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The state-of-the-art of biocomposites and hybrid biomaterials 
based on calcium orthophosphates that are suitable for 
biomedical applications is presented in this review. Since 
these types of biomaterials offer many significant and exciting 
possibilities for hard tissue regeneration, this subject belongs 
to a rapidly expanding area of biomedical research. Through 
successful combinations of the desired properties of matrix 
materials with those of fillers (in such systems, calcium 
orthophosphates might play either role), innovative bone graft 
biomaterials can be designed. Various types of biocomposites 
and hybrid biomaterials based on calcium orthophosphates, 
either those already in use or being investigated for 
biomedical applications, are extensively discussed. Many 
different formulations, in terms of the material constituents, 
fabrication technologies, structural and bioactive properties 
as well as both in vitro and in vivo characteristics, have already 
been proposed. Among the others, the nanostructurally 
controlled biocomposites, those containing nanodimensional 
compounds, biomimetically fabricated formulations with 
collagen, chitin and/or gelatin as well as various functionally 
graded structures seem to be the most promising candidates 
for clinical applications. The specific advantages of using 
biocomposites and hybrid biomaterials based on calcium 
orthophosphates in the selected applications are highlighted. 
As the way from the laboratory to the hospital is a long one, 
and the prospective biomedical candidates have to meet many 
different necessities, this review also examines the critical 
issues and scientific challenges that require further research 
and development.
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Introduction

The fracture of bones due to various traumas or natural aging is a 
typical type of a tissue failure. An operative treatment frequently 
requires implantation of a temporary or a permanent prosthesis, 
which is still a challenge for orthopedic surgeons, especially in 
the case of large bone defects. A rapidly aging population and 
serious drawbacks to using natural bone grafts make the situ-
ation even worse; therefore, there is a high clinical demand for 
bone substitutes. Unfortunately, medical application of xeno-
grafts (e.g., bovine bone) is generally associated with potential 
viral infections. In addition, xenografts have a low osteogenic-
ity, an increased immunogenicity and usually resorb more rap-
idly than autogenous bone. Similar limitations are also valid for 
human allografts (i.e., tissue transplantation between individu-
als of the same species but of nonidentical genetic composition), 
where the concerns about potential risks of transmitting tumor 
cells, a variety of bacterial and viral infections as well as immu-
nological and blood group incompatibility are even stronger.1-3 
Moreover, harvesting and conservation of allografts (exogenous 
bones) are additional limiting factors. Autografts (endogenous 
bones) are still the “golden standard” among any substitution 
materials, because they are osteogenic, osteoinductive, osteocon-
ductive, completely biocompatible, non-toxic and do not cause 
any immunological problems (non-allergenic). They contain 
viable osteogenic cells, bone matrix proteins and support bone 
growth. Usually, autografts are well accepted by the body and 
rapidly integrate into the surrounding bone tissues. For these rea-
sons, they are routinely used for a long period with good clinical 
results,3-6 and it is fair to say that complications mostly arose in 
the past.7,8 Unfortunately, a limited number of donor sites restrict 
the quantity of autografts harvested from the iliac crest or other 
locations of the patient’s own body. In addition, their medical 
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many cases, it is difficult to form calcium orthophosphate bioc-
eramics into the desired shapes.

The superior strength and partial elasticity of biological 
calcified tissues (e.g., bones) are due to the presence of bioor-
ganic polymers (mainly, collagen type I fibers32) rather than to 
a natural ceramic (mainly, a poorly crystalline, ion-substituted 
CDHA, often referred to as “biological apatite”) phase.34,35 The 
elastic collagen fibers are aligned along the main stress direc-
tions in bone. The biochemical composition of bones is given in 
Table 1.36 A decalcified bone becomes very flexible and is easily 
twisted, whereas a bone without collagen is very brittle; thus, the 
inorganic, nano-sized crystals of biological apatite provide hard-
ness and stiffness, while the bioorganic fibers are responsible for 
the elasticity and toughness.26,37 In bones, both types of mate-
rials integrate with each other on a nanometric scale in such a 
way that the crystallite size, fiber orientation, short-range order 
between the components, etc. determine its nanostructure and, 
therefore, the function and mechanical properties of the entire 
composite.33,38-42 From the mechanical point of view, bone is a 
tough material at low strain rates but fractures more like a brittle 
material at high strain rates; generally, it is rather weak in ten-
sion and shear, particularly along the longitudinal plane. Besides, 
bone is an anisotropic material, because its properties are direc-
tionally dependent.25,26,31

It remains a great challenge to design the ideal bone graft, one 
that emulates nature’s own structures or functions. Certainly, 
the successful design requires an appreciation of the structure of 
bone. According to expectations, the ideal bone graft should be 
benign, available in a variety of forms and sizes, all with sufficient 
mechanical properties for use in load-bearing sites, form a chemi-
cal bond at the bone/implant interface as well as be osteogenic, 
osteoinductive, osteoconductive, biocompatible, completely bio-
degradable, at the expense of bone growth, and moldable to fill 
and restore bone defects.29,40,43 Further, it should resemble the 
chemical composition of bones (thus, the presence of calcium 
orthophosphates is mandatory), exhibit contiguous porosity 
to encourage invasion by the live host tissue as well as possess 
both viscoelastic and semi-brittle behavior, as bones do.44-47 
Moreover, the degradation kinetics of the ideal implant should 
be adjusted to the healing rate of the human tissue, with absence 
of any chemical or biological irritation and/or toxicity caused 
by substances that are released due to corrosion or degradation. 

application always involves additional traumas and scars result-
ing from the extraction of a donor tissue during a superfluous 
surgical operation, which requires further healing at the donation 
site and can involve long-term postoperative pain.1,8-11 Thus, any 
types of biologically derived transplants appear to be imperfect 
solutions, mainly due to a restricted quantity of donor tissues, 
donor site morbidity as well as potential risks of an immunologi-
cal incompatibility and disease transfer.9,11,12 In this light, man-
made materials (alloplastic or synthetic bone grafts) stand out as 
a reasonable option, because they are easily available and might 
be processed and modified to suit the specific needs of a given 
application.13-15 What’s more, there are no concerns about poten-
tial infections, immunological incompatibility, sterility or donor 
site morbidity. Therefore, investigations on artificial materials for 
bone tissue repair appear to be one of the key subjects in the field 
of biomaterials research for clinical applications.16

Currently, there are several classes of synthetic bone graft-
ing biomaterials for in vivo applications.17-21 Examples include 
natural coral, coral-derived materials, bovine porous demineral-
ized bone, human demineralized bone matrix, bioactive glasses, 
glass-ceramics and calcium orthophosphates.11 All of these bio-
materials are biocompatible and osteoconductive, guiding bone 
tissue from the edges toward the center of the defect, and aim 
to provide a scaffold of interconnected pores, with pore dimen-
sions ranging from 200 μm22,23 to 2 mm,24 to facilitate tissue 
and vessel ingrowths. Among them, porous bioceramics made 
of calcium orthophosphates appear very promising due to both 
excellent biocompatibility and their ability to bond to living 
bone in the body. This is directly related to the fact that the inor-
ganic material of mammalian calcified tissues, i.e., of bones and 
teeth, consists of calcium orthophosphates.25-27 For this reason, 
other artificial materials are normally encapsulated by fibrous tis-
sue when implanted in body defects, while calcium orthophos-
phates are not.28 Many types of calcium orthophosphate-based 
bioceramics with different chemical composition are already on 
the market. Unfortunately, as with any ceramic material, cal-
cium orthophosphate bioceramics alone lack the mechanical and 
elastic properties of calcified tissues. Namely, scaffolds made of 
calcium orthophosphates suffer from a low elasticity, a high brit-
tleness, a poor tensile strength, a low mechanical reliability and 
fracture toughness, which leads to various concerns about their 
mechanical performance after implantation.29-31 In addition, in 

Table 1. The biochemical composition* of bones36

Inorganic phases wt% Bioorganic phases wt%

Calcium orthophosphates (biological apatite) ~60 Collagen type I ~20

Water ~9
Non-collagenous proteins: osteocalcin, osteonectin, 

 osteopontin, thrombospondin, morphogenetic proteins, 
sialoprotein, serum proteins

~3

Carbonates ~4 Other traces: polysaccharides, lipids, cytokines balance

Citrates ~0.9 Primary bone cells: osteoblasts, osteocytes, osteoclasts balance

Sodium ~0.7

Magnesium ~0.5

Other traces: Cl-, F-, K+ Sr2+, Pb2+, Zn2+, Cu2+, Fe2+ balance
*The composition is varied from species to species and from bone to bone.
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various composite materials with tailored mechanical and bio-
logical performance can now be manufactured and used to meet 
various clinical requirements.63 This review presents only a brief 
history as well as advances in the field of calcium orthophos-
phate-based biocomposites and hybrid biomaterials suitable for 
biomedical application. The majority of the reviewed literature is 
restricted to the recent publications; a limited number of papers 
published in the 20th century have been cited. Various aspects 
of the material constituents, fabrication technologies, structural 
and bioactive properties as well as phase interactions have been 
considered and discussed in detail. Finally, several critical issues 
and scientific challenges that are needed for further advancement 
are outlined.

General Information on Composites  
and Biocomposites

According to Wikipedia, the free encyclopedia, “composite mate-
rials” (or “composites” for short) are engineered materials made 
from two or more constituent materials with significantly differ-
ent physical or chemical properties, which remain separate and 
distinct on a macroscopic level within the finished structure.”64 
Thus, composites are always heterogeneous. Furthermore, the 
phases of any composite retain their identities and properties and 
are bonded, which is why an interface is maintained between 
them. This provides improved specific or synergistic characteris-
tics that cannot be obtained by any of the original phases alone.65 
Following the point of view of some predecessors, we also con-
sider that, “for the purpose of this review, composites are defined 
as those having a distinct phase distributed through their bulk, 
as opposed to modular or coated components”.66 For this reason, 
with a few important exceptions, the structures obtained by soak-
ing various materials in supersaturated solutions containing ions 
of calcium and orthophosphate (reviewed in ref. 67–73), those 
obtained by coating of various materials by calcium orthophos-
phates (reviewed in ref. 74–82) as well as calcium orthophos-
phates coated by other compounds83-87 have not been considered; 
however, composite coatings have been considered. Occasionally, 
porous calcium orthophosphate scaffolds filled by cells inside the 
pores88-91 as well as calcium orthophosphates impregnated by bio-
logically active substances92,93 are also defined as composites and/
or hybrids; nevertheless, such structures have not been consid-
ered in this review either.

In any composite, there are two major categories of constitu-
ent materials: a matrix (or a continuous phase) and (a) dispersed 
phase(s). To create a composite, at least one portion of each type 
is required. General information on the major fabrication and 
processing techniques may be found elsewhere.66,94 The continu-
ous phase is responsible for filling the volume as well as surround-
ing and supporting the dispersed material(s) by maintaining their 
relative positions. The dispersed phase(s) is(are) usually respon-
sible for enhancing one or more properties of the matrix. Most of 
the composites target an enhancement of mechanical properties 
of the matrix, such as stiffness and strength; however, other prop-
erties, such as erosion stability, transport properties (electrical or 
thermal), radiopacity, density or biocompatibility might also be 

Ideally, the combined mechanical strength of the implant and the 
ingrowing bone should remain constant throughout the regen-
erative process. Furthermore, the substitution implant material 
should not significantly disturb the stress environment of the sur-
rounding living tissue.48 Finally, there is the opinion that, in the 
case of a serious trauma, the bone should fracture rather than 
the implant.29 A good sterilizability, storability and processability 
as well as a relatively low cost are also of a great importance to 
permit clinical application. Unfortunately, no artificial biomate-
rial is yet available that embodies all these requirements, and it 
is unlikely that one will appear in the near future. To date, most 
of the available biomaterials appear to be either predominantly 
osteogenic or osteoinductive or else purely osteoconductive.2

Careful consideration of the bone type and mechanical prop-
erties are needed to design bone substitutes. Indeed, in high load-
bearing bones, such as the femur, the stiffness of the implant 
needs to be adequate: not too stiff to result in strain shielding, 
but rigid enough to present stability. However, in relatively low 
load-bearing applications such as cranial bone repairs, it is more 
important to have stability and the correct three-dimensional 
shapes for aesthetic reasons. One of the most promising alterna-
tives is to apply materials with similar composition and nano-
structure to that of bone tissue.40 Mimicking the structure of 
calcified tissues and addressing the limitations of the individual 
materials in the development of organic-inorganic hybrid bioma-
terials provides excellent possibilities for improving conventional 
bone implants. In this sense, suitable biocomposites tailored to 
physical, biological and mechanical properties and predictable 
degradation behavior can be prepared by combining biologi-
cally relevant calcium orthophosphates with bioresorbable poly-
mers.49,50 As a rule, the general behavior of these bioorganic/
calcium orthophosphate biocomposites is dependent on nature, 
structure and relative contents of the constitutive components, 
although other parameters, such as the preparation conditions, 
also determine the properties of the final materials. Currently, 
biocomposites with calcium orthophosphates incorporated as 
either a filler or a coating (or both) and either into or onto a 
biodegradable polymer matrix in the form of particles or fibers 
are increasingly considered for use as bone tissue engineering 
scaffolds due to their improved physical, biological and mechani-
cal properties.51-57 In addition, such biocomposites could set out 
general requirements for the next generation of biomaterials; they 
should combine bioactive and bioresorbable properties to activate 
in vivo mechanisms of tissue regeneration, stimulating the body 
to heal itself and leading to replacement of the implants by the 
regenerating tissue.50,58,59 Thus, through the successful combina-
tions of ductile polymer matrixes with hard and bioactive partic-
ulate bioceramic fillers, optimal materials can be designed, and, 
ideally, this approach could lead to a superior construction to be 
used as either implants or posterior dental restorative material.60

A lint-reinforced plaster was the first composite used in clini-
cal orthopedics as an external immobilizer (bandage) in the 
treatment of bone fracture by Mathijsen in 1852,61 followed by 
Dreesman in 1892.62 A great progress in the clinical application 
of various types of composite materials has been achieved since 
then. Based on past experience and newly gained knowledge, 
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matrix and dispersed materials, (2) the choice of appropriate 
fabrication and processing methods and (3) both internal and 
external design of the device itself.66 Furthermore, any composite 
must be formed to shape. To do this, the matrix material can 
be added before or after the dispersed material has been placed 
into a mold cavity or onto the mold surface. The matrix material 
experiences a melding event that, depending upon the nature of 
the matrix material, can occur in various ways, such as chemical 
polymerization, setting, curing or solidification from a melted 
state. Due to a general inhomogeneity, the physical properties 
of many composite materials are not isotropic, but rather ortho-
tropic (i.e., there are different properties or strengths in different 
orthogonal directions).64,94,95

In order to prepare any type of a composite, at least two differ-
ent materials must be mixed. Thus, a phase miscibility phenome-
non appears to be of paramount importance.97,98 Furthermore, the 
interfacial strength among the phases is a very important factor, 
because a lack of adhesion among the phases will result in an early 
failure at the interface and thus in a decrease in the mechanical 
properties, especially the tensile strength. From a chemical point 
of view, we can distinguish several types of interactions among 
the composite components: materials with strong (covalent, coor-
dination, ionic) interactions; those with weak interactions (van 
der Waals forces, hydrogen bonds, hydrophilic-hydrophobic bal-
ance) and those without chemical interactions among the com-
ponents.99 Wetting is also important in bonding or adherence of 
the materials. It depends on the hydrophilicity or polarity of the 
filler(s) and the available polar groups of the matrix.

Biocomposites are defined as non-toxic composites that are 
able to interact well with the human body in vivo and, ideally, 
contain one or more component(s) that stimulate(s) the healing 
process and uptake of the implant.100 Thus, for biocomposites, 
biological compatibility appears to be more important than any 
other type of compatibility.63,101,102 Interestingly, according to the 
databases, the first paper with the term “biocomposite” in the 
title was published in 1987,103 and the first one containing a com-
bination of the terms “biocomposite” and HA in the title was 
published in 1991.104 Thus, this subject appears to be quite new. 
The most common properties from the bioorganic and inorganic 
domains to be combined in biocomposites have been summa-
rized in Table 2.40 For general advantages of the modern calcium 
orthophosphate-based biocomposites over calcium orthophos-
phate bioceramics and bioresorbable polymers individually, 
interested readers are advised to see the “Composite Materials 
Strategy” section of reference 50.

The Major Constituents of Biocomposites  
and Hybrid Biomaterials for Bone Grafting

Calcium orthophosphates. The main driving force behind the 
use of calcium orthophosphates as bone substitute materials is 
their chemical similarity to the mineral component of mamma-
lian bones and teeth.25-27 As a result, in addition to being non-
toxic, they are biocompatible, not recognized as foreign materials 
in the body and, most importantly, exhibit both bioactive behav-
ior and the ability to integrate into living tissue by the same 

of a great interest. This synergism produces properties that are 
unavailable from the individual constituent materials.94,95 What’s 
more, by controlling the volume fractions and local and global 
arrangement of the dispersed phase, the properties and design 
of composites can be varied and tailored to suit the necessary 
conditions. For example, in the case of ceramics, the dispersed 
phase serves to impede crack growth. In this case, it acts as rein-
forcement. A number of methods, including deflecting crack 
tips, forming bridges across crack faces, absorbing energy during 
pullout and causing a redistribution of stresses in regions, adja-
cent to crack tips, can be used to accomplish this.96 Other factors 
to be considered in composites include the volume fraction of 
(a) dispersed phase(s), its(their) orientation and homogeneity of 
the overall composite. For example, higher volume fractions of 
reinforcement phases tend to improve the mechanical properties 
of the composites, while continuous and aligned fibers best pre-
vent crack propagation, with the added property of anisotropic 
behavior. Furthermore, the uniform distribution of the dispersed 
phase is also desirable, as it imparts consistent properties to the 
composite.64,94,95

In general, composites might be simple, complex, graded or 
hierarchical. The term “a simple composite” refers to compos-
ites that result from the homogeneous dispersion of one dispersed 
phase throughout a matrix. The term “a complex composite” 
refers to composites that result from the homogeneous disper-
sion of several dispersed phases throughout one matrix. The 
term “a graded composite” refers to composites that result from 
the intentionally structurally inhomogeneous dispersion of one 
or several dispersed phases throughout one matrix. The term 
“a hierarchical composite” refers to those cases in which fine 
entities of either a simple or a complex composite are somehow 
aggregated to form coarser ones (e.g., granules or particles), 
which afterwards are dispersed inside another matrix to produce 
the second hierarchical scale of the composite structure. There 
is another set of four  types of composites: (1) fibrous compos-
ites, where the fibers are in a matrix; (2) laminar composites, in 
which the phases are in layers; (3) particulate composites, where 
the particles or flakes are in a matrix and (4) hybrid composites, 
which are combinations of any of the above. Yet another classifi-
cation system of the available composites is based on the matrix 
materials (metals, ceramics and polymers).63

In most cases, three interdependent factors must be consid-
ered in designing of any composite: (1) the selection of a suitable 

Table 2. General respective properties from the bioorganic and 
inorganic domains, to be combined in various composites and hybrid 
materials40

Inorganic Bioorganic

Hardness, brittleness Elasticity, plasticity

High density Low density

Thermal stability Permeability

Hydrophilicity Hydrophobicity

High refractive index Selective complexation

Mixed valence slate (redox) Chemical reactivity

Strength Bioactivity
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from each other in chemical composition, molecular weight, 
polydispersity, crystallinity, hydrophobicity, solubility and ther-
mal transitions. Their properties can be fine-tuned over a wide 
range by varying the type of polymer or chain length as well as 
by copolymerization or blending of two or more polymers.118-120 
Unlike ceramics, polymers exhibit substantial viscoelastic prop-
erties and easily can be fabricated into complex structures, such 
as sponge-like sheets, gels or complex structures with intricate 
porous networks and channels.121 Being X-ray transparent and 
non-magnetic, polymeric materials are fully compatible with 
modern diagnostic methods, such as CT and magnetic resonance 
imaging. Unfortunately, most of them are unable to meet the 
strict demands of the in vivo physiological environment. Namely, 
the main requirements for polymers suitable for biomedical 
applications are that they must be biocompatible, not elicit an 
excessive or chronic inflammatory response upon implantation 
and, for those that degrade, they must breakdown into non-toxic 
products only. Unfortunately, polymers, for the most part, lack 
rigidity, ductility and, ultimately, the mechanical properties 
required in load-bearing applications. Thus, despite their good 
biocompatibility, many of the polymeric materials are mainly 
used for soft tissue replacements (such as skin, blood vessel, car-
tilage, ligament replacement, etc.). Moreover, the sterilization 
processes (autoclave, ethylene oxide and 60 Co irradiation) may 
affect the polymer properties.122

There are a variety of biocompatible polymers suitable 
for biomedical applications.123,124 For example, polyacrylates, 

processes active in remodeling healthy bone. This leads to an 
intimate physicochemical bond between the implants and bone, 
termed osteointegration.105 More to the point, calcium ortho-
phosphates are also known to support osteoblast adhesion and 
proliferation.106,107 Even so, the major limitations to the use of 
calcium orthophosphates as load-bearing biomaterials are their 
mechanical properties; namely, they are brittle with poor fatigue 
resistance.29-31 Their poor mechanical behavior is even more evi-
dent for highly porous ceramics and scaffolds. Because porosity 
greater than 100 μm is the requirement for proper vascular-
ization and bone cell colonization,108-110 in biomedical applica-
tions, calcium orthophosphates are used primarily as fillers and 
coatings.27

The complete list of known calcium orthophosphates, includ-
ing their standard abbreviations and major properties, is given in 
Table 3, while the detailed information on calcium orthophos-
phates, their synthesis, structure, chemistry, other properties 
and biomedical application has been comprehensively reviewed 
recently in reference 27. Even more thorough information on 
calcium orthophosphates might be found in special books and 
monographs.111-117

Polymers. Polymers are a class of materials consisting of large 
molecules, often containing many thousands of small units, or 
monomers, joined together chemically to form one giant chain, 
thus creating very ductile materials. In this respect, polymers are 
comparable with major functional components of the biological 
environment: lipids, proteins and polysaccharides. They differ 

Table 3. Existing calcium orthophosphates and their major properties27

Ca/P molar 
ratio

Compound Formula
Solubility at 
25°C, -log(Ks)

Solubility at 
25°C, g/L

pH stability 
range in aqueous 
 solutions at 25°C

0.5 Monocalcium phosphate monohydrate (MCPM) Ca(H2PO4)2·H2O 1.14 ~18 0.0–2.0

0.5
Monocalcium phosphate anhydrous 

(MCPA or MCP)
Ca(H2PO4)2 1.14 ~17 [c]

1.0
Dicalcium phosphate dihydrate (DCPD), mineral 

brushite
CaHPO4·2H2O 6.59 ~0.088 2.0–6.0

1.0
Dicalcium phosphate anhydrous (DCPA or DCP), 

mineral monetite
CaHPO4 6.90 ~0.048 [c]

1.33 Octacalcium phosphate (OCP) Ca8(HPO4)2(PO4)4·5H2O 96.6 ~0.0081 5.5–7.0

1.5 α-Tricalcium phosphate (α-TCP) α-Ca3(PO4)2 25.5 ~0.0025 [a]

1.5 β-Tricalcium phosphate (β-TCP) β-Ca3(PO4)2 28.9 ~0.0005 [a]

1.2–2.2 Amorphous calcium phosphates (ACP)
CaxHy(PO4)z·nH2O, n = 

3–4.5; 15–20% H2O
[b] [b] ~5–12[d]

1.5–1.67
Calcium-deficient hydroxyapatite 

(CDHA or Ca-def HA)[e]

Ca10 - x(HPO4)x 

(PO4)6 - x(OH)2 - x (0 < x < 1)
~85 ~0.0094 6.5–9.5

1.67 Hydroxyapatite (HA, HAp or OHAp) Ca10(PO4)6(OH)2 116.8 ~0.0003 9.5–12

1.67 Fluorapatite (FA or FAp) Ca10(PO4)6F2 120.0 ~0.0002 7–12

1.67 Oxyapatite (OA, OAp or OXA)[f] Ca10(PO4)6O ~69 ~0.087 [a]

2.0
Tetracalcium phosphate (TTCP or TetCP), mineral 

hilgenstockite
Ca4(PO4)2O 38–44 ~0.0007 [a]

[a]These compounds cannot be precipitated from aqueous solutions. [b]Cannot be measured precisely. However, the following values were found: 
25.7 ± 0.1 (pH = 7.40), 29.9 ± 0.1 (pH = 6.00), 32.7 ± 0.1 (pH = 5.28). The comparative extent of dissolution in acidic buffer is: ACP >> α-TCP >> β-TCP > 
CDHA >> HA > FA. [c]Stable at temperatures above 100°C. [d]Always metastable. [e]Occasionally, it is called “precipitated HA (PHA)”. [f]Existence of OA 
remains questionable.
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does not bond chemically to bones and might generate particulate 
debris, leading to an inflammatory foreign body response.131,138 A 
number of other nondegradable polymers applied in orthopedic 
surgery include PE in its different modifications, such as low den-
sity PE, HDPE and UHMWPE (used as the articular surface 
of total hip replacement implants139,140), polyethylene terepthal-
ate, PP and PTFE, which are applied to repair knee ligaments.141 
PolyactiveTM, a block copolymer of PEG and PBT, has also been 
considered for biomedical application.142-147 Cellulose148,149 and its 
esters150,151 are also popular. Finally, and importantly, polyethyl-
ene oxide, PHB and blends thereof have also been tested for bio-
medical applications.50

Nonetheless, the most popular synthetic polymers used in 
medicine are the linear aliphatic poly(α-hydroxyesters), such as 
PLA, PGA and their copolymers, PLGA (Table 4). These mate-
rials have been extensively studied; they appear to be the only 
synthetic and biodegradable polymers with an extensive FDA 
approval history.50,132,152-156 They are biocompatible, mostly non-
inflammatory and can degrade in vivo through hydrolysis and, 
possibly, enzymatic action into products that are removed from 
the body by regular metabolic pathways.49,127,132,156-161 They might 
also be used for drug delivery purposes.162 Poly(α-hydroxyesters) 
have been investigated as scaffolds for replacement and regen-
eration of a variety of tissues, cell carriers, controlled delivery 
devices for drugs or proteins (e.g., growth factors), membranes 
or films, screws, pins and plates for orthopedic applica-
tions.127,132,153,154,156,163-165 Additionally, the degradation rate of 
PLGA can be adjusted by varying the amounts of the two com-
ponent monomers (Table 4), which in orthopedic applications 
can be exploited to create materials that degrade in concert with 
bone ingrowth.160,166 Furthermore, PLGA is known to support 
osteoblast migration and proliferation,59,132,157,167 which is a neces-
sity for bone tissue regeneration. Unfortunately, such polymers 
on their own, though they reduce the effect of stress shielding, 
are too weak to be used in load-bearing situations and are only 

poly(acrylonitrile-co-vinylchloride) and polylysine have been 
investigated for cell encapsulation and immunoisolation.125,126 
Polyorthoesters and PCL have been investigated as drug deliv-
ery devices, the latter for long-term sustained release because of 
its slow degradation rates.127 PCL is a hydrolytic polyester with 
an appropriate resorption period that releases non-toxic byprod-
ucts upon degradation.128 Other polyesters and PTFE are used 
for vascular tissue replacement. Polyurethanes are in use as coat-
ings for pacemakers’ lead insulation and have been investigated 
for reconstruction of the meniscus.129,130 Polymers considered 
for orthopedic purposes include polyanhydrides, which have 
also been investigated as delivery devices (due to their rapid 
and well-defined surface erosion) and for bone augmentation or 
replacement, since they can be photopolymerized in situ.127,131,132 
To overcome their poor mechanical properties, they have been 
copolymerized with imides or formulated to be cross-linkable 
in situ.132 Other polymers, such as polyphosphazenes, can have 
their properties (e.g., degradation rate) easily modified by vary-
ing the nature of their side groups and have been shown to sup-
port osteoblast adhesion, which makes them candidate materials 
for skeletal tissue regeneration.132 PPF has emerged as a good 
bone replacement material, exhibiting good mechanical proper-
ties (comparable to trabecular bone), possessing the capability 
to cross-link in vivo through the C=C bond and being hydro-
lytically degradable. It has also been examined as a material for 
drug delivery devices.127,131-134 Polycarbonates have been suggested 
as suitable materials to make scaffolds for bone replacement and 
have been modified with tyrosine-derived amino acids to render 
them biodegradable.127 Polydioxanone has been also tested for 
biomedical applications.135 PMMA is widely used in orthopedics 
as a bone cement for implant fixation as well as to repair certain 
fractures and bone defects, for example, osteoporotic vertebral 
bodies.136,137 However, PMMA sets via a polymerization of toxic 
monomers, which also produces a significant amount of heat that 
damages tissues. Moreover, it is neither degradable nor bioactive, 

Table 4. Major properties of several FDA approved biodegradable polymers152

Polymer Thermal properties*, °C Tensile modulus, GРa Degradation time, months

polyglycolic acid (PGA)
tg = 35–40 

tm = 225–230
7.06 6–12 (strength loss within 3 weeks)

L-polylactic acid (LPLA)
tg = 60–65 

tm = 173–178
2.7 >24

D,L-polylactic acid (DLPLA)
tg = 55–60 

amorphous
1.9 12–16

85/15 D,L-polylactic-co-glycolic 
acid (85/15 DLPLGA)

tg = 50–55 
amorphous

2.0 5–6

75/25 D,L-polylactic-co-glycolic 
acid (75/25 DLPLGA)

tg = 50–55 
amorphous

2.0 4–5

65/35 D,L-polylactic-co-glycolic 
acid (65/35 DLPLGA)

tg = 45–50 
amorphous

2.0 3–4

50/50 D,L-polylactic-co-glycolic 
acid (50/50 DLPLGA)

tg = 45–50 
amorphous

2.0 1–2

poly(ε-caprolactone) (PCL)
tg = (-60)–(-65) 

tm = 58–63
0.4 >24

*tg, glass transition temperature; tm, melting point.
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implants cannot actively interact with the surrounding tissues. 
Nevertheless, in some cases (especially when they are coated by 
calcium orthophosphates; however, that is another story), the 
metallic implants show a reasonable biocompatibility.196 Only 
permanent implants are made of metals and alloys, in which deg-
radation or corrosion is not desirable. However, in recent years, 
a number of magnesium implants have been proposed which are 
aimed to degrade in the body in order to make room for ingrow-
ing bones.193,197,198

Glasses and glass-ceramics. Special types of glasses and glass-
ceramics are also suitable materials for biomedical applica-
tions,199-201 and a special Na

2
O-CaO-SiO

2
-P

2
O

5
 glass, named 

Bioglass®,13,28,30,31,202,203 is the most popular among them. They are 
produced via standard glass production techniques and require 
pure raw materials. Bioglass® is a biocompatible and osteocon-
ductive biomaterial. It bonds to bone without an intervening 
fibrous connective tissue interface and, due to these properties, 
it has been widely used for filling bone defects.204 The primary 
shortcoming of Bioglass® is mechanical weakness and low frac-
ture toughness due to an amorphous two-dimensional glass net-
work. The bending strength of most Bioglass® compositions is in 
the range of 40–60 MPa, which is not suitable for major load-
bearing applications. Making porosity in Bioglass®-based scaf-
folds is beneficial, even for better resorption and bioactivity.205

By heat treatment, a suitable glass can be converted into 
glass-crystal composites containing crystalline phase(s) of con-
trolled sizes and contents. The resultant glass-ceramics can have 
superior mechanical properties to the parent glass as well as to 
sintered crystalline ceramics. The bioactive A-W glass-ceramics 
are made from the parent glass in the pseudoternary system 
3CaO·P

2
O

5
-CaO·SiO

2
-MgO·CaO·2SiO

2
, which is produced by 

a conventional melt-quenching method. The bioactivity of A-W 
glass-ceramics is much higher than that of sintered HA. They 
possess excellent mechanical properties and have, therefore, been 
used clinically for iliac and vertebrae prostheses and as interver-
tebral spacers.16,206-208

Ceramics. Metal oxide ceramics, such as alumina (Al
2
O

3
, high 

purity, polycrystalline, fine grained), zirconia (ZrO
2
) and some 

other oxides (e.g., TiO
2
, SiO

2
) have been widely studied due to 

their bioinertness, excellent tribological properties, high wear 
resistance, fracture toughness and strength as well as relatively 
low friction.16,209 Unfortunately, due to transformation from 
the tetragonal to the monoclinic phase, a volume change occurs 
when pure zirconia is cooled down, which causes cracking of 
the zirconia ceramics. Therefore, additives such as calcia (CaO), 
magnesia (MgO) and yttria (Y

2
O

3
) must be mixed with zirco-

nia to stabilize the material in either the tetragonal or the cubic 
phase. Such material is called PSZ.210-212 However, the brittle 
nature of ceramics has limited their scope of clinical applications, 
and hence, more research needs to be conducted to improve their 
properties.

Carbon. Due to its bioinertness, excellent tribological prop-
erties, fracture toughness and strength as well as low friction, 
elemental carbon has been used as a biomaterial at least since 
1972.213 Applications include orthopedic prostheses, vitreous car-
bon roots for replacement teeth, structural skeletal extensions, 

recommended in certain clinical indications, such as ankle and 
elbow fractures.156,161 In addition, they exhibit bulk degradation, 
leading to both a loss in mechanical properties and lowering of 
the local solution pH, which further accelerates degradation in 
an autocatalytic manner. As the body is unable to cope with 
the vast amounts of implant degradation products, this might 
lead to an inflammatory foreign body response.132,156,163 Finally, 
poly(α-hydroxyesters) do not possess the bioactive and osteocon-
ductive properties of calcium orthophosphates.153,168

Several classifications of the biomedically relevant polymers 
are possible. For example, some authors distinguish between syn-
thetic polymers, like PLA, PGA or their copolymers, and PCL 
and polymers of biological origin like polysaccharides (starch, 
alginate, chitin/chitosan,169-171 gelatin, cellulose, hyaluronic acid 
derivatives), proteins (soy, collagen, fibrin,11 silk) and a variety 
of biofibers, such as lignocellulosic natural fibers.10,172,173 Natural 
polymers often posses highly organized structures and may con-
tain an extracellular substance, called ligand, which is necessary 
to bind with cell receptors. However, they always contain various 
impurities that should be gotten rid of prior to use. As synthetic 
polymers can be produced under controlled conditions, in gen-
eral, they exhibit predictable and reproducible mechanical and 
physical properties, such as tensile strength, elastic modulus and 
degradation rate. Control of impurities is a further advantage of 
synthetic polymers. Other authors differentiate between resorb-
able or biodegradable [e.g., poly(α-hydroxyesters), polysaccha-
rides and proteins] and non-resorbable (e.g., PE, PP, PMMA and 
cellulose) polymers.60,173 Furthermore, polymeric materials can 
be broadly classified as thermoplastics and thermosets. HDPE 
and PEEK are examples of thermoplastics, while polydimethyl-
siloxane and PMMA are the examples of thermosets.122 The list 
of synthetic biodegradable polymers used for biomedical applica-
tion as scaffold materials is available as Table 1 in reference 173, 
while further details on polymers suitable for biomedical applica-
tions are available in the literature (refs. 122,165,174-183), where 
interested readers are referred. Good reviews on the synthesis of 
different biodegradable polymers184 as well as on the experimental 
trends in polymer composites185 are available elsewhere.

Inorganic materials and compounds. Metals. Titanium (Ti) 
is one of the best biocompatible metals and is used most widely as 
an implant.16,186,187 Besides Ti, there are other metallic implants 
made of pure Zr, Hf, V, Nb, Ta, Re,186 Ni, Fe, Cu,188-190 Ag, stain-
less steels and various alloys190 suitable for biomedical applica-
tion. Recent studies revealed an even greater biomedical potential 
for  porous metals.191-194 Metallic implants provide the necessary 
strength and toughness required in load-bearing parts of the 
body, and, due to these advantages, metals will continue to play 
an important role as orthopedic biomaterials in the future, even 
though there are concerns with regard to the release of certain 
ions from and corrosion products of metallic implants. Of course, 
neither metals nor alloys are biomimetic (the term biomimetic 
can be defined as a processing technique that either mimics or 
inspires the biological mechanism, in part or whole195) in terms of 
chemical composition, because there are no elemental metals in 
the human body. In addition, even biocompatible metals are bio-
inert; although they are not rejected by the human body, metallic 
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the pioneering study by Prof. William Bonfield and colleagues 
performed on HA/PE formulations.236,237 That initial study 
introduced a bone analog concept, in which proposed biocom-
posites comprised a polymer ductile matrix of PE and a ceramic 
stiff phase of HA that was substantially extended and developed 
in further investigations by that research group.102,238-254 More 
recent studies have included investigations on the influence of 
surface topography of HA/PE composites on cell proliferation 
and attachment.255-261 The material is composed of a particular 
combination of HA particles at a volume loading of ~40% uni-
formly dispensed in a HDPE matrix. Alternatively, PP might be 
used instead of PE.262-264 The idea was to mimic bones by using 
a polymeric matrix that can develop a considerable anisotropic 
character through adequate orientation techniques, reinforced 
with a bone-like bioceramic material that assures both a mechan-
ical reinforcement and a bioactive character of the composite. 
Following FDA approval in 1994, in 1995 this material became 
commercially available under the trade name HAPEXTM (Smith 
and Nephew, Richards), and, to date, it has been implanted in 
over 300,000 patients with successful results. It remains the only 
clinically successful bioactive composite and appeared to be a 
major step in the implant field.31,265 The major production stages 
of HAPEXTM include blending, compounding and centrifugal 
milling. A bulk material or device is then created from this pow-
der by compression and injection molding.63 Alternatively, HA/
HDPE biocomposites might be prepared by a hot rolling tech-
nique that facilitates uniform dispersion and blending of the rein-
forcements in the matrix.266

A mechanical interlock between the two phases of HAPEXTM 
is formed by the shrinkage of HDPE onto the HA particles dur-
ing cooling.102,267 Both HA particle size and their distribution in 
the HDPE matrix are recognized as important parameters affect-
ing the mechanical behavior of HAPEXTM.247 Smaller HA par-
ticles, for example, were found to lead to stiffer composites due to 
the increase in interfaces between the polymer and the ceramics. 
In addition, rigidity of HAPEXTM was found to be proportional 
to HA volume fraction.239 Coupling agents, e.g., 3-trimethoxysiyl 
propylmethacrylate for HA and acrylic acid for HDPE, might 
be used to improve bonding (by both chemical adhesion and 
mechanical coupling) between HA and HDPE.268,269 Obviously, 
other calcium orthophosphates might be used instead of HA 
in biocomposites with PE.270 Indeed, attempts were made to 
improve the mechanical properties of HAPEXTM by incorporat-
ing other ceramic phases into the polymer matrix, such as PSZ271 
and alumina.272 A partial replacement of HA filler particles by 
PSZ particles was found to lead to an increase in the strength 
and fracture toughness of HA/HDPE biocomposites. The com-
pressive stress, set up by the volume expansion associated with 
the tetragonal-to-monoclinic phase transformation of PSZ, 
inhibits or retards the crack propagation within the composite. 
This results in an enhanced fracture toughness of the HA/ZrO

2
/

HDPE biocomposite.271

Various studies revealed that HAPEXTM attached directly 
to bones by chemical bonding (a bioactive fixation) rather 
than  by forming fibrous encapsulation (a morphological fixa-
tion). Initial clinical applications of HAPEXTM came in orbital 

bone bridges and hip prostheses. Biomedical properties of amor-
phous carbon were studied as well.214 However, current trends 
primarily represent investigations on biomedical applications of 
carbon nanotubes.215,216

Carbon nanotubes, with their small dimensions, high aspect 
(length to diameter) ratio as well as exceptional mechanical prop-
erties, including extreme flexibility and strength, significant resis-
tance to bending, high resilience and the ability to reverse any 
buckling of the tube, have excellent potential for accomplishing 
the necessary mechanical properties.217 Recent studies have even 
suggested that they may possess some bioactivity.218-221 However, 
non-functionalized carbon nanotubes tend to agglomerate and 
form bundles. Besides, they are soluble in neither water nor 
organic solvents. Luckily, chemical functionalization82,222 allows 
carbon nanotubes to be dispersed more easily, which can improve 
interfacial bonding with other components of the composites. 
Furthermore, functionalization of carbon nanotubes with car-
boxylic groups was found to confer a capacity to induce calcifica-
tion similar to woven bones.223 Interestingly, carbon nanotubes 
might be functionalized by in situ deposition of CDHA on their 
surface.224

Biocomposites and Hybrid Biomaterials Based  
on Calcium Orthophosphates

Generally, the available biocomposites and hybrid biomaterials 
based on calcium orthophosphates might be divided into several 
(partly overlapping) broad areas:

• biocomposites with polymers,
• self-setting formulations and concretes,
• formulations based on nanodimensional calcium orthophos-

phates and nanodimensional biocomposites,
• biocomposites with collagen,
• formulations  with  other  bioorganic  compounds  and/or  

biological macromolecules,
• injectable bone substitutes (IBS),
• biocomposites  with  glasses,  inorganic  compounds,  carbon 

and metals,
• functionally graded formulations and
• biosensors
The details on each subject are discussed below.
Biocomposites with polymers. Typically, the polymeric 

components of biocomposites and hybrid biomaterials comprise 
polymers that have shown both a good biocompatibility and are 
routinely used in surgical applications. In general, since polymers 
have a low modulus (2–7 GPa, as the maximum) as compared 
with that of bone (3–30 GPa), calcium orthophosphate bioc-
eramics need to be loaded at a high weight % ratio. Besides, gen-
eral knowledge on composite mechanics suggests that any high 
aspect ratio particles, such as whiskers or fibers, significantly 
improve the modulus at a lower loading.179 Thus, some attempts 
have already been made to prepare biocomposites containing 
whisker-like225-229 or needle-like230-232 calcium orthophosphates as 
well as calcium orthophosphate fibers.49,233

The history of implantable polymer-calcium orthophosphate 
biocomposites and hybrid biomaterials started in 1981234 with  
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compressive strength and modulus in addition to increasing their 
osteoconductive properties.52,160,168,291-295 Furthermore, biocom-
patibility of such biocomposites is enhanced, because calcium 
orthophosphate fillers induce an increased initial flash spread of 
serum proteins compared with the more hydrophobic polymer 
surfaces.296 What’s more, experimental results of these biocom-
posites indicate favorable cell-material interactions with increased 
cell activities as compared with each polymer alone.288 As a rule, 
with increasing of calcium orthophosphate content, both Young’s 
modulus and bioactivity of the biocomposites increase, while the 
ductility decreases.29,291 Furthermore, such formulations can pro-
vide a sustained release of calcium and orthophosphate ions into 
the milieus, which is important for mineralized tissue regenera-
tion.287 Indeed, a combination of two different materials draws 
on the advantages of each one to create a superior biocomposite 
with respect to the materials on their own.

It is logical to assume that the proper biocomposite of a cal-
cium orthophosphate (for instance, CDHA) with a bioorganic 
polymer (for instance, collagen) would yield physical, chemi-
cal and mechanical properties similar to those of human bones. 
Different methods for bringing these two components together 
into biocomposites have already been realized, including 
mechanical blending, compounding, ball milling, dispersion of 
ceramic fillers into a polymer-solvent solution, a melt extrusion of 
a ceramic/polymer powder mixture, coprecipitation and electro-
chemical co-deposition.36,63,297-299 Three methods for preparing a 
homogeneous blend of HA with PLLA were compared.297 First, 
a dry process, consisting of mixing ceramic powder and polymer 
pellets before a compression molding step, was used. The second 
technique was based on the dispersion of ceramic fillers into a 
polymer-solvent solution. The third method was a melt extru-
sion of a ceramic/polymer powder mixture. Mixing dry powders 
led to a ceramic particle network around the polymer pellets, 
whereas the solvent and melt methods produced a homogeneous 
dispersion of HA in the matrix. The main drawback of the sol-
vent casting method is the risk of potentially toxic organic solvent 
residues. The melt extrusion method was shown to be a good way 
to prepare homogeneous ceramic/polymer blends.297

There is also in situ formation, which involves either synthesiz-
ing the reinforcement inside a preformed matrix material or syn-
thesizing the matrix material around the reinforcement.63,300,301 
This is one of the most attractive routes, since it avoids extensive 
particle agglomeration. Several papers have reported that the in 
situ formation technique has produced various composites of 
apatites with carbon nanotubes.302-308 Other appoaches include 
using amino acid-capped nano-sized gold particles as scaffolds 
to grow CDHA309 and in preparation of nano-sized HA/poly-
amide biocomposites.310,311 In certain cases, a mechanochemi-
cal route,312 emulsions,313-316 freeze-drying317 and freeze-thawing 
techniques,318 flame-sprayed technique319 or gel-templated min-
eralization320 might be applied to produce calcium othophos-
phates-based biocomposites. Various fabrication procedures are 
well described elsewhere in references 36, 63 and 297, where the 
interested readers are referred.

The interfacial bonding between a calcium orthophosphate 
and a polymer is an important issue for any biocomposite. Four 

reconstruction,273 but since 1995, the main uses of this composite 
have been in the shafts of middle ear implants for the treatment 
of conductive hearing loss.274,275 In both applications, HAPEXTM 
offers the advantage of in situ shaping, so a surgeon can make 
final alterations to optimize the fit of the prosthesis to the bone of 
a patient, and subsequent activity requires only limited mechani-
cal loading with virtually no risk of failure from insufficient 
tensile strength.102,202 As compared with cortical bones, HA/ PE 
composites have a superior fracture toughness for HA concentra-
tions below ~40% and similar fracture toughness in the 45–50% 
range. Their Young’s modulus is in the range of 1–8 GPa, which 
is quite close to that of bone. The examination of the fracture 
surfaces revealed that only a mechanical bond occurs between 
HA and PE. Unfortunately, the HA/PE composites are not 
biodegradable, the available surface area of HA is low, and the 
presence of bioinert PE decreases the ability to bond to bones. 
Furthermore, HAPEXTM has been designed with a maximized 
density to increase its strength, but the resulting lack of poros-
ity limits the ingrowth of osteoblasts when the implant is placed 
into the body.29,203 Further details on HAPEXTM are available 
elsewhere.102 In addition to HAPEXTM, other types of HA/PE 
biocomposites are also known.276-282

Both linear and branched PE were used as a matrix, and the 
biocomposites with the former were found to give a higher modu-
lus.277 The reinforcing mechanisms in calcium orthophosphate/
polymer biocomposites have yet to be convincingly disclosed. 
Generally, if a poor filler choice is made, the polymeric matrix 
might be affected by the filler through reduction of molecular 
weight during composite processing, formation of an immobi-
lized shell of polymer around the particles (transcrystallization, 
surface-induced crystallization or epitaxial growth) and changes 
in conformation of the polymer due to particle surfaces and inter-
particle spacing.102 On the other hand, the reinforcing effect of 
calcium orthophosphate particles might depend on the molding 
technique employed: a higher orientation of the polymeric matrix 
was found to result in a higher mechanical performance of the 
composite.282,283

Many other blends of calcium orthophosphates with various 
polymers are possible, including rather unusual formulations 
with dendrimers.284 Even light-curable polymer/calcium ortho-
phosphate formulations are known.285 The list of the appropriate 
calcium orthophosphates is shown in Table 3 (except MCPM 
and MCPA, as both are too acidic and, therefore, are not bio-
compatible;27 however, to overcome this drawback, they might 
be mixed with basic compounds, such as HA, TTCP, CaCO

3
, 

CaO, etc.). Many biomedically suitable polymers have been 
listed above. The combination of calcium orthophosphates and 
polymers into biocomposites has a two-fold purpose. The desir-
able mechanical properties of polymers compensate for a poor 
mechanical behavior of calcium orthophosphate bioceramics, 
while, in turn, the desirable bioactive properties of calcium ortho-
phosphates improve those of polymers, expanding the possible 
uses of each material within the body.158-160,286-290 Namely, poly-
mers have been added to calcium orthophosphates in order to 
improve their mechanical strength,158,286 and calcium orthophos-
phate fillers have been blended with polymers to improve their 
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Apatite-based formulations. A biological apatite is known to 
be the major inorganic phase of mammalian calcified tissues.25,26 
Consequently, CDHA, HA, carbonateapatite (both with and 
without dopants) and, occasionally, FA have been applied to 
prepare biocomposites with other compounds, usually with 
the aim of improving the bioactivity. For example, PS com-
posed with HA can be used as a starting material for long-term 
implants.333-335 Retrieved in vivo, HA/PS biocomposite-coated 
samples from rabbit distal femurs demonstrated direct bone 
apposition to the coatings as compared with the fibrous encap-
sulation that occurred when uncoated samples were used.333 The 
resorption time of such biocomposites is a very important factor, 
which depends on polymer’s microstructure and the presence of 
modifying phases.334

Various apatite-containing biocomposites with PVA,318,336-344 
PVAP345 and several other polymeric components346-358 have 
already been developed. Namely, PVA/CDHA biocomposite 
blocks were prepared by precipitation of CDHA in aqueous solu-
tions of PVA.318 An artificial cornea consisting of a porous nano-
sized HA/PVA hydrogel skirt and a transparent center of PVA 
hydrogel has been prepared as well. The results displayed good 
biocompatibility and interlocking between artificial cornea and 
host tissues.340,341 PVAP has been chosen as a polymer matrix, 
because its phosphate groups can act as a coupling/anchoring 
agent with a higher affinity toward the HA surface.345 Greish 
and Brown developed HA/Ca poly(vinyl phosphonate) biocom-
posites.349-351 A template-driven nucleation and mineral growth 
process for the high-affinity integration of CDHA with PHEMA 
hydrogel scaffold has been developed as well.358

PEEK225,227,359-365,367 and HIPS366 were applied to create bio-
composites with HA because of their potential for clinical use 
in load-bearing applications. The study on reinforcing PEEK 
with thermally sprayed HA particles revealed that the mechani-
cal properties increased monotonically with the reinforcement 
concentration, with a maximum value in the study of ~40% 
volume fraction of HA particles.361-363 The reported ranges of 
stiffness within 2.8–16.0 GPa and strength within 45.5–69 MPa 
exceeded the lower values for human bone (7–30 GPa and 50–150 
MPa, respectively).362 Modeling of the mechanical behavior of 
HA/ PEEK biocomposites is available elsewhere.364

Biodegradable poly(α-hydroxyesters) are well established in 
clinical medicine. Currently, they provide a good choice when 
a suitable polymeric filler material is sought. For example, 
HA/ PLGA composites have been developed that appear to 
possess a cellular compatibility suitable for bone tissue regen-
eration.368-376 Zhang and Ma seeded highly porous PLLA foams 
with HA particles in order to improve the osteoconductiv-
ity of polymer scaffolds for bone tissue engineering.52,292 They 
pointed out that hydration of the foams prior to incubation in 
simulated body fluid increased the amount of carbonated CDHA 
material due to an increase of COOH and OH groups on the 
polymer surface, which apparently acted as nucleation sites for 
apatite. The following values of Young’s modulus, compres-
sive, bending and tensile strengths for PLLA/HA composites 
have been achieved: 5–12 GPa, 78–137 MPa, 44–280 MPa and 
10–30 MPa, respectively.377 However, these data do not appear 

types of mutual arrangements of nanodimensional particles 
to polymer chains have been classified by Kickelbick (Fig. 1): 
(1) inorganic particles embedded in inorganic polymer, (2) incor-
poration of particles by bonding to the polymer backbone, (3) an 
interpenetrating network with chemical bonds and (4) an inor-
ganic-organic hybrid polymer.321 If adhesion among the phases is 
poor, the mechanical properties of a biocomposite suffer. To solve 
the problem, various approaches have been already introduced. 
For example, a diisocyanate coupling agent was used to bind 
PEG/PBT (PolyactiveTM) block copolymers to HA filler particles. 
Using surface-modified HA particles as a filler in a PEG/PBT 
matrix significantly improved the elastic modulus and strength of 
the polymer as compared with the polymers filled with ungrafted 
HA.293,322 Another group used processing conditions to achieve 
a better adhesion of the filler to the matrix. Ignjatovic et al. pre-
pared PLLA/HA composites by pressing blends of varying PLLA 
and HA content at different temperatures and pressures.158,159,323 
They found that maximum compressive strength was achieved at 
~15 wt% of PLLA. By using blends with 20 wt% of PLLA, the 
authors also established that increasing the pressing temperature 
and pressure improved the mechanical properties. The former 
was explained by a decrease in viscosity of the PLLA associated 
with a temperature increase, hence leading to improved wettabil-
ity of HA particles. The latter was explained by increased com-
paction and penetration of pores at higher pressure in conjunction 
with a greater fluidity of the polymer at higher temperatures. The 
combination of high pressures and temperatures was found to 
decrease porosity and guarantee a close apposition of a polymer to 
the particles, thereby improving the compressive strength286 and 
fracture energy324 of the biocomposites. The PLLA/HA biocom-
posites’ scaffolds were found to improve cell survival over plain 
PLLA scaffolds.325

It is also possible to introduce porosity into calcium ortho-
phosphate-based biocomposites, which is advantageous for most 
applications as bone substitution material. The porosity facili-
tates migration of osteoblasts from surrounding bones to the 
implant site.160,326,327 Various material processing strategies to pre-
pare composite scaffolds with interconnected porosity comprise 
thermally induced phase separation, solvent casting and particle 
leaching, solid freeform fabrication techniques, microsphere sin-
tering and coating.173,328-330 A supercritical gas foaming technique 
might be used as well.297,331,332

Figure 1. Four types of mutual arrangements of nano-sized particles to 
a polymer chain: (1) inorganic particles embedded in an inorganic poly-
mer, (2) incorporation of particles by bonding to the polymer backbone, 
(3) interpenetrating network with chemical bonds, (4) inorganic-organic 
hybrid polymer. Reprinted from reference 321 with permission.
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composites with very high mechanical properties;168 mini-screws 
and mini-plates made of these composites have been manufac-
tured and tested.388 They have shown easy handling and shap-
ing according to the implant site geometry, total resorbability, 
good ability to bond directly to the bone tissue without inter-
posed fibrous tissue, osteoconductivity, biocompatibility and 
high stiffness that can be retained for the period necessary to 
achieve bone union.388 The initial bending strength of ~280 MPa 
exceeded that of cortical bone (120–210 MPa), while the modu-
lus was as high as 12 GPa.168 The strength could be maintained 
above 200 MPa up to 25 weeks in phosphate-buffered saline solu-
tion. Such biocomposites were obtained from precipitation of a 
PLLA/dichloromethane solution, where small granules of uni-
formly distributed CDHA microparticles (average size of 3 μm) 
could be prepared.167 Porous scaffolds of PDLLA and HA have 
been manufactured as well.332,397,398 Upon implantation into rab-
bit femora, a newly formed bone was observed, and biodegrada-
tion was significantly enhanced compared with single-phase HA 
bioceramics. This might be due to a local release of lactic acid, 
which, in turn, dissolves HA. In other studies, PLA and PGA 
fibers were combined with porous HA scaffolds. Such reinforce-
ment did not hinder bone ingrowth into the implants, which sup-
ported further development of such biocomposites as bone graft 
substitutes.50,51,377,399,400

Blends (named SEVA-C) of EVOH with starch filled with 
10–30 wt% HA have been fabricated to yield biocomposites with 
moduli up to ~7 GPa and a 30% HA loading.401-406 The incor-
poration of bioactive fillers, such as HA into SEVA-C, aimed to 
insure the bioactive behavior of the composite and to provide the 
necessary stiffness within the typical range of human cortical 
bone properties. These biocomposites exhibited a strong in vitro 
bioactivity, which was supported by the polymer’s water-uptake 
capability.407 However, the reinforcement of SEVA-C by HA par-
ticles was found to affect the rheological behavior of the blend. A 
degradation model of these biocomposites has been developed.408

Higher homologs poly(3-hydroxybutyrate), 3-PHB and 
poly(3-hydroxyvalerate), 3-PHV, show almost no biodegradation. 

to be in a good agreement with HA/PLLA biocomposite unit cell 
model predictions.378

On their own, PGA and PLA are known to degrade to acidic 
products (glycolic and lactic acids, respectively) that both cata-
lyze polymer degradation and cause inflammatory reactions 
of the surrounding tissues.379 However, in biocomposites of 
poly(α-hydroxyesters) with calcium orthophosphates, the pres-
ence of slightly basic compounds (HA, TTCP) neutralizes the 
acid molecules to some extent and provides a weak pH-buffering 
effect at the polymer surface, therefore more or less compensat-
ing for their drawbacks.168,380-382 However, additives of even more 
basic chemicals (e.g., CaO, CaCO

3
) might be necessary.173,381,383,384 

Extensive cell culture experiments on pH-stabilized composites 
of PGA and carbonateapatite were reported, which afterwards 
were supported by extensive in vitro pH studies.385 A conse-
quent development of this approach has led to the designing 
of functionally graded composite skull implants consisting of 
polylactides, carbonateapatite and CaCO

3
.386,387 Besides the pH-

buffering effect, inclusion of calcium orthophosphates was found 
to modify both surface and bulk properties of the biodegrad-
able poly(α-hydroxyesters) by increasing the hydrophilicity and 
water absorption of the polymer matrix, thus altering the scaffold 
degradation kinetics. For example, polymer biocomposites filled 
with HA particles were found to hydrolyze homogeneously due 
to water penetrating into interfacial regions.388

Biocomposites of poly(α-hydroxyesters) with calcium ortho-
phosphates are prepared mainly by incorporating the inorganic 
phase into a polymeric solution followed by drying under vac-
uum. The resulting solid biocomposites might be shaped using 
different processing techniques. One can also prepare these bio-
composites by mixing HA particles with L-lactide prior to the 
polymerization380 or by a combination of a slip-casting tech-
nique and hot pressing.389 Addition of a surfactant (surface active 
agent) might be useful to keep the suspension homogenous.390 
Furthermore, HA/PLA314,315 and HA/PLGA316 microspheres 
might be prepared by a microemulsion technique. More com-
plex carbonated FA/PLA391 and PLGA/carbon nanotubes/HA392 
porous biocomposite scaffolds are also known. An interesting 
list of references assigned to the different ways of preparing HA/
poly(α-hydroxyesters) biodegradable composites might be found 
in publications by Durucan and Brown.53,393,394 The authors pre-
pared CDHA/PLA and CDHA/PLGA biocomposites using a 
solvent casting technique with a subsequent hydrolysis of α-TCP 
to CDHA in aqueous solutions. The presence of both polymers 
was found to inhibit α-TCP hydrolysis compared with that of sin-
gle-phase α-TCP alone; what’s more, the inhibiting effect of PLA 
exceeded that of PLGA.53,393,394 The physical interactions between 
calcium orthophosphates and poly(α-hydroxyesters) might be 
easily seen in Figure 2.53 Another set of good pictures might be 
found in reference 87. Nevertheless, it should not be forgotten 
that, typically, non-melt-based routes lead to the development of 
composites with lower mechanical performance and often times 
require the use of toxic solvents and intensive hand labor.178

The mechanical properties of poly(α-hydroxyesters) could be 
substantially improved by the addition of calcium orthophos-
phates.395,396 Shikinami and Okuno developed CDHA/PLLA 

Figure 2. SEM micrographs of (A) α-TCP compact; (B) α-TCP/PLGA bio-
composite (bars = 5 μm). Reprinted from reference 53 with permission.
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modulus, while concurrently increasing the hydrophilicity of the 
polymeric substrate. In addition, an increase in apatite concen-
tration was found to increase both the modulus and yield stress 
of the composite, which indicated good interfacial interactions 
between the biological apatite and PCL. It was also observed that 
the presence of biological apatite stimulated osteoblasts’ attach-
ment to the biomaterial and cell proliferation.437 In another study, 
a PCL/HA biocomposite was prepared by blending in melt form 
at 120°C until the torque reached equilibrium in the rheometer 
that was attached to the blender.438 Then the sample was compres-
sion molded and cut into specimens of appropriate size for test-
ing. It was observed that the composite containing 20 wt% HA 
had the highest strength.438 However, a direct grafting of PCL 
onto the surface of HA particles seems to be the most interesting 
preparation technique.420 In another study, HA porous scaffolds 
were coated by a PCL/HA composite coating.54 In this system, 
PCL as a coating component was able to improve the brittleness 
and low strength of the HA scaffolds, while the particles in the 
coating improved the osteoconductivity and bioactivity of the 
coating layer. More complex formulations, such as PDLLA/PCL/
HA,439 PLLA/PCL/HA440 and supramolecular PCL/functional-
ized HA441 biocomposites, have been prepared as well. Further 
details on both the PCL/HA biocomposites and the processing 
methodologies thereof might be found in reference 328.

A spread of human osteoblasts attached to PLA and PCL 
films reinforced with CDHA and sintered HA was shown to have 
higher stength than the polymers alone.184 Moreover, biochemi-
cal assays relating cell activity to DNA content allowed for the 
conclusion that cell activity was more intense for the compos-
ite films.184 Kim et al. coated porous HA blocks with PCL from 
dichloromethane solution and performed drug release studies. 
The antibiotic tetracycline hydrochloride was added into this 
layer, yielding a bioactive implant with drug release for longer 
than a week.54

Yoon et al. investigated the highest mechanical and chemi-
cal stability of FA by preparing FA/collagen biocomposites 
and studying their effect on osteoblast-like cell culture.442 The 
researchers found an increased cellular activity in FA composites 
compared with HA composites. This finding was confirmed in 
another study by means of variations in the fluoride content for 
FA-HA/PCL composites.443 An interesting phenomenon of frac-
tal growth of FA/gelatin composite crystals (Fig. 3) was achieved 
by diffusion of calcium- and orthophosphate+ fluoride solutions 
from opposite sides into a tube filled with a gelatin gel.444-453 The 
reasons for this phenomenon are not quite clear yet; besides, up 
to now, nothing has yet been reported on a possible biomedical 
application for such very unusual structural composites.

TCP-based formulations. Both α-TCP and β-TCP have a 
higher solubility than HA (Table 3), and they are resorbed more 
quickly in vivo.454 Therefore, these calcium orthophosphates 
were widely used instead of apatites to prepare completely biode-
gradable biocomposites.456-479 For example, a biodegradable and 
osteoconductive biocomposite made of β-TCP particles and gela-
tin was proposed.466 This material was tested in vivo with good 
results. It was found to be biocompatible, osteoconductive and 
biodegradable, with no need for a second surgical operation to 

Nevertheless, biocomposites of these polymers with calcium 
orthophosphates show a good biocompatibility both in vitro and 
in vivo.102,409-415 Both bioactivity and mechanical properties of 
these biocomposites can be tailored by varying the volume per-
centage of calcium orthophosphates. Similarly, biocomposites 
of PHBHV with both HA and amorphous carbonated apatite 
(almost ACP) appeared to have promising potential for repair 
and replacement of damaged bones.416-419

Along these lines, PCL is used as a slowly biodegradable but 
good biocompatible polymer. PCL/HA and PCL/CDHA bio-
composites have already been discussed as suitable materials for 
substitution, regeneration and repair of bone tissues.328,420-433 
For example, biocomposites were obtained by infiltration of 
ε-caprolactone monomer into porous apatite blocks and by in 
situ polymerization.423 The composites were found to be bio-
degradable and might be applied as cancellous or trabecular 
bone replacement material or for cartilage regeneration. Both 
the mechanical performance and biocompatibility in osteoblast 
cell culture of PCL were shown to be strongly increased when 
HA was added.434 Several preparation techniques of PCL/HA 
biocomposites are known. For example, to make biocomposite 
fibers of PCL with nanodimensional HA, the desired amount of 
nanodimensional HA powder was dispersed in a solvent using 
magnetic stirrer, followed by ultrasonication for 30 min. Then, 
PCL was dissolved in this suspension, followed by solvent evapo-
ration.435 The opposite preparation order has also been used: PCL 
was initially dissolved in chloroform at room temperature (7–10% 
weight/volume), then HA (~10 μm particle size) was suspended 
in the solution, sonicated for 1 min, followed by solvent evapora-
tion160 or salt-leaching.436 The mechanical properties obtained by 
this technique were about one-third that of trabecular bone. In 
a comparative study, PCL and biological apatite were mixed in 
a 19:1 ratio in an extruder.437 At the end of the preparation, the 
mixture was cooled in an atmosphere of nitrogen. The authors 
observed that the presence of biological apatite improved the 

Figure 3. A biomimetically grown aggregate of FA that was crystallized 
in a gelatin matrix. Its shape can be explained and simulated by a fractal 
growth mechanism. Scale bar: 10 μm. Reprinted from reference 444 
with permission.
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was infiltrated with PLGA. This biocomposite consists of three 
phases with different degradation behaviors. It was postulated 
that bone would grow on the fastest degrading network of PLGA, 
while the remaining calcium orthophosphate phases would 
remain intact, thus maintaining their geometry and load-bearing 
capability.489

Formulations based on other calcium orthophosphates. The 
number of research publications devoted to formulations based 
on other calcium orthophosphates is substantially less than 
those devoted to apatites and TCP. Biphasic calcium phosphate 
(BCP), which is a solid composite of HA and β-TCP (however, 
similar formulations of HA and α-TCP, as well as of α-TCP and 
β-TCP, are possible as well) appears to be most popular among 
the remaining calcium orthophosphates. For example, collagen-
coated BCP ceramics were studied, and their biocompatibility 
toward osteoblasts was found to increase upon coating with col-
lagen.490 Another research group created porous PDLLA/BCP 
scaffolds and coated them with a hydrophilic PEG/vancomycin 
composite for both drug delivery purposes and surface modifi-
cation.491 More relevantly, both PLGA/BCP492,493 and PLLA/
BCP494 biocomposites were fabricated, and their cytotoxicity and 
fibroblast properties were found to be acceptable for natural bone 
tissue reparation, filling and augmentation.495,496 PCL/BCP497 
and gelatin/BCP498,499 biocomposites are known as well.

A choice of DCPD-based biocomposites of DCPD, albumin 
and duplex DNA was prepared by a water/oil/water interfacial 
reaction method.313 Core-shell-type DCPD/chitosan biocompos-
ite fibers were prepared by a wet spinning method in another 
study.500 The energy-dispersive X-ray spectroscopy analysis indi-
cated that Ca and P atoms were mainly distributed on the outer 
layer of the composite fibers; however, a small number of P atoms 
remained inside the fibers. This indicated that the composite 
fibers formed a unique core-shell structure with a shell of calcium 
orthophosphate and core of chitosan.500 A similar formulation 
was prepared for further applications in bone cement biocom-
posites.501 DCPA/BSA biocomposites were synthesized through 
the coprecipitation of BSA on the nanodimensional particles of 
DCPA performed in ethanol.502 Nanodimensional DCPA was 
synthesized and incorporated into dental resins to form dental 
biocomposites.503-505 As an aside, it is interesting to mention that 
some DCPD/polymer composites could be used as proton con-
ductors in battery devices.506,507 Nothing has been reported on 
their biocompatibility yet, but perhaps sometime, improved for-
mulations will be used to fabricate biocompatible batteries for 
implantable electronic devices.

Various ACP-based biocomposites and hybrid formulations 
for dental applications have been developed,508-511 and several 
ACP-based formulations have been investigated as potential bio-
composites for bone grafting419,512-514 and drug delivery.515 ACP/
PPF biocomposites were prepared by in situ precipitation,513 while 
PHB/carbonated ACP and PHBHV/carbonated ACP biocom-
posites appeared to be well-suited as slowly biodegradable bone 
substitution materials.419 Another example is hybrid nanodimen-
sional capsules, ~50–70 nm in diameter, which were fabricated 
by ACP mineralization of shell cross-linked polymer micelles 
and nano-sized cages.514 These nano-sized capsules consisted of 

remove the device after healing occurred. Both herbal extracts467 
and K

2
HPO

4
468 might be added to this formulation. Another 

research group prepared biocomposites of cross-linked gelatin 
with β-TCP, and both a good biocompatibility and bone forma-
tion upon subcutaneous implantation in rats were found.469 Yang 
et al.474 extended this to porous (porosity ~75%) β-TCP/gela-
tin biocomposites that also contained BMP-4. Porous β-TCP/
alginate-gelatin hybrid scaffolds that were cell-compatible and 
possessing some osteoinductive properties were aso prepared 
and successfully tested in vitro.471 Biocomposites of β-TCP 
with PLLA462-464 and PLGC465 were prepared as well. Although 
β-TCP was able to counter the acidic degradation of the poly-
ester to some extent, it did not prevent a pH drop down to ~6. 
Nevertheless, implantation of this biocomposite in beagles’ man-
dibular bones was successful.465 α-TCP/gelatin formulations are 
known as well.477

Based on a self-reinforcement concept, biocomposites of TCP 
with polylactides were prepared and studied using conventional 
mechanical testing.480 Resorbable scaffolds were fabricated from 
such biocomposites.481 Chitosan was used as the matrix for the 
incorporation of β-TCP by a solid/liquid phase separation of the 
polymer solution and subsequent sublimation of the solvent. Due 
to complexation of the functional groups of chitosan with cal-
cium ions of β-TCP, these biocomposites had a high compressive 
modulus and strength.482 PCL/β-TCP biocomposites were devel-
oped in other studies,483-486 and their in vitro degradation behav-
ior was systematically monitored by immersion in simulated 
body fluid at 37°C.485 To extend this topic further, PCL/β-TCP 
biocomposites might be loaded by drugs.486

Cell culture tests on β-TCP/PLLA biocomposites were 
reported; the biocomposites showed no cytotoxicity and evi-
denced good cell attachment to its surface.456 An in vitro study 
with primary rat calvarial osteoblasts showed an increased cel-
lular activity in the BMP-loaded samples.474 Other researchers 
investigated BMP-2-loaded porous β-TCP/gelatin biocomposites 
(porosity ~95%, average pore size 180–200 μm)487 and con-
firmed the results of the previous study. Biocomposites of β-TCP 
and glutaraldehyde cross-linked gelatin were manufactured 
and tested in vitro to measure the material cytotoxicity.470 The 
experimental results revealed that the amount of glutaraldehyde 
cross-linking agent should be less than 8% to decrease toxicity on 
the osteoblasts and to avoid inhibition of cellular growth caused 
by the release of residual or un-cross-linked glutaraldehyde. A 
long-term implantation study of PDLLA/α-TCP composites in a 
loaded sheep implant model showed good results after 12 months 
but a strong osteolytic reaction after 24 months. This was ascribed 
to the almost complete dissolution of α-TCP at this time and an 
adverse reaction of the remaining PDLLA.488

More complex calcium orthophosphate-based formulations 
are known as well. For example, there is a biocomposite con-
sisting of three interpenetrating networks: TCP, CDHA and 
PLGA.489 First, a porous TCP network was produced by coating 
a polyurethane foam with a hydrolysable α-TCP slurry. Then, 
a CDHA network was derived from a calcium orthophosphate 
cement and used to fill in the porous TCP network. Finally, the 
remaining open pore network in the CDHA/α-TCP structures 
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the mechanical properties of calcium orthophosphate cements 
and stabilize them at the implant site, various researchers have 
resorted to formulations that set in situ, primarily through cross-
linking reactions of the polymeric matrix. For example, TTCP 
reacting with PAA formed a cross-linked CDHA/calcium poly-
acrylate biocomposite.546 In aqueous solutions, TTCP hydrolyzes 
to CDHA,27 and the liberated calcium cations react with PAA, 
forming the cross-linked network.546 Reed et al. synthesized a 
dicarboxy polyphosphazene that can be cross-linked by calcium 
cations, and cement-based (TTCP + DCPD) CDHA/polyphos-
phazene biocomposites with a compressive strength ~10 MPa and 
of ~65% porosity were prepared as a result.547 To mimic PMMA 
cements, PFF/β-TCP biocomposites were prepared with the 
addition of vinyl monomer to cross-link PPF. As a result, quick-
setting and degradable biocomposite cements with a low heat out-
put and compressive strengths in the range of 1–12 MPa could be 
prepared by varying the molecular weight of PPF as well as the 
contents of the monomer, β-TCP initiator and NaCl as a poro-
gen.548,549 An acrylic cement with Sr-containing HA as a filler,138 
an injectable polydimethylsiloxane/HA cement,550 biocomposites 
consisting of PLGA microspheres and a calcium orthophosphate 
cement551,552 as well as a hybrid cement formulation of chitosan 
oligosaccharide/gelatin/calcium orthophosphate553 were prepared 
as well.

In order to improve the mechanical properties of self-setting 
formulations, numerous researchers blended various polymers 
with the cements. For example, gelatin might be added to cal-
cium orthophosphate cement formulations primarily to stabilize 
the paste in aqueous solution before it develops adequate rigid-
ity and, second, to improve the compressive strength.473,521,554 
Adding rod-like fillers to the self-setting formulations also caused 
an improvement in the mechanical properties.554 For example, 
PAA and PVA were successfully used to improve the mechanical 
properties of a TTCP + DCPD cement but, unfortunately, with 
an inevitable and unacceptable reduction of both workability and 
setting time.555,556 Similar findings were reported in the presence 
of sodium alginate and sodium polyacrylate.557 Other polymers, 
such as polyphosphazene, might be used instead.558-560 Other 
examples of polymer/calcium orthophosphate cement formula-
tions might be found elsewhere.561,562

Porous calcium orthophosphate scaffolds with interconnected 
macropores (~1 mm), micropores (~5 μm) and of high poros-
ity (~80%) were prepared by coating polyurethane foams with a 
TTCP + DCPA cement, followed by firing at 1,200°C. In order 
to improve the mechanical properties of the scaffolds, the open 
micropores of the struts were then infiltrated by a PLGA solution 
to achieve an interpenetrating bioactive ceramic/biodegradable 
polymer composite structure. The PLGA-filled struts were fur-
ther coated with a 58S bioactive glass/PLGA composite coating. 
The complex porous biocomposites obtained could be used as tis-
sue engineering scaffolds for low load-bearing applications.563 A 
more complicated construction, in which the PLGA macroporous 
phase has been reinforced with a bioresorbable TTCP + DCPA 
cement, followed by surface coating of the entire construct by a 
non-stoichiomentic CDHA layer, has been designed as well.564 
The latter approach has culminated in a unique, three-phase 

a continuous ultrathin inorganic surface layer that infiltrated 
the outer cross-linked polymeric domains. They might be used 
as structurally robust, pH-responsive biocompatible hybrid 
nanostructures for drug delivery, bioimaging and therapeutic 
applications.514

Self-setting formulations and concretes. Inorganic self-set-
ting calcium orthophosphate cements, which harden in the body, 
were introduced by LeGeros et al.516 and Brown and Chow517,518 
in the early 1980s.519 Since then, these cements have been broadly 
studied, and many formulations have been proposed. The 
cements set and harden due to various chemical interactions 
among calcium orthophosphates, which finally lead to forma-
tion of a monolithic body consisting of either CHDA or DCPD, 
with possible admixtures of other phases. Unfortunately, because 
of their ceramic natures, calcium orthophosphate cements are 
brittle after hardening, and the setting time is sometimes unsuit-
able for clinical procedures.519 Therefore, various attempts have 
been made to transform the cements into biocomposites, e.g., by 
adding hydroxylcarboxylic acids to control the setting time,520 
gelatin to improve both the mechanical properties and the setting 
time473,521-523 or osteocalcin/collagen to increase the bioactivity.524 
More to the point, various reinforcement additives of different 
shapes and nature are widely used to improve the mechanical 
properties of calcium orthophosphate cements. Even carbon 
nanotubes were used for this purpose!525 Although the biomateri-
als community does not use this term, a substantial amount of 
the reinforced cement formulations might be defined as calcium 
orthophosphate-based concretes.526 The idea behind the con-
cretes is simple: if a strong filler is present in the matrix, it might 
stop crack propagation.

Various apatite-containing biocomposite formulations based 
on PMMA527-540 and PEMA102,541,542 have been already developed. 
Such biocomposites might be prepared by dispersion of apatite 
powder into a PMMA viscous fluid543 and could be used for 
drug delivery purposes.544 When the mechanical properties of 
the concretes composed of PMMA matrix and HA particles of 
various sizes were tested, the tensile results showed that strength 
was independent of particle size. In addition, up to 40% more 
weight in HA could be added without impairing the mechani-
cal properties.530,531 After immersion into Ringer’s solution, the 
tensile strength was not altered, whereas the fatigue properties 
were significantly reduced. The biocompatibility of PMMA/
HA biocomposites was tested in vivo, and enhanced osteogenic 
properties of the implants compared with single-phase PMMA 
was observed.528,532-535 It was shown that not only the mechanical 
properties of PMMA were improved, but the osteoblast response 
of PMMA was also enhanced with the addition of HA.532 
Thereby, by adding of calcium orthophosphates, a non-biode-
gradable PMMA was made more bioactive and osteoconductive, 
yielding a well-processible biocomposite concrete. As a drawback, 
the PMMA/HA formulations possess a low flexural, compressive 
and tensile strength.

A biocomposite made from HA granules and bis-phenol-α-
glycidylmethacrylate-based resin appeared to possess comparable 
mechanical and biological properties to typical PMMA cement, 
leading to potential uses for implant fixation.545 To improve 



©2011 Landes Bioscience.
Do not distribute.

www.landesbioscience.com Biomatter 17

bones is collagen, i.e., a natural polymer (Table 1), it is obvious 
that a composite of a nanodimensional calcium orthophosphate 
with a biodegradable polymer should be advantageous as bone 
substitution material. The inorganic nanodimensional phase 
would be responsible for the mechanical strength (hardness) 
and bioactivity, while the polymeric phase would provide the 
elasticity. In addition, the solubility of calcium orthophosphates 
depends on their crystallite size (smaller crystals have a higher 
solubility) and on their carbonate content (higher carbonate 
content increases the solubility).578 To the author’s best knowl-
edge, among the calcium orthophosphates listed in Table 3, 
only apatites (CDHA, HA and, perhaps, FA) were available in 
a nanodimensional state until very recently. However, recently, 
nano-sized DCPA503-505 and nano-sized MCPM579 have been 
synthesized and applied to prepare biocomposites with strong 
ionic release to combat tooth caries. Presumably, all the calcium 
orthophosphates in Table 3 might be manufactured in a nanodi-
mensional and/or nanocrystalline state; however, not all of them 
have been prepared yet.

A number of investigations have been conducted recently to 
determine the mineralization, biocompatibility and mechani-
cal properties of biocomposites based on various (bio)polymers 
and nanodimensional HA. Unfortunately, in the majority of the 
papers that have been published, it is unclear whether “nanodi-
mensional HA,” in fact, represented the nanodimensional 
stoichiometric HA or a nanodimensional non-stoichiometric 
CDHA. These studies covered biocomposites with PLA332,580-

589 and its copolymer with PGA,590-593 collagen,594-607 colla-
gen + PLA,607-615 collagen + PVA,616 collagen + alginate,617,618 
gelatin,619-624 PPF,625-627 polyamide,310,311,628-639 PVA,340,341,640-642 
PVAP,345 poly(ethylene-co-acrylic) acid,643,644 chitosan645-651 and 
its derivatives,652 konjac glucomannan + chitosan,653 PHEMA + 
PCL,654 PCL,390,435,655,656 cellulose,70,71,657-659 Ti,660-662 PCL semi-
interpenetrating biocomposites663 and many other biocompat-
ible hybrid formulations.279,320,335,417,664-683 Furthermore, each of 
the aforementioned formulations might be covered by a layer 
of nanodimensional calcium orthophosphate, as was done by 
Zandi et al., who coated a biocomposite of nano-sized rods HA 
with gelatin by nano-sized HA. Several nanodimensional bio-
composites were found to be applicable as carriers for delivery of 
drugs and growth factors38,685-687 and were promising as vectors 
with ultra high gene loading and transfection efficiency.688 Data 
are available on the excellent biocompatibility of such biocompos-
ites.605 The dispersion state of nano-sized particles appears to be 
the critical parameter in controlling the mechanical properties of 
nanodimensional biocomposites, as nano-sized particles always 
tend to aggregate owing to their high surface energy.417 A com-
parison was made of the mechanical properties of biocomposites 
with nano-sized and micron-sized HA with a polyamide. The 
results showed that the bending and tensile strengths of the bio-
composite increased with increasing content of nanodimensional 
HA but decreased with increasing micron-sized HA content.310 
A SEM image of the mineralized collagen fibrils demonstrating 
homogeneity of the nanodimensional biocomposite and the close 
interaction between the mineral phase and the reconstituted col-
lagen fibrils is shown in Figure 4.689

biocomposite that is simple to fabricate, osteoconductive and 
completely biodegradable.

A porosity level of 42–80% was introduced into calcium 
orthophosphate cement/chitosan biocomposites by the addition 
of the water-soluble mannitol.565 Chitosan significantly improved 
the mechanical strength of the entire biocomposite.566 A similar 
approach was used by other researchers who studied the effect 
of the addition of PLGA microparticles567-570 (which can also be 
loaded with drugs or growth factors571-573) to calcium orthophos-
phate cements. These biocomposites were implanted into cranial 
defects of rats, and a content of ~30 wt% of the microparticles was 
found to give the best results,567 while the addition of a growth 
factor to the biocomposites significantly increased bone contact 
at 2 weeks and enhanced new bone formation at 8 weeks.573 The 
in vivo rabbit femur implant tests showed that PLGA/calcium 
orthophosphate cement formulations exhibited outstanding bio-
compatibility and bioactivity as well as a better osteoconduction 
and degradability than pure calcium orthophosphate cements.568

Formulations based on nanodimensional calcium orthophos-
phates and nanodimensional biocomposites. Nanodimensional 
and nanophasic materials are materials that have particles or 
grain sizes less than 100 nm, respectively. Thus, one should 
clearly differentiate between nanodimensional composites and 
composites based on nanodimensional compounds. The former 
might be any type of composite that has been disintegrated to 
particles with dimensions < 100 nm, while the latter are made up  
of two or more materials, in which at least one of the materials is 
of a nanometer scale.

Nanodimensional and nanophasic materials have different 
mechanical and optical properties than large grained materials 
of the same chemical composition. In particular, they possess 
unique surface properties, such as an increased number of atoms, 
grain boundaries and defects at the surface, huge surface area and 
altered electronic structure compared with conventional micron-
sized materials. For example, nanodimensional HA (size ~67 
nm) has a higher surface roughness of 17 nm compared to 10 nm 
for the conventional submicron size HA (~180 nm), while the 
contact angles (a quantitative measure of the wetting of a solid 
by a liquid) are significantly lower for nanodimensional HA (6.1) 
if compared with the conventional HA (11.51). Additionally, the 
diameter of individual pores in nanodimensional HA compacts is 
five times smaller (pore diameter ~6.6 Å) than that in the conven-
tional grain-sized HA compacts (pore diameter within 19.8–31.0 
Å).574-576 Besides, nanodimensional HA promotes osteoblast cell 
adhesion, differentiation and proliferation, osteointegration and 
deposition of calcium-containing minerals on its surface bet-
ter than microcrystalline HA, thus enhancing formation of a 
new bone tissue within a short period.574-576 More to the point, 
nanodimensional HA was found to cause apoptosis of the leuke-
mia P388 cells.577

Natural bones and teeth are hierarchical biocomposites of bio-
logical origin based on nanodimensional compounds, because 
they consist of nano-sized blade-like crystals of biological apatite 
grown in intimate contact with the organic matrix, which is rich 
in bioorganic fibers and organized in complicated hierarchical 
structures. Given the fact that the major bioorganic phase of 
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HA/collagen biocomposites enhanced regeneration of calvaria 
bone defects in young rats but postponed the regeneration of cal-
varia bone in aged rats.701 Finally, the addition of calcium ortho-
phosphates to collagen sheets was found to give a higher stability 
and an increased resistance to 3D swelling compared with colla-
gen.702 Therefore, a bone analog based on these two constituents 
should possess remarkable properties. Furthermore, addition of 
bone marrow constituents gives osteogenic and osteoinductive 
properties to calcium orthophosphate/collagen biocomposites.1

The unique characteristics of bones originate from the spatial 
orientation between the nanodimentional crystals of biological 
apatite and collagen macromolecules at the nano scale,39 where 
the crystals (about 50 nm length) are aligned parallel to the col-
lagen fibrils,25,26,35,42 which is believed to be the source of the 
mechanical strength of bones. The collagen molecules and the 
crystals of biological apatite assembled into mineralized fibrils are 
approximately 6 nm in diameter and 300 nm long.35,39,42,609,703 
Although the complete mechanisms involved in the bone build-
ing strategy are still unclear, the strengthening effect of nanodi-
mentional crystals of biological apatite in calcified tissues might 
be explained by the fact that the collagen matrix is a load-transfer 
medium and thus transfers the load to the intrinsically rigid 
inorganic crystals. Furthermore, the crystals of biological apa-
tite located in between tangled fibrils cross-link the fibers, either 
through mechanical interlocking or by forming calcium ion 
bridges, thus increasing deformation resistance of the collag-
enous fiber network.704

When calcium orthophosphates are combined with collagen 
in a laboratory, the prepared biocomposites appear to be substan-
tially different from natural bone tissue due to a lack of real inter-
action between the two components, i.e., the interactions that are 
able to modify the intrinsic characteristics of the singular compo-
nents themselves. The main characteristic of the route by which 
the mineralized hard tissues are formed in vivo is that the organic 
matrix is laid down first, and the inorganic reinforcing phase 
grows within this organic matrix.25,26,35,42 Although, to date, nei-
ther the elegance of the biomineral assembly mechanisms nor the 
intricate composite nano-sized architectures have been duplicated 
by nonbiological methods, the best way to mimic bone is to copy 
the way it is formed, namely by nucleation and growth of CDHA 
nano-sized crystals from a supersaturated solution both onto and 
within the collagen fibrils.705-707 Such syntheses were denoted as 
“biologically inspired” which means they reproduce an ordered 
pattern and an environment very similar to natural ones.708-710 
The biologically inspired biocomposites of collagen and calcium 
orthophosphates (mainly, apatites) for bone substitute have a long 
history,33,442,597,711-730 which began with the pioneering study by 
Mittelmeier and Nizard,731 who mixed calcium orthophosphate 
granules with a collagen web. Such combinations were found to 
be bioactive, osteoconductive, osteoinductive,33,699,732-734 and, in 
general, artificial grafts manufactured from this type of  biocom-
posites are likely to behave similarly to bones and be of more use 
in surgery than those prepared from any other materials. Indeed, 
data are available on the superiority of calcium orthophosphate/
collagen biocomposite scaffolds over the artificial polymeric and 
calcium orthophosphate bioceramic scaffolds individually.735

Porous (porosity ~85%) biocomposites of nano-sized HA 
with collagen and PLA have been prepared by precipitation and 
freeze-drying; these biocomposites did not show a pH drop upon 
in vitro degradation.608-610 They were implanted in the radius of 
rabbits and showed a high biocompatibility and partial resorp-
tion after 12 weeks. Nano-sized HA/chitosan biocomposites with 
improved mechanical stability were prepared from HA/chitosan 
nano-sized rods.690 Nano-sized HA/PLLA biocomposites of high 
porosity (~90%) were prepared using thermally induced phase 
separation.691 Nanodimensional HA was also used to prepare 
biocomposites with PAA, and the nanostructure of the resulting 
nano-sized crystals exhibited a core-shell configuration.692,693

Nanodimensional crystals of HA appear to be suitable for 
intraosseous implantation and offer the potential to formulate 
enhanced biocomposites for clinical applications.694 For example, 
the biocompatibility of chitosan in osteoblast cell culture was sig-
nificantly improved by the addition of nano-sized HA.695 Similar 
findings are valid for nanodimensional HA/polyamide biocom-
posites.630 Further details on nanodimensional biocomposites 
might be found in an excellent review in reference 36. More to 
the point, a more general review on applications of nanodimen-
sional biomaterials in orthopedics is also available,696 where inter-
ested readers are referred.

Biocomposites with collagen. The main constituent of the 
bioorganic matrix of bones is type I collagen (Table 1) with mol-
ecules about 300 nm in length. The structural and biochemical 
properties of collagens have been widely investigated, and over 
25 collagen subtypes have been identified.697,698 This protein is 
conducive to crystal formation in the associated inorganic matrix. 
It is easily degraded and resorbed by the body and allows good 
attachment to cells. Collagen alone is not effective as an osteoin-
ductive material, but it becomes osteoconductive in combination 
with calcium orthophosphates.699 Both collagen type I and HA 
were found to enhance osteoblast differentiation,700 but together, 
they were shown to accelerate osteogenesis. However, this ten-
dency is not so straightforward: in the available data, implanted 

Figure 4. Scanning electron microscopy image of reconstituted miner-
alized collagen I fibrils. An example of an organic-inorganic nanostruc-
tural composite, mimicking the extracellular matrix of bone tissue on 
the nanometer scale. Reprinted from reference 689 with permission.
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the Ca/P ionic ratio in the reaction solution. One way to do this 
is to dissolve a commercial calcium orthophosphate in an acid; 
another is to add Ca2+ and PO

4
3- ions in a certain ratio to the 

solution and, after that, induce the reaction.39 Biomimetically, 
one can achieve an oriented growth of CDHA crystals onto 
dissolved collagen fibrils in aqueous solutions via a self-organi-
zation mechanism.747 A number of authors produced calcium 
orthophosphate/collagen biocomposites by mixing preformed 
ceramic particles with a collagen suspension.765-767 However, in 
all blended composites, the crystallite sizes of calcium orthophos-
phates were not uniform, and the crystals were often aggregated 
and randomly distributed within a fibrous matrix of collagen. 
Therefore, no structural similarity to natural bone was obtained, 
and only a compositional similarity to that of natural bone was 
achieved. Instead, CDHA crystallization from aqueous solutions 
might be performed in the presence of a previously dispersed 
collagen,33,597 or, more to the point, collagen might be first dis-
persed in an acidic solution, followed by addition of calcium 
and orthophosphate ions; then, coprecipitation of collagen and 
CDHA might be induced by either increasing the solution pH 
or adding mixing agents.41 Although it resulted in biocomposites 
with poor mechanical properties, pressing of the apatite/collagen 
mixtures at 40°C under 200 MPa for several days is also pos-
sible.768 Attempts have been made to create a computer simula-
tion of the apatite/collagen composite formation process.769 It is 
interesting to note that such biocomposites were found to possess 
some piezoelectric properties.770

As the majority of the collagen/HA biocomposites are conven-
tionally processed by anchoring micron-sized HA particles into 
a collagen matrix, it is quite difficult to obtain a uniform and 
homogeneous composite graft. Besides, such biocomposites have 
inadequate mechanical properties. Over and above, the proper 
pore sizes have not been achieved either. Further, microcrystal-
line HA, in contrast to nanocrystalline bone apatite, might take a 
longer time to be remodeled into a new bone tissue upon implan-
tation. In addition, some of the biocomposites exhibit very poor 
mechanical properties, probably due to a lack of strong inter-
facial bonding between the constituents. The aforementioned 
data clearly demonstrate that a chemical composition similar to 
bone is insufficient for manufacturing the proper grafts; both the 
mechanical properties and mimetic bone nanostructure are nec-
essary for a graft to function as bone in recipient sites. There is 
a chance for improving osteointegration by reducing the grain 
size of HA crystals by activating ultrafine apatite growth into the 
matrix. This may lead to the enhancement of mechanical proper-
ties and osteointegration, with improved biological and biochem-
ical affinity to the host bone. Besides, porosity was found to have 
a positive influence on the ingrowth of the surrounding tissues 
into the pores of collagen/HA biocomposites.771,772

Another approach is to mix bovine collagen with calcium 
orthophosphates. These biocomposites are marketed commer-
cially as bone graft substitutes and can further be combined with 
bone marrow aspirated from the iliac crest of the site of the frac-
ture. Collagraft®, BioOss® and Healos® are several examples of 
the commercially available grafts for clinical use.36 Application 
of these materials was compared with autografts for the 

It has been found that calcium orthophosphates may be suc-
cessfully precipitated onto a collagen substrate of whatever form 
or source.33,40,597,736,737 However, adherence of calcium orthophos-
phate crystals to collagen does depend on how much the collagen 
had been denatured: the more fibrillar the collagen, the greater 
attachment. Clarke et al. first reported the production of a biocom-
posite produced by precipitation of DCPD onto a collagen matrix 
with the aid of phosphorylated amino acids commonly associated 
with fracture sites.716 Apatite cements (DCPD + TTCP) have 
been mixed with a collagen suspension, hydrated and allowed to 
set. CDHA crystals were found to nucleate on the collagen fibril 
network, producing a material with weaker mechanical proper-
ties than those reported for bone. Even more significantly, the 
prepared biocomposites were without a nanostructure similar to 
that of bone.713,738 The oriented growth of OCP crystals on col-
lagen was achieved by an experimental device in which Ca2+ and 
PO

4
3- ions diffused into a collagen disc from the opposite direc-

tions.737,739,740 Unfortunately, these experiments were designed 
to simulate the mechanism of in vivo precipitation of biological 
apatite only; for this reason, the mechanical properties of the bio-
composites were not tested.741

Conventionally, collagen/calcium orthophosphate bio-
composites have been prepared by blending or mixing of col-
lagen and calcium orthophosphates, as well as by biomimetic 
methods.33,36,38,41,594,597,609,686,703,708-710,713,736,745-757 For example, 
Tampieri et al.710 produced and compared artificial bone like tis-
sue apatite/collagen biocomposites prepared using two different 
methodologies: (1) dispersion of apatite in a collagen aqueous 
suspension followed by freeze-drying and (2) direct nucleation 
of an apatitic phase on assembling collagen fibrils. Biocomposites 
obtained using first method were similar to uncalcified natural 
collagen. The crystallite sizes were not uniform and were often 
aggregated and randomly distributed into the matrix, proving 
that there was no real interaction between apatite and collagen 
fibers. However, the second method allowed the direct nucleation 
of nano-sized crystals of apatite on self-assembled collagen fibers. 
In this case, the two components (CDHA and collagen) exhibited 
strong interactions, highlighted by several analysis techniques, 
which showed a complete analogy of the composite with calcified 
natural tissue.710 Other production techniques are also possible. 
For example, using a polymer-induced, liquid-precursor process, 
collagen/apatite biocomposites mimicking the nanostructure of 
bones, wherein nano-sized crystals of apatite were embedded 
within the collagen fibrils, were prepared.757 More complicated 
formulations, such as magnetite-enriched HA/collagen758 and 
HA/collagen/PVA759 biocomposites, have been developed as well.

Furthermore, collagen might be incorporated into various 
calcium orthophosphate cements.713,738,760-764 Typically, a type I 
collagen sponge is presoaked in a PO

4
3--containing, highly basic 

aqueous solution and then immersed into a Ca2+-containing solu-
tion to allow mineral deposition. Alternatively, collagen I fibers 
might be dissolved in acetic acid, then this solution added to phos-
phoric acid, followed by a neutralization synthesis (performed at 
25°C and solution pH within 9–10) between an aqueous sus-
pension of Ca(OH)

2
 and the H

3
PO

4
/collagen solution.708,709 To 

ensure the quality of the final product, it is necessary to control 
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calcium orthophosphates with collagen.742-744,783,785-788 These 
biomaterials mimic natural bones to some extent, while their 
subsequent biological evaluation suggests that they are read-
ily incorporated into the bone metabolism in a way similar to 
bone remodeling instead of acting as permanent implant.609,731 
However, the performance of these biocomposites depends on 
the source of the collagen from which it was processed. Several 
attempts have been made to simulate the collagen-HA interfacial 
behavior in real bone by means of cross-linking agents, such as 
glutaraldehyde,598,600,601,736,778,781 with the intention of improving 
the mechanical properties of these biocomposites. Unfortunately,  
further progress in this direction is restricted by high cost, the 
difficulty of controlling cross-infection, a poor definition of com-
mercial sources of collagens as well as by a lack of appropriate 
technology for fabricating bone-resembling microstructures. 
Further details on calcium orthophosphate/collagen biocompos-
ites might be found elsewhere.36,725

Formulations with other bioorganic compounds and/or 
biological macromolecules. The biggest practical problems with 
collagen type I are its cost and the poor definition of commercial 
sources of this material, which makes it difficult to follow up 
on well-controlled processing. Therefore, collagen type I can be 
replaced by other compounds. One should notice that, besides 
collagen, both human and mammalian bodies contain dozens 
types of various bioorganic compounds, proteins and biological 
macromolecules. The substantial amount of them potentially 
might be used to prepare biocomposites with calcium orthophos-
phates. For example, a biologically strong adhesion (to prevent 
invasion of bacteria) between teeth and the surrounding epi-
thelial tissues is attributed to a cell-adhesive protein, laminin.789 
In order to mimic nature, a laminin/apatite biocomposite layer 
was successfully created on the surface of both titanium790 and 
EVOH791,792 using the biomimetic approach. A more complicated 
laminin/DNA/apatite biocomposite layer was found to be an 
efficient gene transfer system.793

Calcium orthophosphate/gelatin biocomposites have been 
widely investigated as potential bone replacement biomateri-
als.317,336-338,444-452,466-474,487,521-523,554,619-624,794-807 For example, gelatin 
foams were successfully mechanically reinforced by HA and then 
cross-linked by a carbodiimide derivative.317 Such foams were 
shown to be good carriers for antibiotic tetracycline.798 Several 
biocomposites of calcium orthophosphates with alginates have 
been prepared.471,617,618,622,709,808,809 For example, porous HA/
alginate composites based on hydrogels were prepared both bio-
mimetically709 and using a freeze-drying technique.808 Another 
research group succeeded in preparing biphasic but monolithic 
scaffolds using a similar preparation route.810 Their biocompat-
ibility in cell culture experiments and in vitro biodegradability 
were high; however, their mechanical strength could be better.

Various biocomposites of calcium orthophosphates with 
chitosan298,482,500,512,527,565,645-653,674,675,690,695,799,807,811-828 and chi-
tin232,476,612,829-833 are also very popular. For example, a solution-
based method was developed to combine HA powders with 
chitin, in which the ceramic particles were uniformly dis-
persed.829,830 Unfortunately, it was difficult to obtain uniform 
dispersions. The mechanical properties of the final biocomposites 

management of acute fractures of long bones with defects that 
had been stabilized by internal or external fixation.773,774 These 
biocomposites are osteogenic, osteoinductive and osteoconduc-
tive; however, they lack structural strength and require a harvest 
of the patient’s bone marrow. Although no transmission of dis-
eases has been recorded yet, the use of bovine collagen might be 
a source of concern.2

Collagen sponges with an open porosity (30–100 μm) were 
prepared by a freeze-drying technique, and then their surface 
was coated by a 10 μm layer of biomimetic apatite precipitated 
from simulated body fluid.775 The researchers found a good in 
vitro performance with fibroblast cell culture. Other prepara-
tion techniques are also possible.776 Collagen/HA microspheres 
or gel beads have been prepared with the intention of making 
injectable bone fillers.777,778 Liao et al. succeeded in mimicking 
the bone structure by blending carbonateapatite with collagen.779 
A similar material (mineralized collagen) was implanted into 
femur of rats, and excellent clinical results were observed after 
12 weeks.780 Collagen/HA biocomposites were prepared, and 
their mechanical performance was increased by cross-linking the 
collagen fibers with glutaraldehyde.598,600,601 These biocomposites 
were tested in rabbits and showed a good biological performance, 
osteoconductivity and biodegradation. A similar approach was 
selected to prepare HA/collagen microspheres (diameter ~5 μm) 
by a water-oil emulsion technique in which the surface was also 
cross-linked by glutaraldehyde.778 That material showed a good 
in vitro performance with osteoblast cell culture. A porous bone 
graft substitute was formed from a nano-sized HA/collagen bio-
composite combined with PLA by a freeze-drying method; the 
resulting material was found to mimic natural bones at several 
hierarchical levels.609 Subsequent in vitro experiments confirmed 
a good adhesion, proliferation and migration of osteoblasts into 
this composite.608 A further increase in biocompatibility might 
be achieved by the addition of various dopants. For example, to 
enhance bone substitution, Si-substituted HA/collagen compos-
ites have been developed, with silicon located preferentially in 
the collagen phase.599 Porous (porosity level ~95% with intercon-
nected pores of 50–100 μm) biocomposites of collagen (cross-
linked with glutaraldehyde) and β-TCP have been prepared by a 
freeze-drying technique, followed by sublimation of the solvent; 
the biocomposites showed a good biocompatibility upon implan-
tation in the rabbit jaw.781

Biocomposites of calcium orthophosphates with collagen 
were found to be useful for drug delivery purposes.618,721,764,782-784 
Namely, an HA/collagen-alginate (20 μl) with rh-BMP2 
(100 μg/ml, 15 μl) showed bone formation throughout the 
implant 5 weeks after implantation without obvious deforma-
tion of the material.618 Gotterbarm et al. developed a two-layered 
collagen/β-TCP implant augmented with chondral inductive 
growth factors for repair of osteochondral defects in the troch-
lear groove of minipigs. This approach might be a promising new 
option for the treatment of deep osteochondral defects in joint 
surgery.783

To conclude this part, one should note that biocomposites of 
apatites with collagen are a very hot topic in research, and, up 
to now, just a few papers are devoted to biocomposites of other 
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of the crystalline domains and decreasing the crystal sizes. The 
relative amounts of the (poly)amino acid content in the solid 
phase, determined through HPLC analysis, increased with their 
concentration in solution up to a maximum of about 7.8 wt% 
for CDHA/aspartic acid and 4.3 wt% for CDHA/glutamic acid 
biocomposites. The small crystal dimensions, which implied a 
great surface area, and the presence of (poly)amino acids were 
suggested to be relevant for possible application of these bio-
composites for hard tissues replacement.346,347,852-855 A schematic 
description of a biocomposite formation from amino acids and 
ACP is shown in Figure 5.856

Furthermore, BCP (HA + β-TCP)/agarose macroporous scaf-
folds with controlled and complete interconnection, high poros-
ity, thoroughly open pores and tailored pore size were prepared 
for tissue engineering applications.857,858 Agarose, a biodegradable 
polymer, was selected as the organic matrix, because it is a bio-
compatible hydrogel that acts as gelling agent, leading to strong 
gels and fast room temperature polymerization. Porous scaffolds 
with the designed architecture were manufactured by combining 
a low temperature shaping method with stereo-lithography and 
two drying techniques. The biocompatibility of this BCP/aga-
rose system was tested with mouse L929 fibroblasts and human 
SAOS-2 osteoblasts during different colonization times.859

Fibrin sealants are non-cytotoxic, fully resorbable biological 
matrices that simulate the last stages of a natural coagulation 
cascade, forming a structured fibrin clot similar to a physiologi-
cal clot.860 Biocomposites of calcium orthophosphates with fibrin 
sealants might help develop the clinical applications of bone 
substitutes. The 3D mesh of fibrin sealant interpenetrates the 
macro- and microporous structure of calcium orthophosphate 
ceramics.11 The physical, chemical and biological properties of 
calcium orthophosphate bioceramics and the fibrin glue might  
cumulate in biocomposites suitable for preparation of advanced 
bone grafts.861-873

Furthermore, there are biocomposites of calcium orthophos-
phates with bisphosphonates,874 silk fibroin (that is a hard pro-
tein extracted from silk cocoon),312,670-672,677,678,875-881 chitosan + 
silk fibroin,882 fibronectin,883 chondroitin sulfate,299,733,884 casein 
phosphopeptides885 and vitamins.886 The reader’s attention is 
also drawn to an interesting approach to crystallizing CDHA 

were not very good; due to a poor adhesion 
between the filler and the matrix, both the 
tensile strength and modulus were found to 
decrease with increase of the amount of HA. 
Microscopic examination revealed that HA 
particles were intervened between the poly-
mer chains, weakening their interactions 
and decreasing the overall strength.829,830 
Other manufacturing techniques might be 
found in the aforementioned references; I 
just would like to mention an interesting 
approach in which a HA/chitosan biocom-
posite was produced by a hydrothermal 
process from the natural CaCO

3
/chitosan 

biocomposite of crab shells.827 Biocomposites 
of natural HA with chitosan were found to 
possess both a good hard tissue biocompatibility and an excellent 
osteoconductivity, which is suitable for artificial bone implants 
and frame materials for tissue engineering.823 Data are available 
that show the addition of HA into chitosan improved cell attach-
ment and provided a higher cell proliferation and well-spread 
morphology when compared with chitosan alone.650 More com-
plex formulations, such as silk fibers, reinforced HA/chitosan834 
and HA/collagen/chitosan835 biocomposites, have been studied 
as well. Interestingly, hybrid biocomposites of nano-sized HA 
with chitin/chitosan might be used for removal of Fe(III) 836 and 
fluorides837,838 from aqueous solutions. Further details on the bio-
composites and hybrid biomaterials of calcium orthophosphates 
with chitosan are available in the literature.836

Biocomposites of CDHA with water-soluble proteins, such as 
BSA, might be prepared by a precipitation method.561,839-842 In 
such biocomposites, BSA is not strongly fixed to solid CDHA, 
which is useful for a sustained release. However, this is not the 
case if a water/oil/water interfacial reaction route has been used.313 
To extend this subject, inclusion of DNA into CDHA/BSA bio-
composites was claimed.313,843-845 Furthermore, nanodimentional 
biocomposites of an unspecified calcium orthophosphate with 
DNA846 as well as biocomposites of nano-sized crystals of biomi-
metic apatite with C

60
 and Au-DNA nano-sized particles847 were 

also prepared.
Akashi and coworkers developed a procedure for preparing 

calcium orthophosphate-based biocomposites by soaking hydro-
gels in solutions supersaturated by Ca2+ and PO

4
3- ions in order 

to precipitate CDHA in the hydrogels (up to 70% more weight 
in CDHA could be added to these biocomposites).848 This pro-
cedure was applied to chitosan; the 3D shape of the resulting 
biocomposite was controlled by the shape of the starting chito-
san hydrogel.849 Another research group developed biocompos-
ites based on in situ calcium orthophosphate mineralization of 
self-assembled supramolecular hydrogels.850 Other experimental 
approaches are also possible.851

Various biocomposites of CDHA with glutamic and aspar-
tic amino acids as well as poly-glutamic and poly-aspartic amino 
acids have been prepared and investigated by Bigi et al.346,347,852-855 
These (poly)amino acids were quantitatively incorporated into 
CDHA crystals, provoking a reduction of the coherent length 

Figure 5. A proposed mechanism for the formation of ACP/amino acid biocomposites in aque-
ous solutions. Reprinted from reference 856 with permission.
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Self-hardening formulations based on Si-HPMC hydrogel are 
known as well.906 The list of the commercially available calcium 
orthophosphate-based IBS formulations is presented in Table 
5.910

The advanced characteristics of IBS come from their good 
rheological properties and biocompatibility and the ease of tis-
sue regeneration. Although the fabrication of IBS biocomposites, 
in most cases, improved the mechanical properties of the sys-
tem and provided the material with resistance to fluids penetra-
tion, these achievements were limited by the amount of polymer 
that can be added to the paste. For instance, Mickiewicz et al. 
reported that after a critical concentration (which depended on 
the type and molecular weight of the polymer but was always 
around 10%), the polymer started forming a thick coating on 
the crystal clusters, preventing them from interlocking, originat-
ing plastic flow and, as a consequence, decreasing their mechani-
cal properties.561 More to the point, Fujishiro et al. reported a 
decrease in mechanical properties when using higher amounts of 
gel, which was attributed to formation of pores due to leaching of 
gelatin in solution.554 Therefore, it seems that mechanical proper-
ties, although improved by the addition of polymers, are still a 
limitation for the application of calcium orthophosphate-based 
IBS formulations in load-bearing sites.178 Further details on IBS 
might be found in a recent review in reference 892.

Biocomposites with glasses, inorganic materials, carbon and 
metals. To overcome the problem of poor mechanical properties 
of calcium orthophosphate bioceramics, suitable biocomposites of 
calcium orthophosphates reinforced by various inorganic materi-
als, glasses and metals have been developed. Such biocomposites 
are mainly prepared by common ceramic processing techniques, 
such as thermal treatment after kneading,911-913 powder slurry 
coating914 and metal-sol mixing.915 For example, HA was com-
bined with Bioglass® (Novabone Products, Alachua, FL)916,917 
and with other glasses918 to form glass-ceramic biocomposites. 
Other reinforcement materials for calcium orthophosphates 
are differentiated either by shape of the fillers, namely, parti-
cles,919,920 platelets,921,922 whiskers,579,923-925 fibers926-930 or by their 
chemical composition, zirconia and/or PSZ,313,911-914,923,931-966 
alumina,313,919,922,965,967-996 other oxides,925,997-1004 silica and/or 
glasses,1005-1014 wollastonite,206,1015-1025 mullite,1026,1027 various met-
als and alloys,540,928,967,997,1028-1045 calcium sulfate,1046-1049 calcium 
carbonate,1050,1051 silicon carbide,683,924 barium titanate,1052 zeo-
lite,1053 boron nitride1054 and several other materials.335,1055-1057 
More complicated formulations, such as HA/aluminum oxide/
carbon nanotubes,1058 have been developed as well. All these mate-
rials have been added to calcium orthophosphate bioceramics to 
improve their reliability. Unfortunately, significant amounts of 
the reinforcing phases are needed to achieve the desired proper-
ties and, as these materials are either bioinert, significantly less 
bioactive than calcium orthophosphates or not bioresorbable, 
the ability of the biocomposites to form a stable interface with 
bone is poor compared with calcium orthophosphate bioceramics 
alone. Due to the presence of bioinert compounds, such formula-
tions might be called bioinert/bioactive composites.1005 The ideal 
reinforcement material would impart mechanical integrity to a 
biocomposite at low loadings without diminishing its bioactivity.

inside poly(allylamine)/poly(styrene sulfonate) polyelectrolyte 
capsules, resulting in empty biocomposite spheres of micron 
size.887 Depending on the amount of precipitated CDHA, the 
thickness of the shell of biocomposite spheres can be varied 
between 25 and 150 nm. These biocomposite capsules might 
find application as medical agents for bone repairing and cata-
lytic microreactors.887

Injectable bone substitutes (IBS). With the development 
of minimally invasive surgical methods, for example, percuta-
neous surgery, directly injectable biomaterials are needed. The 
challenge is to place a biomaterial at the site of surgery by the 
least invasive method. In this regard, IBS appear to be a conve-
nient alternative to solid bone-filling materials. They represent 
ready-to-use suspensions of calcium orthophosphate micro-
spheres,888,889 nano-sized rods890 or powder(s) in a liquid car-
rier phase. However, addition of other phases, such as calcium 
sulfate,891 is also possible. They look like opaque viscous pastes 
with rheological properties sufficient to inject them into bone 
defects by means of surgical syringes and needles. Besides, IBS 
could be easily produced in a sterile stage. Their stable composi-
tion and mechanical properties are suitable for reproducibility of 
the biological response.892 All types of IBS are divided into two 
major groups: self-setting formulations and those that do not set. 
Cements and concretes belong to the former (see the “Self-setting 
formulations and concretes” section above), while those that fall 
into the latter are described here.

IBS requires suitable rheological properties to ensure bonding 
of the mineral phase in situ with good cell permeability. Usually, 
the necessary level of viscosity is created by addition of water-
soluble polymers.131,893,894 Therefore, the majority of calcium 
orthophosphate-based IBS formulations might be considered a 
subgroup of calcium orthophosphate/polymer biocomposites. 
For example, an IBS was described that involved a silanized 
hydroxyethylcellulose carrier with BCP (HA + β-TCP).895 The 
suspension is liquid at a pH within 10–12, but it gels quickly 
at a pH < 9. Injectable composites can be formed with β-TCP 
to improve mechanical integrity.548 Similarly, Bennett et al. 
showed that a polydioxanone-co-glycolide-based biocomposite 
reinforced with HA or β-TCP can be used as an injectable or 
moldable putty.896 During the cross-linking reaction following 
injection, carbon dioxide is released, allowing the formation of 
interconnected pores. Furthermore, HA/poly(L-lactide-co-ε-
caprolactone) biocomposite microparticles were fabricated as 
an injectable scaffold via the Pickering emulsion route in the 
absence of any molecular surfactants. A stable injectable oil-in-
water emulsion was obtained using water-dispersed HA nano-
sized crystals as the particulate emulsifier and a dichloromethane 
solution of poly(L-lactide-co-ε-caprolactone) as an oil phase.897

Daculsi et al. developed viscous IBS biocomposites based 
on BCP (60% HA + 40% β-TCP) and a 2% aqueous solution 
of HPMC that was said to be perfectly biocompatible, resorb-
able and easily fitted to bone defects (due to an initial plastic-
ity).108,894,898-905 The best ratio BCP/HPMC aqueous solution 
was found to be at ~65/35 w/w. To extend this subject further, 
IBS might be loaded by cells,906,907 radiopaque elements908 or 
microparticles909 as well as be functionalized by nucleic acids.890 
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glass-reinforced HA/polyacrylate1068 as well as collagen1069 and 
gelatin1070 calcium phosphate silicate/wollastonite biocomposites.

HA/glass biocomposites can be prepared by simple sintering 
of appropriate HA/glass powder mixtures.1071-1074 If sintering is 
performed below 1,000°C, HA does not react with the bioac-
tive glass1072,1073 or the reaction is limited.1074 Besides, reactions 
between HA and glasses depend on the glass composition. In 
another approach, small quantities of bioactive glass have been 
added to HA bioceramics in order to improve densification 
and/ or mechanical properties.29 Biocomposites might also be sin-
tered from HA and silica.1005 In general, bioactive glass-ceramics 
maintain a high strength for a longer time than HA bioceramics 
under both in vitro and in vivo conditions.1012,1019

Due to a huge difference in shapes, it is a challenge to prepare 
homogeneous mixtures of calcium orthophosphates and carbon 
nanotubes: “one can imagine something similar to achieving a 
homogeneous mixture of peas and spaghetti.”217 Nevertheless, 
different strategies might be employed to prepare calcium ortho-
phosphate/carbon nanotube biocomposites. For example, apatites 
might be chemically synthesized by using carboxyl functionalized 

There are several types of HA/glass biocomposites. The first one 
is also called bioactive glass-ceramics. A dense and homogeneous 
biocomposite was obtained after a heat treatment of the parent 
glass, which comprised ~38 wt% oxy-FAP (Ca

10
(PO

4
)

6
(O,F)

2
) 

and ~34 wt% β-wollastonite (CaO·SiO
2
) crystals, 50–100 nm 

in size in a MgO-CaO-SiO
2
 glassy matrix.206,1015-1025 A-W glass-

ceramics are an assembly of small apatite particles effectively 
reinforced by wollastonite. The bending strength, fracture 
toughness and Young’s modulus of A-W glass-ceramics are the 
highest among bioactive glass and glass-ceramics, enabling them 
to be used in some major compression load-bearing applications, 
such as vertebral prostheses and iliac crest replacement. They 
combine a high bioactivity with suitable mechanical proper-
ties.1059 β-TCP/wollastonite biocomposites are also known.1060-

1062 More complicated formulations have been developed as well. 
For example, (A-W)/HDPE composite (AWPEX) biomaterials 
have been designed to match the mechanical strength of human 
cortical bone and to provide favorable bioactivity, with poten-
tial use in many orthopedic applications.1063-1066 Other examples 
include wollastonite-reinforced HA/Ca polycarboxylate,1067 

Table 5. A list of some commercial non-setting calcium orthophosphate IBS and pastes with indication of producer, product name, composition 
(when available) and form910

Producer Product name Composition Form

ApaTech (UK)

ActifuseTM HA, polymer and aqueous solution Pre-mixed

ActifuseTM Shape 
ActifuseTM ABX

Si-substituted calcium orthophosphate and a polymer Pre-mixed

Baxter (US) TricOs Τ, TricOs BCP (60% HA, 40% β-TCP) granules and Tissucol (fibrin glue) To be mixed

Berkeley Advanced 
Biomaterials

Bi-Ostetic Putty not disclosed Not disclosed

BioForm (US)
Calcium hydroxylapatite 

implant
HA powder embedded in a mixture of glycerine, water and 

 carboxymethylcellulose
Pre-mixed

Biomatlante (FR)

MBCP Gel® BCP granules (60% HA, 40% β-TCP; 0.08–0.2 mm) and 2% HPMC Pre-mixed

Hydr’Os
BCP granules (60% HA, 40% β-TCP; micro- and nano-sized particles) 

and saline solution
Pre-mixed

Degradable solutions (CH) Easy graftTM β-TCP or BCP granules (0.45–1.0 mm) coated with 10 μm PLGA, 
N-methyl-2-pyrrolydone

To be mixed

Dentsply (US) Pepgen P-15® flow HA (0.25–0.42 mm), P-15 peptide and aqueous Na hyaluronate solution To be mixed

DePuy Spine (US) Healos® Fx HA (20–30%) and collagen To be mixed

Fluidinova (P)
nanoXIM TCP β-TCP (5 or 15%) and water Pre-mixed

nanoXIM HA HA (5, 15, 30 or 40%) and water Pre-mixed

Integra LifeSciences (US)
Mozaik Osteoconductive 

Scaffold
β-TCP (80%) and type 1 collagen (20%) To be mixed

Mathys Ltd., (CH)
Ceros® Putty/cyclOS® 

Putty
β-TCP granules (0.125–0.71 mm; 94%) and recombinant Na hyaluronate 

powder (6%)
To be mixed

Medtronic (US) Mastergraft® BCP (85% HA, 15% β-TCP) and bovine collagen To be mixed

Osartis/AAΡ (GER) Ostim® Nanocrystalline HA (35%) and water (65%) Pre-mixed

Smith & Nephew (US) JAXTCP
β-TCP granules and an aqueous solution of 1.75% carboxymethylcel-

lulose and 10% glycerol
To be mixed

Stryker (US) CalstruxTM β-TCP granules and carboxymethylcellulose To be mixed

Teknimed (FR) Nanogel HA (100–200 nm) (30%) and water (70%) Pre-mixed

Therics (US) TherigraftTM Putty β-TCP granules and polymer Pre-mixed

Zimmer (US) Collagraft
BCP granules (65% HA, 35% β-TCP; 0.5–1.0 mm), bovine collagen and 

bone marrow aspirate
To be mixed
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processing.1032-1034 At high temperatures, the presence of Ti metal 
phase was found to promote dehydration and decomposition of 
HA into β-TCP and TTCP1030,1032 or partial formation of β-TCP 
and calcium titanate instead of HA.661,1033,1034 Compared with 
pure HA bioceramics manufactured under the same conditions, 
the HA/Ti biocomposites possessed a higher fracture toughness, 
bending strength, work of fracture, porosity and lower elastic 
modulus, which makes them more suitable for biomedical appli-
cations. However, the mechanical properties appear not to be 
high enough to use HA/Ti biocomposites in load-bearing appli-
cations. Luckily, the histological evaluations revealed that HA/Ti 
biocomposites could be partially integrated with newborn bone 
tissues after 3 weeks and fully osteointegrated at 12 weeks in 
vivo.1030 Similar findings had earlier been made for HA bioceram-
ics reinforced by the addition of silver particulates (5–30 vol. %) 
and subsequent sintering of the HA/Ag powder compacts.1028,1029 
The addition of silver also imparts an antimicrobial activity.1042 
Other studies on calcium orthophosphate/Ti biocomposites are 
available elsewhere in reference 1035–1038.

To conclude this section, biocomposites consisting only of 
calcium orthophosphates should be briefly described. First, all 
multiphasic and polyphasic calcium orthophosphates should be 
mentioned. For example, circa 1980, BCP was described as “TCP 
ceramics complexed with HA,”1091 Even nowadays BCP is occa-
sionally called a “nanocomposite,”1092 Furthermore, fluoridated 
HA [described by a chemical formula Ca

10
(PO

4
)

6
(OH)

2 - x
F

x
, 

where 0 < x < 2] might be mentioned as a composite;1093 how-
ever, the applicability of the term “composite” for such systems 
is doubtful. One should better consider 70% HA-powder + 30% 
HA-whisker biocomposites, which were fabricated by pressureless 
sintering, hot pressing and hot isostatic pressing. These biocom-
posites were found to exhibit an improved toughness, attaining 
the lower fracture toughness limit of bone without a decrease of 
bioactivity and biocompatibility.1094,1095 A dual HA biocompos-
ite that combined two HA materials with different porosities: 
HA with 75% porosity, for bone ingrowth, and HA with 0% 
porosity, for load bearing, was also manufactured. This dual 
HA biocomposite appeared to be suitable for use as an implant 
material for spinal interbody fusion as a substitute for iliac bone 
grafts, which could eliminate the disadvantages associated with 
autograft harvesting.1096 A biodegradable biocomposite porous 
scaffold comprised of a β-TCP matrix and nano-sized fibers of 
HA was developed and studied for load-bearing bone tissue engi-
neering. The nano-sized fibers of HA were prepared by a biomi-
metic precipitation method, the inclusion of which significantly 
enhanced the mechanical property of the scaffold, attaining a 
compressive strength of 9.87 MPa, comparable to the high-end 
value (2–10 MPa) of cancellous bone.1097 Finally, it is interesting 
to mention a successful reinforcement of carbonateapatite porous 
blocks by newly prepared carbonateapatite crystals (i.e., by the 
same compound; thus, a biocomposite of two different carbon-
ateapatites was obtained).1098 First, a calcium salt was introduced 
to micropores of carbonateapatite blocks. Then, the calcium salt 
was carbonated to form calcite inside the micropores of the car-
bonateapatite blocks by exposing the blocks to carbon dioxide. 
For the third step, the blocks were immersed in a Na

2
HPO

4
 

carbon nanotubes as a matrix.302-308 Physicochemical character-
ization of these biocomposites showed that nucleation of CDHA 
is initiated through the carboxyl group.302 Hot pressing,1075 
plasma spraying,1076 laser surface alloying,1077-1079 spark plasma 
sintering1080 and precipitation1081 techniques might be applied as 
well. Due to carbon oxidation at elevated temperature, sinter-
ing of calcium orthophosphate/carbon nanotube biocomposites 
must be performed in a deoxidizing atmosphere.1082 The research 
on calcium orthophosphate (up to now, only apatites)/carbon 
nanotube biocomposites is in its early stages, with the first papers 
published in 2004.307,525 For this reason, the mechanical prop-
erty data for such biocomposites have been reported only in a 
few papers; however, these results are encouraging. For example, 
Chen et al. performed nano-indentation tests on biocomposite 
coatings to give hardness and Young’s modulus values.1079 They 
found that the higher the loading of the nanotubes, the better 
the mechanical properties. Namely, at 20 wt% loading, hard-
ness was increased by ~43% and Young’s modulus by ~21% over 
a single-phase HA coating.1079 Scratching test results indicated 
that alloyed HA biocomposite coatings exhibited improved 
wear resistance and a lower friction coefficient when the amount 
of carbon nanotubes in the precursor material powders was 
increased.1078 Additionally, measurements of the elastic modu-
lus and hardness of the biocomposite coatings indicated that 
the mechanical properties were also affected by the amount of 
carbon nanotubes.1077 Another research group performed com-
pression tests on bulk HA/carbon nanotubes biocomposites and 
found an increase in strength over single-phase HA.307 However, 
the highest compressive strength they achieved for any material 
was only 102 MPa, which is similar to that of cortical bone but 
much lower than the typical values for dense HA.217 More com-
plex formulations, such as poly-l-lysine/HA/carbon nanotube 
hybrid biocomposites, have also been developed.1083 Furthermore, 
calcium orthophosphate/carbon nanotube biocomposites might 
be immobilized by hemoglobin.1084 Unfortunately, carbon nano-
tubes are very stable substances; they are neither bioresorbable 
nor biodegradable. Therefore, during in vivo bioresorption, the 
nanotubes will get into the human body from the biocomposite 
matrix and might cause uncertain health problems. Certainly, 
this problem must be solved. To conclude the carbon subject, one 
should mention the application of carbon fibers of microscopic 
dimensions,1085-1087 nanodimensional diamonds1088 and C

60
847 to 

reinforce HA bioceramics.
As clearly seen from the amount of references, apatite/zirco-

nia biocomposites are the most popular among researchers. The 
main disadvantage of HA reinforced by PSZ is degradation of 
zirconia in wet environments.923,932,933,955 Transformation of the 
tetragonal ZrO

2
 to the monoclinic phase on the surface results 

in the formation of microcracks and, consequently, lowers the 
strength of the implant.1089,1090 Interestingly, though, Fe

3
O

4
/HA 

composites possess photocatalytic properties.1003,1004

Various biocomposites of calcium orthophosphates with met-
als and alloys have been fabricated as well.540,928,967,997,1028-1045 For 
example, an HA-based biocomposite reinforced with 20 vol.% of 
Ti particles was fabricated by hot pressing.1030 Calcium orthophos-
phate/Ti biocomposites might be prepared by powder metallurgy 
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A series of functionally graded HA coatings incorporated 
with various percentages of silver were deposited on titanium 
substrates using ion beam-assisted deposition. The analysis of 
the coating’s cross-section revealed a decreased crystallinity as 
well as a distribution of nano-sized (10–50 nm) silver particles 
from the coating/substrate interface to top surface.1110 A func-
tionally graded HA/PMMA biocomposite was developed based 
on sedimentary HA distributions in a PMMA viscous fluid, 
using a centrifuge to avoid stress convergence on the interface. 
The stress-strain curves of this biocomposite showed sufficient 
strength for biomedical applications along with the relaxation of 
brittleness and fragility.543 A compositionally graded collagen/
nanodimensional HA biocomposite scaffold might be prepared 
by an in situ diffusion method.1111 Chemical and microstructural 
analysis revealed a gradient of the Ca-to-P ratio across the width 
of the scaffold template, resulting in the formation of a Ca-rich 
side and a Ca-depleted side of the scaffold. The Ca-rich side fea-
tured low porosity and agglomerates of the nanodimensional HA 
crystallites, while the Ca-depleted side featured higher porosity 
and nanodimensional HA crystallites integrated with collagen 

aqueous solution. In this process, calcite inside the micropores 
of the carbonateapatite blocks was transformed to carbonateapa-
tite and the newly formed crystals of carbonateapatite entangled 
on those of the existing carbonateapatite blocks. Due to bond-
ing between the newly formed carbonateapatite crystals and the 
existing ones in the carbonateapatite blocks, the mechanical 
strength of the blocks became ~1.5 times higher compared with 
that before the treatment.1098

Functionally graded formulations. Although, in most cases, 
the homogeneous distribution of filler(s) inside a matrix is 
required,426 there are composites where this is not the case. For 
example, functionally graded materials (commonly referred to 
as FGM) might be characterized by the intentional variations 
in composition and/or structured gradually over volume, result-
ing in corresponding changes in the properties of the composite. 
The main feature of such materials is the almost continuously 
graded composition, which results in two different properties at 
the two ends of the structure. Such composites can be designed 
for specific functions and applications. Various approaches based 
on bulk (particulate) processing, preform processing, layer pro-
cessing and melt processing are used to fabricate the functionally 
graded materials.

Bone is a biologically formed composite with variable density 
ranging from very dense and stiff (cortical bone) to a soft and 
foamed structure (trabecular bone). Normally the outer part of 
long bones consists of cortical bone, with the density decreas-
ing toward the core, where the trabecular bone is found. The 
trabecular bone is porous, and the pores are filled with osseous 
medulla.25,26 This brief description clearly indicates that bones 
are natural functionally graded composites.

The concept of FGM has been increasingly used for bio-
material design and, currently, it remains an important area of 
research. For example, many studies have been performed to 
fabricate porosity-graded calcium orthophosphate bioceramics 
in attempts to mimic the porous structure of bones.1099-1102 This 
is a structural approach to fabricating FGM. Besides that, there 
is a compositional approach. For example, powder metallurgy 
methods have been used to fabricate HA/Ti functionally graded 
biocomposite dental implants, offering the biocompatible HA 
on the tissue side and titanium on the outer side for mechanical 
strength.1103-1105 The graded structure in the longitudinal direc-
tion contains more Ti in the upper section and more HA in the 
lower section. Actually, in the upper section, the occlusal force is 
directly applied, and Ti offers the required mechanical perfor-
mance; in the lower part, which is implanted inside the bone, 
the HA confers bioactive and osteoconductive properties to the 
material.1103 Since the optimum conditions of sintering for Ti and 
HA are very different, HA/Ti functionally graded biocomposites 
are difficult to fabricate, and the sintering conditions for their 
mixtures are obliged to compromise. The expected properties of 
this implant are shown in Figure 6.1104 Such biocomposites might 
be both symmetrical1106 and asymmetrical.1107 Furthermore, 
functionally graded HA/Ti biocomposite coatings might be pre-
pared by RF plasma spraying.1108 More to the point, a Ti alloy 
substrate has been combined with HA granules that could be 
spread over the surface.1109

Figure 6. Expected properties of functionally graded biocomposite 
dental implant. For comparison, the upper drawing shows a function-
ally graded implant and the lower one shows a conventional uniform 
implant. The properties are shown in the middle. The implant with 
the composition changed from a biocompatible metal (Ti) at one end 
(left in the figure), increasing the concentration of bioceramics (HA) 
toward 100% HA at the other end (right in the figure), could control 
both mechanical properties and biocompatibility without an abrupt 
change due to the formation of discrete boundary. This FGM biocom-
posite was designed to provide more titanium for the upper part where 
occlusal force is directly applied and more HA for the lower part, which 
is implanted inside the jawbone. Reprinted from reference 1104 with 
permission.
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sensitive biological element, a transducer or a detector element, 
which transforms the signal resulting from the interaction of the 
analyte and the biological element into another signal, and the 
associated electronics, which are primarily responsible for the 
display of the results in a user-friendly way.1121

The surface of biologically relevant calcium orthophosphates 
(CDHA, HA, α-TCP, β-TCP, DCPD, DCPA) has an excellent 
capacity for adsorption of functional biomolecules, such as pro-
teins, albumins, DNA as well as some other types of chemicals. 
Therefore, several calcium orthophosphate-based biocomposites 
and hybrid biomaterials were found to be applicable for biosen-
sor manufacturing.354,642,1041,1083,1122-1127 For example, formation of 
poly-l-lysine/HA/carbon nanotube hybrid nanodimensional par-
ticles was described, and a general design strategy for an immuno-
sensing platform was proposed based on adsorption of antibodies 
onto this biocomposite.1083 In another paper, a hybrid material 
formed by assembling nanodimensional particles of gold onto 
nano-sized HA was employed for the interface design of a piezo-
electric immunosensor on which the antibodies were bound. The 
sensing interface that was developed appeared to possess some 
advantages, such as activation-free immobilization and high 
antigen-binding activities of antibodies, over using nano-sized 
either HA or gold alone.1041 A novel tyrosinase biosensor based 
on nano-sized HA/chitosan composites has been developed for 
the detection of phenolic compounds.1125 Further details on the 
subject are available in the aforementioned references.

To date, not many papers have been published on the biosen-
sor application of calcium orthophosphate-based biocomposites 
and hybrid biomaterials. Presumably, this subject will be further 
developed in future, and, perhaps sometime, implantable biosen-
sors will be designed to perform the continuous concentration 
monitoring of the important biological macromolecules in vivo. 
Possibly, those implantable biocencors will be able to use electric 
power generated by DCPD/polymer composite-based battery 
devices.506,507

Interaction Among the Phases in Calcium 
Orthophosphate-Based Formulations

An important aspect that should be addressed in detail is a mutual 
interaction among calcium orthophosphates and other phases in 
biocomposites and hybrid biomaterials. In general, an interac-
tion among the phases in any composite can be either mechani-
cal, when it results from radial compression forces exerted by 
the matrix on the filler particles (for example, developed dur-
ing cooling due to thermal contraction), or chemical, when the 
reactivity of the filler toward the matrix has an important role. 
In the latter case, it is important to distinguish a physical interac-
tion from chemical bonding.282 According to Wypych,1128 physi-
cal interaction is more or less temporary, implicating hydrogen 
bonding or van der Waals forces, whereas chemical bonding is 
stronger and more permanent, involving covalent bond forma-
tion. Thus, a chemical interfacial bond among the phases is pre-
ferred to achieve higher strength in a composite. The magnitude 
of the interfacial bond among the phases determines how well 
a weak matrix transmits stress to the strong fibers. However, 

fibrils to form a porous network structure.1111 A three-layered, 
graded biocomposite membrane with one face of 8% nanodi-
mensional carbonateapatite/collagen/PLGA porous membrane, 
the opposite face of pure PLGA non-porous membrane and the 
middle layer of 4% nanodimensional carbonateapatite/collagen/
PLGA as the transition was prepared using the layer-by-layer cast-
ing method.611 Functionally graded non-woven meshes of PCL 
incorporated by nano-sized particles of β-TCP were prepared 
using a hybrid twin-screw extrusion/electrospinning process.1112 
A functionally graded HA/silk fibroin biocomposite was prepared 
by pulse electric current sintering.1113 HA/glass FGM layers were 
coated on titanium alloy (Ti-6Al-4V) substrates. The design of 
these layers and the use of the glass were meant to achieve a strong 
bond between the FGM layered coatings and the substrates.1114,1115

Functionally graded β-TCP/FA biocomposites combine the 
biostability of FA with the bioresorbable properties of β-TCP.1116 
An interesting multilayered (each layer 1 mm thick) structure 
consisting of β-TCP/FA biocomposites with different molar 
ratios has been prepared, giving rise to formation of an FGM 
(Fig. 7). After implantation, the preferential dissolution of the 
β-TCP phase would result in functionally gradient porosity for 
bone ingrowth.1116 Functionally graded fluoridated HA with a 
gradient of fluoride1117 and carbonated HA with a gradient of car-
bonate1118 were synthesized as well. HA/zirconia graded biocom-
posites were fabricated to enhance the mechanical properties of 
HA while retaining its bone bonding property.963 TiO

2
 and HA 

were found to be a good combination for FGM, providing both 
a gradient of bioactivity and good mechanical strength.1119 In 
addition, graded HA/CaCO

3
 biocomposite structures for bone 

ingrowth were also developed.1120 Functionally graded composite 
skull implants consisting of polylactides, carbonateapatite and 
CaCO

3
 are known as well.386,387 Thus, the research in this field is 

quite promising, but currently, the mechanical properties of the 
available biocomposites do not match the corresponding proper-
ties of bones.179

Biosensors. A biosensor is a device for detection of an ana-
lyte that combines a biological component with a physicochemi-
cal detector component. Very briefly, it consists of three parts: a 

Figure 7. A schematic diagram showing the arrangement of the 
FA/β-TCP biocomposite layers. (A) A non-symmetric functionally gradi-
ent material (FGM); (B) symmetric FGM. Reprinted from reference 1116 
with permission.
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HA/polyamide biocomposite. That the bands shifted in a fin-
gerprint area indicated that the hydroxide and orthophosphate 
on the surface of HA might interact with plentiful carboxyl and 
amino groups of polyamide through nucleophilic addition.276 
Comparable conclusions were made for HA/PVA,641 CDHA/
alginate,709 ACP/PPF,513 HA/maleic anhydride355 and β-TCP/
PLLA462 biocomposites, in which weak chemical bonds were con-
sidered to form between Ca2+ ions located on the HA, CDHA, 
ACP or β-TCP surface, respectively, and slightly polarized O 
atoms of C=O bonds in the surrounding bioorganic compounds. 
The data obtained suggest that crystallization of calcium ortho-
phosphates in chitosan-containing solutions is substantially mod-
ulated by a chemical interaction of the components; apparently, a 
part of calcium is captured by chitosan and does not participate 
in the formation of the main mineral phase.1136 This type of the 
chemical interaction is shown schematically in Figure 9.709

Besides FTIR spectroscopy, other measurement techniques 
are also able to show some evidence of a chemical interaction 
among the phases in calcium orthophosphate-based biocompos-
ites and hybrid biomaterials.345,462,635,638,641,1134-1138 For example, 
for nano-sized crystals of CDHA/alendronate such evidence 
was obtained by thermogravimetric analysis: DTG plots of the 

while a bond among the matrix and reinforcements must exist 
for the purpose of stress transfer, it should not be so strong that 
it prevents toughening mechanisms, such as debonding and fiber 
pullout.217

There is still doubt as to the exact bonding mechanism 
among bone minerals (biological apatite) and bioorganics (col-
lagen), which undoubtedly plays a critical role in determining 
the mechanical properties of bones. Namely, bone minerals are 
not bonded directly to collagen but through non-collagenous 
proteins that make up ~3% of bones (Table 1) and provide with 
active sites for biomineralization and for cellular attachment.36 
In bones, the interfacial bonding forces are mainly ionic bonds, 
hydrogen bonds and hydrophobic interactions, which give the 
bones their unique composite behavior.53 There is an opinion 
that, in contrast to bones, there is no sign of chemical bonding 
among the phases in conventional calcium orthophosphate/col-
lagen biocomposites, probably due to a lack of suitable interfa-
cial bonding during mixing.39 However, this is not the case for 
phosphorylated collagens.753 Interested readers are directed to 
a density functional theory study of the interaction of collagen 
peptides with hydroxyapatite surfaces.1129

Anyway, the Fourier-transformed infrared (FTIR) spectra of 
some calcium orthophosphate-based composites and collagen 
films were measured and transformed into absorption spectra, 
using the Kramers-Kronig equation to demonstrate energy shifts 
of residues on the apatite/collagen interface. After comparing 
FTIR spectra of biocomposites and collagen films in detail, red 
shifts of the absorption bands for C-O bonds were observed in the 
spectra of the biocomposites. These red shifts were described as 
a decrease of bonding energies of C-O bonds and assumed to be 
caused by an interaction with Ca2+ ions located on the surfaces of 
apatite nano-sized crystals as shown in Figure 8.747 Another proof 
of a chemical interaction between apatite and collagen was also 
evaluated in FTIR spectra of CDHA/collagen biocomposites, in 
which a shift of the band corresponding to -COO- stretching 
from 1,340 to 1,337 cm-1 was observed.708,709 More to the point, 
nucleation of apatite crystals onto collagen through a chemical 
interaction with carboxylate groups of collagen macromolecules 
has been reported in references 1130–1132.

FTIR spectroscopy seems to be the major tool for study-
ing a possible chemical bonding among the phases in 
calcium orthophosphate-based biocomposites and hybrid bio-
materials.276,310,345,353,355,462,513,600,616,629,635,638,641,644,653,664,673,678,709,753, 

802,803,847,882,1133-1136 For example, the characteristic bands at 2,918, 
2,850 and 1,472 cm-1 for the hydrocarbon backbone of PE 
appeared to have zero shift in an HA/PE biocomposite. However, 
in the case of polyamide, several FTIR bands indicated that the 
polar groups shifted significantly: the bands at 3,304, 1,273 and 
692 cm-1 derived from stretching of N-H, stretching of C-N-H 
and vibrating of N-H moved to 3,306, 1,275 and 690 cm-1, 
respectively, in the HA/polyamide biocomposites. Furthermore, 
both stretching (3,568 cm-1) and vibrating (692 cm-1) modes 
of hydroxide in HA moved to 3,570 and 690 cm-1 in the HA/
polyamide biocomposites, respectively, indicating the forma-
tion of hydrogen bonds. In addition, bands at 1,094 and 1,031 
cm-1 of PO

4
 modes also shifted to 1,093 and 1,033 cm-1 in the 

Figure 8. A schematic drawing of the relation between self-orga-
nization (directional deposition of HA on collagen) and interfacial 
interaction in biocomposites. Direction of interaction between HA and 
collagen is restricted by covalent bonding between COO and Ca(2) to 
maintain regular coordination number of 7. Reprinted from reference 
747 with permission.
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mechanical in nature. This is because the matrix often consists 
of compounds with no functional groups or unsaturated bonds 
that can form ionic complexes with the constituents of calcium 
orthophosphates. Obviously, less coupling exists between non-
polar polymers and calcium orthophosphate ceramic particles. 
Therefore, polymers with functional groups pendant to the poly-
mer backbone, which can act as sites for bridging to calcium 
orthophosphates, are more promising in this respect.53

In order to improve the situation, various supplementary 
reagents are applied. If the primary effect of a processing addi-
tive is to increase the interaction between the phases, such 
additives can be regarded as coupling agents.1140 These agents 
establish chemical bridges between the matrix and the fillers, 
promoting adhesion among the phases. In many cases, their 
effect is not unique; they might, for example, also influence 
rheology of the composites.282 In the case of calcium ortho-
phosphates, a hexamethylene diisocyanate coupling agent was 
used to bind PEG/PBT (PolyactiveTM) block copolymers293 and 
other polymers1133 to HA filler particles. Thermogravimetric 
and infrared analysis demonstrated that the polymers were 
chemically bonded to the HA particles through the isocyanate 
groups, making it a suitable approach to improve adhesion.1133 
Other researchers used glutaraldehyde as a cross-linked reag
ent.470,474,598,600,601,619,624,699,736,778,781,1141 Alternatively, the interfa-
cial bonding among calcium orthophosphates and other com-
ponents might be induced by silanes,242,268,269,293,406,640,1142-1145 
zirconates,282,406,408,1146,1147 titanates,282,406,1146 phosphoric acid,643 
alkaline pretreatment,877,880 polyacids143,144,293 and some other 
chemicals. Furthermore, some polymers might be grafted onto 
the surface of calcium orthophosphate particles.656 Structural 
modifications of the polymeric matrices, for instance, with intro-
duction of acrylic acid,245,268,269,293 have also proved to be effec-
tive. For example, application of polyacids as a bonding agent for 
HA/PolyactiveTM composites caused the surface modified HA 
particles to maintain better contact with polymers at the fracture 
and improved mechanical properties.143,144,293 The use of titanate 
and zirconate coupling agents appeared to be very dependent on 
the molding technique employed.282 Silane-coupled HA pow-
ders were tested before applying them as fillers in biodegradable 
composites.1143-1145 This treatment allowed HA to withstand the 
attack of water without impairing overall bioactivity. Besides 
that, a chemically modified reinforcement phase-matrix inter-
face was found to improve the mechanical properties of the 
biocomposites. The examples include chemically coupled HA/
PE,268,269 chemically formed HA/Ca poly(vinylphosphonate)349 
and PLA/HA fibers.233 These biocomposites are able to consume 
a large amount of energy at the fracture.

The action of some coupling agents was found to combine 
two distinct mechanisms: (1) cross-linking of the polymeric 
matrix (valid for zirconate and titanate coupling agents) and 
(2) improvement of the interfacial interactions among the major 
phases of the biocomposites. This interfacial adhesion improve-
ment appeared to be much dependent on the chemical nature 
(pH and type of metallic center) of the coupling agents.406 Several 
works claimed that silanes do interact with HA.242,268,269,1143-1145 It 
was shown that a silicon-containing interphase existed between 

crystals appeared to be quite different from those obtained from 
mechanical mixtures of CDHA and calcium alendronate with 
similar compositions.1137 Analogous DTG results were obtained 
for nano-sized HA/PVA biocomposites.641 In the case of biocom-
posites of nano-sized HA with polyamide, a hydrogen bonding 
among the phases was detected by a differential scanning calo-
rimetry technique.635 Another example comprises application of 
dynamic mechanical analysis to investigate the softening mecha-
nism of β-TCP/PLLA biocomposites.462 As to biocomposites of 
nano-sized HA with PVAP, some indirect evidence of chemical 
bonding among the phases was found by X-ray diffraction and 
thermogravimetric analysis.345 A strong structural correlation 
between the orientation of FA crystallites and gelatin within the 
FA/gelatin composite spheres was discovered, indicating a sub-
stantial reorganization of the macromolecular matrix within the 
area of a growing aggregate.444 Recently, chemical interactions 
between HA and organic molecules have been elucidated using 
ab initio calculation methods.1139

By means of the X-ray photoelectronic spectroscopy (XPS) 
technique, binding energies of Ca, P and O atoms were found 
to vary between nano-sized HA (Ca: 350.5 and 345.5; O: 530.2; 
P: 132.5 eV) and nano-sized HA/konjac glucomannan/chitosan 
biocomposite (Ca: 352.1 and 347.4; O: 531.2; P: 133.4 eV).653 
Further measurements by FTIR and X-ray diffraction revealed 
that nano-sized HA was mainly linked to konjac glucomannan 
and chitosan by hydrogen bonding among OH- and PO

4
3- ions 

of HA and -C=O and -NH groups of konjac glucomannan and 
chitosan copolymer, and there was a stable interface formed 
among the three phases in the biocomposite. Meanwhile, coor-
dinate bonding might be formed between Ca2+ and -NH. Stable 
interfaces have been formed among the three phases in a biocom-
posite.653 In HA/collagen biocomposites, a covalent bond forma-
tion between Ca2+ ions of HA and RCOO- groups of collagen 
molecules was found by XPS.601 Similar XPS observations were 
also made for several other calcium orthophosphate-based bio-
composites and hybrid biomaterials.629,664,673

The interaction and adhesion between calcium orthophos-
phate fillers and their respective matrices have significant effects 
on the properties of particulate-filled, reinforced materials, 
as these forces are essential to load transfer among the phases 
and thus to improving the mechanical performance of the bio-
composites.353 However, for a substantial amount of the afore-
mentioned formulations, the interaction among the phases is 

Figure 9. A schematic diagram of Ca2+ ion binding with alginate chains. 
Reprinted from reference 709 with permission.
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techniques, no chemical bonding between BCP and HPMC was 
detected.1157

A coprecipitation technique was used to prepare CDHA/
chitosan biocomposites.811 Growth of CDHA crystals was 
inhibited by organic acids with more than two carboxyl groups, 
which strongly bind to CDHA surfaces via COO-Ca bonds. 
Transmission electron microscopy images revealed that CDHA 
formed elliptic aggregates with chemical interactions (prob-
ably coordination bond) between Ca on its surface and amino 
groups of chitosan; the nano-sized crystals of CDHA were found 
to align along the chitosan molecules, with the amino groups 
working as the nucleation sites.811 Formation of calcium cross-
linked polymer carboxylate salts was suggested during setting of 
calcium orthophosphate cement (TTCP + DCPA)/polyphospha-
zane biocomposites; a chemical involvement of the polymer in 
the cement setting was determined based on the results of pH 
monitoring.558-560

A chemical bond between the phases was presumed in 
PCL/ HA composites prepared by the grafting technique;420 
unfortunately, no strong experimental evidences were provided. 
In another study, CDHA/poly(α-hydroxyester) composites were 
prepared by a low temperature chemical route.393 In that study, 
pre-composite structures were prepared by combining α-TCP 
with PLA, PLGA and copolymers thereof. The final biocompos-
ite was achieved by in situ hydrolysis of α-TCP to CDHA per-
formed at 56°C either in solvent cast or pressed pre-composites. 
That transformation occurred without any chemical reaction 
between the polymer and calcium orthophosphates, as deter-
mined by FTIR spectroscopy.393

In nearly every study on HA/carbon nanotubes biocompos-
ites, the nanotubes were functionalized before combining them 
with HA. Most researchers did this by oxidation,303-307 although 
noncovalent functionalizing with sodium dodecylsulfate307 
and coating the nanotubes by a polymer1158 before combining 

HA and PE that promoted chemical adhesion between the HA 
particles and the polymer. A silane-coupling agent also facilitated 
penetration of PE into cavities of individual HA particles, which 
resulted in enhanced mechanical interlocking at the matrix-rein-
forcement interface.268,269

Thus, the optimization of biocomposite properties by cou-
pling agents is currently an important area of the research. 
The control and development of molecular-level associations of 
polymers with calcium orthophosphates is suggested to be sig-
nificant for the resulting mechanical responses in biocomposites. 
It appears that a fundamental molecular understanding of the 
interfacial behavior in biocomposites is an area not sufficiently 
addressed in the literature. Various experimental characterization 
techniques using electron microscopy, vibrational spectroscopy, 
X-ray diffraction, scanning probe microscopy and others are 
used routinely to characterize these materials beyond mechani-
cal property characterization. In addition, atomic scale models 
for simulating phase interaction and predicting responses in the 
novel material systems, where nanostructures and nano-inter-
faces are included, are important to understand and predict load 
deformation behavior.179

In addition to the aforementioned, the surface of calcium 
orthophosphates might be modified as well.144,509,510,656,1147-1154 An 
interesting approach for HA surface modification was described 
by Lee et al.1154 First, in situ synthesis of surface thiol-functional-
ized HA (HA-SH) was realized by adding 3-mercaptopropionic 
acid during hydrothermal synthesis of HA (Fig. 10A). This was 
followed by grafting polymerization of ethylene glycol methac-
rylate phosphate by radical chain transfer, generating the sulfur-
centered radicals on the HA surfaces (Fig. 10B), which initiated 
the surface grafting polymerization of ethylene glycol methac-
rylate phosphate (Fig. 10C).1154 Other examples might be found 
in the literature.144,509,510,656,1147-1153 In general, the purpose of sur-
face modifying is not only to guarantee the even distribution of 
calcium orthophosphate particles at a high loading level in the 
matrix, but also to prevent or delay the debonding process of cal-
cium orthophosphate particles from the matrix. Obviously, all 
surface modifiers must satisfy several biomedical requirements, 
such as no toxicity, good biocompatibility and no changes in the 
biological or physicochemical properties of the fillers.

Addition of adhesion-promoting agents might be an alterna-
tive to improve the interaction between the fillers and the matrix. 
For example, Morita et al. incorporated 4-methacryloyloxyethyl 
trimellitate anhydride to promote adhesion of the polymer to 
HA.1155 In another study, phosphoric ester was added to the liq-
uid component of the formulation.1156 Both the strength and the 
affinity index of biocomposites were found to increase, probably 
due to the effects of co-polymerization.

Possible interactions between BCP and HPMC have been 
investigated in IBS composites.900,901,1157 After mixing, there was 
a decrease in the mean diameter of BCP granules, and this influ-
enced the viscosity of the paste. Dissolution of grain boundaries 
of β-TCP crystals and precipitation of CDHA on the HA crys-
tal surface were found during the interaction. Both phenomena 
were responsible for the observed granulometric changes;900,901 
however, within the sensitivity of the employed measurement 

Figure 10. Surface modification of HA particles by grafting polymer-
ization according to Lee et al.1154 (A) surface thiol functionalized HA, 
(B) sulfur-centered radical on HA surface, (C) surface grafting polym-
erization of ethylene glycol methacrylate phosphate. Reprinted from 
reference 99 with permission.
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dissolution in slightly acidic media (calcium orthophosphates are 
almost insoluble in alkaline solutions111-117), which, in the case 
of CDHA, might be described as a sequence of four successive 
chemical equations (2–5):519,1161,1162
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Biodegradability of polymers generally depends on the follow-
ing factors: (1) chemical stability of the polymer backbone, 
(2)  hydrophobicity of the monomer, (3) morphology of the 
polymer, (4) initial molecular weight, (5) fabrication pro-
cesses, (6) geometry of the implant and (7) properties of the 
scaffold, such as porosity and pore diameter.328 A summary 
on degradation of PLA and PGA as well as that of SEVA-C 
is available in the literature (reviewed in ref. 178, p. 798 and 
p. 803, respectively), where the interested readers are referred. 
Biodegradation of HA/PLLA and CDHA/PLLA biocomposite 
rods in subcutis and medullary cavities of rabbits were inves-
tigated mechanically and histologically; the degradation was 
found to be faster when using uncalcinated CDHA instead of 
calcinated HA.1163 In a more detailed study, new bone formation 
was detected at 2 weeks after implantation, especially for for-
mulations with a high HA content.1164 More to the point, direct 
contact between bones and these composites without interven-
ing fibrous tissue was detected in this case.1164,1165 Both SEVA-C 
and SEVA-C/ HA biocomposites were found to exhibit non-
cytotoxic behavior,1166,1167 inducing a satisfactory tissue response 
when implanted as shown by in vivo studies.1167 Furthermore, 
SEVA-C/HA biocomposites induce a positive response in 
osteoblast-like cells for what concerns cell adhesion and prolif-
eration.1166 An in vivo study on biodegradation of microspheres 
[PLGA, gelatin and poly(trimethylene carbonate) were used]/
calcium orthophosphate cement biocomposites revealed that 
they exhibited microsphere degradation after 12 weeks of sub-
cutaneous implantation, which was accompanied by a decrease 
in compression strength.1168 Interestingly, though, the amount 
of calcium orthophosphates in biocomposites was found to have 
a greater effect on the early stages of osteoblast behavior (cell 
attachment and proliferation) rather than the immediate and 
late stages (proliferation and differentiation).1169

Both in vitro (the samples were immersed into 1% trypsin/
phosphate-buffered saline solution at 37°C) and in vivo (implan-
tation of samples into the posterolateral lumbar spine of rab-
bits) biodegradation have been investigated for nano-sized HA/
collagen/PLA biocomposites.610 The results demonstrated that 
weight loss increased continuously in vitro, with a reduction in 
mass of ~20% after 4 weeks. During the experimental period 
in vitro, a relative rate of reduction of the three components in 
this material was shown to differ greatly: collagen decreased the 

them with HA were also reported. Several studies by transmis-
sion electron microscopy revealed evidence that the function-
alization enhanced interaction between carbon nanotubes and 
HA.306,307,1159

For calcium orthophosphate-based biocomposites able to 
sustain high-temperature sintering (valid for the formulations 
consisting of inorganic components only), an interdiffusion of 
chemical elements might take place among the phases. Such 
an effect was detected by energy-dispersive X-ray spectroscopy 
in HA/TiO

2
 biocomposite particles with partial formation 

of calcium titanates; this process was found to be favorable to 
enhancing the cohesive strength of particles in the composite 
coating.997 A similar high-temperature interaction between HA 
and zirconia911,940 as well as between HA and Ti661,1030,1032-1034 was 
also detected. Namely, lower Ti content composites sintered at 
1,200°C showed main crystalline phases as CaTiO

3
, CaO and 

Ti
x
P

y
, while an increase in Ti content to 50 vol.% revealed Ti

2
O 

and residual α-Ti as additional phases. Thus, the chemical reac-
tions between HA and Ti were expressed by the following unbal-
anced illustrative equation:1032
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Besides, partial decomposition of HA and formation of different 
calcium aluminates were detected in HA/Al

2
O

3
 biocomposites 

after sintering at 1,200–1,300°C. This has been attributed to 
the diffusion of Ca2+ from HA into the alumina matrix, and the 
depletion of Ca2+ from HA leads to the decomposition of HA 
into β-TCP.968,974-976 Presumably, all these processes influence the 
mechanical strength of the biocomposites.

Bioactivity and Biodegradation  
of Calcium Orthophosphate-Based Formulations

The continuous degradation of an implant causes a gradual load 
transfer to the healing tissue, preventing stress shielding atro-
phy, and stimulates the healing and remodeling of bones. Some 
requirements must be fulfilled by the ideal prosthetic biodegrad-
able materials, such as biocompatibility, adequate initial strength 
and stiffness, retention of mechanical properties long enough to 
assure its biofunctionality and the non-toxicity of the degrada-
tion by-products.178 Generally speaking, bioactivity (i.e., ability 
of bonding to bones) of biologically relevant calcium orthophos-
phates reinforced by other materials is usually lower than that of 
pure calcium orthophosphates.30,31,1160

In general, both bioactivity and biodegradability of any bio-
composite and/or hybrid biomaterial are determined by the same 
properties of the constituents. Both processes are very multi-
factorial, because during implantation, the surface of any graft 
comes into contact with biological fluids and, shortly after-
wards, is colonized by cells. Much more biology than chemistry 
and material science together is involved in these very complex 
processes, and many specific details still remain unknown. To 
simplify the task, the biodegradability of the biologically rele-
vant calcium orthophosphates might be described by a chemical 
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researchers still need to develop more advanced technologies 
to fabricate a bone-resembling hierarchical organization over 
several length scales. Development of novel grafting materials 
depends on the progress of research into the structure of natural 
bones. The key issues are not only to understand the fundamen-
tals of biomineralization but also to translate such knowledge 
into practical synthetic pathways to produce better bone grafts. 
Unfortunately, when it comes to the fabrication of biocomposites 
mimicing natural bones, from the nanometer to the microm-
eter dimensions, there are many key issues, including control 
of morphology, incorporation of foreign ions, interaction with 
biomolecules and assembly of the organic and inorganic phases, 
which are still not well understood. A processing gap between 
the lower-level building units and the higher-order architecture 
could severely limit the practical application of current calcium 
orthophosphate-based biocomposites and hybrid biomaterials. 
Therefore, further substantial research efforts have been outlined 
to address the following key challenges:36,41

• Optimization of biocomposite processing conditions.
• Optimization of interfacial bonding and strength equivalent 

to natural bone.
• Optimization of the surface properties and pore size to max-

imize bone growth.
• Maintaining the adequate volume of the construct in vivo to 

allow bone formation to take place.
• Withstanding the load-bearing conditions.
• Matching the bioresorbability of the grafts and their biome-

chanical properties while forming new bone.
•  Understanding  the  molecular  mechanisms  by  which  the 

cells and the biocomposite matrix interact with each other in vivo 
to promote bone regeneration.

• Supporting angiogenesis and vascularization for the growth 
of healthy bone cells and subsequent tissue formation and 
remodeling.36,41

The aforementioned critical issues have to be solved before 
a widespread commercial use of calcium orthophosphate-based 
biocomposites and hybrid biomaterials can be made in surgery 
and medicine.

Conclusions

All types of calcified tissues of humans and mammals appear 
to possess a complex hierarchical biocomposite structure. Their 
mechanical properties are outstanding (considering the weak 
constituents from which they are assembled) and far beyond 
those, that can be achieved using the same synthetic materials 
with present technologies. This is because biological organisms 
produce biocomposites that are organized in terms of both com-
position and structure, containing both brittle calcium ortho-
phosphates and ductile bioorganic components in very complex 
structures, hierarchically organized at the nano-, micro- and 
meso levels. Additionally, the calcified tissues are always mul-
tifunctional. For example, bone provides structural support for 
the body plus blood cell formation. The third defining charac-
teristic of biological systems, in contrast with current synthetic 
systems, is their self-healing ability, which is nearly universal in 

fastest, from 40% weight to ~20% in the composite; HA content 
increased from 45 to ~60%; PLA changed little. In vivo, the col-
lagen/HA ratio appeared to be slightly higher near the transverse 
process than in the central part of the intertransverse process.610 
Hasegawa et al.1170 performed an in vivo study, spanning a period 
of 5–7 y, on high-strength HA/PLLA biocomposite rods for the 
internal fixation of bone fractures. In that work, both uncalcined 
CDHA and calcined HA were used as reinforcing phases in a 
PLLA matrix. Those composites were implanted in the femur 
of 25 rabbits. It was found that the implanted materials were 
resorbed after 6 y of implantation. The presence of remodeled 
bone and trabecular bone bonding was the significant outcome. 
These data clearly demonstrate the biodegradation independence 
of various components of biocomposites.

Some Challenges and Critical Issues

The scientific information summarized in this review represents 
the recent developments of calcium orthophosphate-based bio-
composites and hybrid biomaterials from a variety of approaches, 
starting from conventional ones to tissue engineering. Such for-
mulations combined with osteoconductive or osteoinductive 
factors and/or osteogenic cells have gained much interest as a 
new and versatile class of biomaterials and are perceived to be 
beneficial in many aspects as bone grafts.36,1171 However, current 
applications of these biomaterials in medicine and surgery are 
still remarkably less than might be expected. In many biomedi-
cal applications, research and testing of such formulations have 
been introduced and highly developed, but only in a very few 
cases have industrial production and commercial distribution of 
medical devices partially or entirely made of biocomposites been 
started. The medical application of biocomposites and hybrid 
biomaterials requires a better understanding of the objectives and 
limitations involved. Recently, the main critical issues have been 
summarized as follows:265

• There are not enough reliable experimental and clinical data 
supporting the long-term performance of biocomposites with 
respect to monolithic traditional materials.

• The design of biocomposites and hybrid biomaterials is far 
more complex than that of conventional monolithic materials 
because of the large number of additional design variables that 
must be considered.

•  The  available  fabrication  methods  may  limit  the  possible 
reinforcement configurations, may be time consuming, expen-
sive and may require special cleaning and sterilization processes 
as well as highly skilled personnel.

• There are no satisfactory standards yet for biocompatibility 
testing of the biocomposite implants, because the ways in which 
the different components of any biocomposite interact with liv-
ing tissues are not completely understood.

• There are no adequate standards for the assessment of bio-
composite fatigue performance, because the fatigue behavior of 
such materials is far more complex and difficult to predict than 
that of traditional materials.265

On the other hand, in spite of an enormous progress in bio-
composite processing, to achieve the desired characteristics, 
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of the composites in the “General Information on Composites 
and Biocomposites” section) have been investigated. Presumably, 
future progress in this subject will require concentrating efforts 
on elaboration and development of both hierarchical and hybrid 
biocomposites. Furthermore, following the modern tendency 
of tissue engineering, a novel generation of calcium orthophos-
phate-based biocomposites and hybrid biomaterials should also 
contain a living biological part.

To conclude, the future of the calcium orthophosphate-based 
biocomposites and hybrid biomaterials is now directly depen-
dent on the formation of multidisciplinary teams composed of 
experts but, primarily, experts ready to work in close collabo-
ration with others and thus be able to deal efficiently with the 
complexity of the human organism. The physical chemistries of 
solids, solid surfaces, polymer dispersion and solutions as well as 
material-cell interactions are among the phenomena to be tack-
led. Furthermore, much work remains to be done on the long way 
from laboratory to clinic, and success depends on the effective 
cooperation of clinicians, chemists, biologists, bioengineers and 
materials scientists.

nature. These complex structures, which have risen from millions 
of years of evolution, inspire materials scientists in the design of 
novel biomaterials.1172

Obviously, no single-phase biomaterial is able to provide all 
the essential features of bones and/or other calcified tissues, and 
therefore, there is a great need to engineer multi-phase biomateri-
als (biocomposites) with a structure and composition mimicking 
those of natural bones. The studies summarized in this review 
have shown that the proper combination of a ductile matrix with 
a brittle, hard and bioactive calcium orthophosphate filler offers 
many advantages for biomedical applications. Namely, the desir-
able properties of some components can compensate for a poor 
mechanical behavior of calcium orthophosphate bioceramics, 
while, in turn, the desirable bioactive properties of calcium ortho-
phosphates improve those of other phases, thus expanding the 
possible application of each material within the body.102 However, 
the reviewed literature clearly indicates that, among possible 
types of calcium orthophosphate-based biocomposites and hybrid 
biomaterials, only simple, complex and graded ones, as well as 
fibrous, laminar and particulate ones (see classification types 
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