerebellar pathway,
including the prefrontal cortex, anterior cingulate cortex,
precuneus gyrus, amygdala, caudate nucleus, and cerebellum.
The discriminative regions identified in our patients with
primary depression were similar to those observed in previous
primary depression studies. Moreover, the voxel-wise GBC
changes in cerebellar-prefrontal cortices circuits as common
discriminative features in the classification of depressed ET vs.
HCs and primary depression vs. HCs seemed that depressed ET
and primary depression shared a similar cerebellar-prefrontal
cortices circuits pathogenesis. However, in the classification of
primary depression vs. HCs, extensive negative (mean primary
depression < HCs) discriminative features in cerebral cortices
including prefrontal cortices and positive discriminative features
in the cerebellum were observed, and in the classification of
depressed ET vs. HCs, these discriminative features were contrary
to primary depression vs. HCs, and positive discriminative
features in cerebral cortices including prefrontal cortices and
negative discriminative features in the cerebellum were observed.
Therefore, the spatially distributed patterns of voxel-wise GBC
changes in depressed ET and primary depression were actually
different, and these results further suggested that depressed ET

and primary depression owned the different large-scale neural
network pathogenesis.

In addition, previous studies (Louis and Vonsattel, 2008;
Lin et al., 2014; Louis and Faust, 2020) from postmortem
examinations have shown that only the cerebellum and brainstem
existed clearly identifiable structural changes in the ET brain,
and the other brain regions including prefrontal cortices, motor
cortices, anterior cingulate cortices, and precuneus gyri did
not have any neuropathology abnormalities. Combined previous
postmortem examinations with our findings, we suggested
that the cerebellum may play a key pathogenesis role in
the cerebellar-prefrontal cortices circuits involved in ET with
depression symptoms.

Besides, in another movement disorder, previous dystonia
studies (Stamelou et al., 2012) have suggested that cortical-
basal ganglia-cortical circuit dysfunction, especially the striatum,
was a pathophysiological substrate of depression in dystonia.
Unlike this, this study demonstrated that cerebellar-prefrontal
cortices circuits dysfunction played an important role in the
pathogenesis of depression in ET and emphasized the important
role of the cerebellum and its output circuits in emotional
regulation. Thus, our findings further indicated that there was a
specificity of neuropathological features in movement disorders
with depression.

Limitations
Some limitations in this study need to be noted. First, although
multiclass GPC, binary GPC, and binary SVM could be
used to discriminate depressed ET from non-depressed ET,
primary depression, and HCs, all these classification algorithms
were supervised learning approaches, and the unsupervised
learning algorithms based on a large sample may give more
perfectly classification performance and even an achieved clinical
diagnosis state. Second, we must admit that LOSOCV does have
some shortcomings, including the possibility of result bias and
longer computation time due to more data that are provided in
the model training. Therefore, it is important to confirm our
findings with the larger sample size and independent validation
data in the future. Third, although based on our findings, we
recommended that depression may be a primary phenomenon
in ET, this study was cross-sectional, and the follow-up data
may be more able to directly address these issues. Fourth, all
the depressed ET, non-depressed ET, and primary depression
patients were obtained from the outpatient department, our
findings could not fully describe the depressive characteristics
in these patients, and in the future, a population-based study
will help to overcome this drawback. Finally, due to the absence
of biological and pathogenic markers, the diagnosis of ET only
relied on clinical phenomenology and neurological examinations,
and the misdiagnosis is very common. However, all patients
with ET had long follow-up periods to minimize the risk of
misdiagnosis in this study.

CONCLUSION

Using multiclass GPC, binary GPC, and binary SVM based on
voxel-wise GBC mapping could identify depressed ET from
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non-depressed ET, primary depression, and HCs. The spatially
distributed patterns of voxel-wise GBC changes in cerebellar-
prefrontal cortices circuits not only played the significant
discriminative features but also helped to understand the large-
scale neural network pathogenesis underlying depression in
patients with ET.
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