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Abstract

influenza A virus.

Background: Long non-coding RNAs (IncRNAs) are important component of mammalian genomes, where their
numbers are even larger than that of protein-coding genes. For example, human (Homo sapiens) (96,308 vs. 20,376)
and mouse (Mus musculus) (87,774 vs. 22,630) have more INcRNA genes than protein-coding genes in the
NONCODEV5 database. Recently, mammalian IncRNAs were reported to play critical roles in immune response to
influenza A virus infections. Such observation inspired us to identify IncRNAs related to immune response to
influenza A virus in duck, which is the most important natural host of influenza A viruses.

Results: We explored features of 62,447 IncRNAs from human, mouse, chicken, zebrafish and elegans, and
developed a pipeline to identify INCRNAs using the identified features with transcriptomic data. We then collected
151,970 assembled transcripts from RNA-Seq data of 21 individuals from three tissues and annotated 4094 duck
IncRNAs. Comparing to duck protein-coding transcripts, we found that 4094 IncRNAs had smaller number of exons
(24 vs. 10.2) and longer length of transcripts (1903.0 bp vs. 1686.9 bp) on average. Among them, 3586 (87.6%)
INcRNAs located in intergenic regions and 619 IncRNAs showed differential expression in ducks infected by H5N1
virus when compared to control individuals. 58 INcRNAs were involved into two co-expressional modules related to
anti-influenza A virus immune response. Moreover, we confirmed that eight INcRNAs showed remarkably differential
expression both in vivo (duck individuals) and in vitro (duck embryo fibroblast cells, DEF cells) after infected with
H5N1 viruses, implying they might play important roles in response to influenza A virus infection.

Conclusions: This study presented an example to annotate INCRNA in new species based on model species using
transcriptome data. These data and analysis provide information for duck IncRNAs' function in immune response to
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Background

Transcriptome analysis has revealed that 80% of
eukaryotic (such as human [1] and mouse [2]) genomes
are transcribed, but 1-2% of the genome encodes pro-
teins [3], suggesting that a large number of transcripts
were non-coding RNAs (ncRNAs). Among ncRNAs,
IncRNAs distribute extensively in animal and plant ge-
nomes. LncRNAs are transcripts being longer than 200
nucleotides, which were previously reported not to en-
code functional proteins [4]. However, recent studies
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found that some IncRNAs (such as DWORF [5] and
SPAR [6]) encoded peptides and played important roles
in the myocardial contraction and muscle regeneration,
respectively. Such observation updated our knowledge
about IncRNAs, which may not only affect transcription
of gene expression with non-coding transcripts [7, 8],
but also encode polypeptides to negatively regulate pro-
tein activation with its peptide [9].

Duck is one of the important economical waterfowl
and the natural reservoir of all influenza A viruses har-
boring 18 hemagglutinin (HA) and 11 neuraminidase
(NA) subtypes [10], with the exception of the H13, H16,
H17 and H18 subtypes [11]. Compared to chicken being
destroyed by influenza A virus (such as H5N1 viruses),
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ducks are tolerant to most subtypes of H5N1 viruses
[12]. RIG-I (Retinoic Acid Inducible Gene I), one of the
important intracellular viral RNA detector, is absent in
chicken but play a critical role in immune response to
H5N1 virus infections, partly contributing to the stark
difference in influenza pathology between ducks and
chickens [13]. Our previous studies indicated that duck
might diversify their immune coding genes, such as
[B-defensin and butyrophilin-like genes, to optimize their
immune response to influenza A virus [14]. Recently,
IncRNAs were found to modulate influenza viral infec-
tion in mammals. For example, NRAV inhibits the tran-
scription of interferon-stimulated genes (ISGs) by
affecting their histone modification, thus promotes repli-
cation of influenza A virus in human and mouse [15].
Similarly, mouse VIN promotes the replication of influ-
enza viruses [16]. However, IncRNAs were only charac-
terized on few birds (i.e. chicken and zebra finch) [17,
18] and their functions in anti-influenza immune re-
sponse in birds are not clear.

Here, we developed a systematical pipeline for IncRNA
identification and annotated 4094 duck IncRNAs using
brain, lung and spleen transcriptomes of control individ-
uals and ones that were infected with a highly pathogenic
(A/duck/Hubei/49/05) or a weakly pathogenic (A/goose/
Hubei/65/05) H5N1 virus (DK/49 or GS/65). We com-
pared the genomic structure and expression pattern of
duck IncRNAs to their protein-coding genes and identi-
fied the differentially expressed IncRNAs in H5N1 virus
infected duck and control individuals. We further identi-
fied IncRNAs and protein-coding genes co-expressional
modules. Moreover, we qualified transcripts of eight
IncRNAs by qRT-PCR and found these IncRNAs showing
remarkably differential expression in both H5N1 virus in-
fected duck and DEF cells. The findings offer new infor-
mation for functional studies of duck IncRNAs, especially
in immune response to influenza A viruses.

Results

Development a pipeline for the identification of IncRNA
A suitable pipeline for the identification of duck IncRNA
was developed as the following: (1) explore features of
62,447 IncRNAs of five model organisms (human, Homo
sapiens; mouse, Mus musculus; chicken, Gallus gallus; zeb-
rafish, Danio rerio; elegans, Caenorhabditis elegans) from
the GENCODE and NONCODE databases. We found that
most IncRNA transcripts are >200 nucleotides (nt) in
length, have more than one exon, and the length of open
reading frame (ORF) are <100 amino acids (AA) (Add-
itional file 1: Figure S1); (2) build a strict platform to iden-
tify putative IncRNA transcripts larger than 200nt and
having ORFs shorter than 100 AA according to the features
of IncRNA in five model organisms (Fig. 1) [19]; (3) the pu-
tative IncRNA is aligned to known protein sequences using
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BlastX (E value <1x107%) and filtered with the protein
database of KEGG (Kyoto Encyclopedia of Genes and Ge-
nomes), Swiss-Prot (Swiss-Protein database) and the NR
data set from NCBI, as well as duck reference gene set,
using the Cuffcompare program from the Cufflinks package
[14, 17, 20]; (4) assess the protein-coding potential of puta-
tive IncRNAs using the Coding Potential Calculator (CPC)
[21]; (5) filter putative IncRNA with only one exon.

Genome-wide annotation of duck IncRNAs

A total of 2,592,396,390 clean reads from 21 available
duck transcriptomes of three tissues (brain, spleen and
lung) with or without infection by a highly pathogenic
(A/duck/Hubei/49/05) or a weakly pathogenic (A/goose/
Hubei/65/05) H5N1 virus after 1, 2 and 3 days were as-
sembled to produce 151,970 transcripts (Additional file 2:
Table S1, Fig. 1). We used the above pipeline shown in
Fig. 1 to identify duck IncRNAs. Among these assembled
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Fig. 1 Schematic diagram of the pipeline for identification of duck
IncRNAs. Clean reads were mapped and assembled according to the
duck assembly using TopHat and Cufflinks. Putative INcRNAs were
identified using five criteria: (1) filtered with duck protein-coding
genes; (2) length > 200 nucleotides and ORF < 100 amino acids; (3)
having no known protein domains; (4) low coding potential (CPC
score < 0); (5) more than one exon
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transcripts, 126,186 were novel or unknown transcripts
and 48,841 were putative IncRNAs having a nucleotide
length longer than 200 nt and ORF shorter than 100
AA. We filtered 48,841 transcripts and found 9765 of
them being homologous to duck and chicken protein.
We further filtered the remained 39,076 transcripts and
removed 3731 transcripts being homologous to
protein-coding genes in the three protein databases
(Swiss-Prot, KEGG and NR). After that, we assessed the
protein-coding potential of 35,345 transcripts using the
CPC program and deleted 36 potential coding tran-
scripts [21]. Finally, we removed 31,215 transcripts that
had only one exon. This effort finally identified 4094
transcripts from 3108 loci as putative multi-exons
IncRNAs (Fig. 1 and Additional file 3). In order to iden-
tify the accuracy and quality of these annotated duck
IncRNAs, we blasted them to the non-redundant data-
base in the NCBI (RefSeq) and found 752 were anno-
tated in this database.

Characteristics of duck putative IncRNAs
LncRNAs were classified into three types (intergenic,
antisense and overlap IncRNAs) according to their
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locations relative to the nearest protein-coding genes.
Among these 4094 duck IncRNAs, a large proportion
(87.6%) was located in the intergenic regions, 8.4% was
antisense transcripts of protein-coding genes, while only
4.0% was overlapped IncRNAs (Fig. 2a). We further
counted the distribution of transcript length, exon num-
ber and expression level of 4094 IncRNAs and compared
them to 16,353 duck protein-coding transcripts. This
effort found that 4094 duck IncRNA transcripts had
an average length of 1903 nt, 39.25% of them were
200 to 1000 nt and 60.75% of them were larger than
1000 nt in length (Fig. 2c). In contrast, the average
length of duck mRNAs (1687 nt) was smaller than
that of duck IncRNAs. For gene structure, duck
IncRNAs contained two to nine exons with an aver-
age of 2.4 exons. This number is smaller than the
average of duck mRNAs (average 10.2) (Fig. 2d). We
further compared expressional patterns of IncRNAs
and protein-coding genes in three tissues (brain, lung
and spleen). The average expression levels of the pu-
tative IncRNA genes (brain average 15.7 FPKM, lung
average 10.7 FPKM and spleen average 9.9 FPKM)
tend to be lower than those of the protein-coding
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genes (brain average 19.8 FPKM, lung average 17.8
FPKM and spleen average 17.3 FPKM) in all three tis-
sues (Fig. 2b).

Identification of differentially expressed duck IncRNAs
(DEIncRNAs)

We compared IncRNA expression in duck infected with
H5N1 viruses (DK/49-infected or GS/65-infected)
against control individuals and identified a total of 619
DEIncRNAs (FDR < 0.05, fold change > 2) including 323,
217 and 206 DEIncRNAs in the brain, lung and spleen
respectively (Fig. 3a and Additional file 4: Table S2). In
lung, DK/49-infected ducks had 46, 71 and 51 IncRNAs
with significantly changed expression 1-3 d after inocu-
lation, and GS/65-infected ducks had 50, 37 and 48
IncRNAs with significantly changed expression 1-3 d
after inoculation when compared to control ducks, while
DK/49-infected ducks had 51, 54 and 47 IncRNAs show-
ing significantly differential expression when compared
to the corresponding GS/65-infected ducks 1-3 d after
inoculation respectively (Fig. 3a and Additional file 4:
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Table S2). Similar to lung tissue, DK/49- and GS/65-in-
fected ducks showed similar number of (33 vs. 24, 35 vs.
48) DEIncRNAs when compared to control individuals
in brain and spleen in early infected time (1 d after in-
oculation). Such differences in number of DEIncRNAs
was magnified in later infected time (2-3 d after inocu-
lation), except that DK/49- and GS/65-infected ducks
had similar number of DEIncRNAs in brain in 2 d after
inoculation (Fig. 3a). Detailed analysis indicated that,
among 619 duck DEIncRNAs, 29 were significantly dif-
ferentially expressed in all three tissues (Fig. 3b). 172
IncRNAs were differentially expressed in both DK/49-in-
fected and GS/65-infected ducks (Fig. 4c). These results
suggested that the DEIncRNAs might be involved into
immune response to influenza A virus infection in

ducks.

Prediction the target protein-coding gene of IncRNA in cis
and in trans

LncRNAs inhibit or activate the transcription of genes
located in their upstream or downstream by recruiting
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chromatin remodeling factors or protein complex [22].
These IncRNAs function in cis, acting on linked genes in
the vicinity of the RNA’s site. In order to identify duck
IncRNAs functioning in cis, we predicted the potential
protein-coding gene targets of IncRNAs among differen-
tially expressed genes (DEGs) using 10 kb and 100 kb as
the cutoff (Table 1). We detected 972/11,508
IncRNAs-coding genes pairs when used the 10/100 kb as
the cutoff, and 721/106 DEIncRNAs-DEGs pairs when
used the 10/100 kb as the cutoff. We further found that

365 DEIncRNAs were neighbored to 627 DEGs within
100 kb, and 86 DEIncRNAs were neighbored to 103
DEGs within 10 kb (Table 1 and Additional file 5: Table
S3).

Moreover, IncRNAs act in trans, regulating genes far
away from them or even in other chromosomes [23].
We predicted the targets of IncRNAs in trans-regulatory
relationships using co-expression analysis [24]. The
IncRNAs-coding genes co-expression networks were
performed with 619 DEIncRNAs and 5594 DEGs using
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Table 1 Summary of IncRNA-coding neighbor gene pairs

INncRNAs Coding genes DEINCRNASs DEGs IncRNA-coding gene pairs DEINCRNA-DEGS pairs
100 kb 2632 7914 365 627 11,508 721
10 kb 747 889 86 103 972 106

We searched for protein-coding genes 100 kb/10 kb upstream and downstream of the identified IncRNAs. IncRNA-coding gene pairs/DEINCRNA-DEGs pairs: the
number of gene pairs of INcRNAs (or DEIncRNAs) and protein-coding genes (or DEGs) by using 100 kb/10 kb as cutoff; 100 kb/10 kb: the number of IncRNAs (or
DEIncRNAs) and protein-coding genes (or DEGs) by using 100 kb/10 kb as cutoff

the WGCNA package (Additional file 4: Table S2, Add-
itional file 6: Table S4 and Additional file 7: Table S5).
As a consequence, 13 co-expression modules were con-
structed in size from 2261 genes in the turquoise mod-
ule to 36 genes in the salmon module (Fig. 4a and
Additional file 8: Table S6).

Functional analysis indicated that 5594 expressed
DEGs were enriched in 640 GO terms (401 GO under
biological process, 144 GO under cellular component
and 95 GO under molecular function) (Additional file 9:
Table S7). The results showed that DEGs from magenta
and green modules were associated with immune re-
sponse in the biological process, including innate im-
mune response (GO: 0045087), defense response to
virus (GO: 0051607), positive regulation of defense re-
sponse to virus by host (GO: 0002230), immune re-
sponse (GO: 0006955) and negative regulation of viral
genome replication (GO: 0045071).

Among 13 co-expression modules, magenta module
had the highest correlation with virus titer (Fig. 4b, c),
which included 16 DEIncRNAs and 174 DEGs. Detailed
analysis indicated that both the magenta and green mod-
ules contained many known anti-influenza A virus

immune genes (such as NF-xB, FADD, IFNA, IFNG,
IRF7, IL8, IFNK, OASL, AVIFIT, MDAS and TRIMZ25)
(Fig. 5), supporting their critical role in host response to
influenza A virus infection. Such inference was further
supported by pathway analysis (KEGG), which demon-
strated that DEGs in the magenta and green modules
were significantly enriched (p <0.05) in nine pathways
including Influenza A, Herpes simplex infection,
RIG-I-like receptor signaling pathway,
Cytokine-cytokine receptor interaction, Toll-like recep-
tor signaling pathway, NOD-like receptor signaling path-
way, Intestinal immune network for IgA production,
Arginine biosynthesis, Alanine, aspartate and glutamate
metabolism, and Cytosolic DNA-sensing pathway (Add-
itional file 10: Table S8).

Real-time quantitative PCR (qPCR) validation

Expression of eight DEIncRNAs from the magenta or
green modules in DEF cells before or after infected by
H5N1 virus (12h, 24h and 36 h) were examined using
qRT-PCR (Fig. 6). This analysis indicated that, similar to
duck in vivo transcriptomic expressional profiles, all
tested eight IncRNAs were significantly increased (p <
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0.05) in DEF cells infected by CK/0513 (A chicken/
hubei/0513/2007) H5N1 virus after 36 h. Such consistent
expressional distribution of these DEIncRNAs in vivo
and in vitro was further supported that they might play
important roles in host immune response to influenza A
virus. Our ability to assess the function of these eight
DEIncRNAs using genetic manipulations will certainly
extend knowledge of IncRNA related to influenza in
ducks.

Discussion

Accumulated studies demonstrated that IncRNAs exten-
sively involved in various biological processes in animals,
including embryogenesis [25, 26], muscle development
[27, 28], adipogenesis [29] and immune responses [15,
30]. Therefore, it is interested to annotate and identify
candidate IncRNA related to diseases, such as influenza,
using transcriptomic data. In the present study, we built
a screening platform to identify IncRNAs after explored
features of 62,447 IncRNAs from five model animals
(Fig. 1). This pipeline removed known protein-coding
genes using the most effective computational methods
available to date, such as Cufflinks and CPC. Unlike the
previously reserved intergenic transcripts [31], we
retained the intergenic transcripts, antisense transcripts
and transcripts that overlap with the protein-coding
genes. We removed the transcripts having ORF length
more than 100 AA. In addition, we filtered the potential
protein-coding genes through blasting with duck protein
sequences, chicken protein sequences and other

sequences from protein databases (KEGG, Swiss-Prot
and NR data sets). This extended range of comparison
could remove the transcripts that have encoded poten-
tial. Finally, we retained the multi-exons transcripts as
predicted IncRNAs according to the characteristics of
model animals’ IncRNAs.

LncRNAs are a group of endogenous RNAs that func-
tion as regulators of gene expression. We detected 619
putative DEIncRNAs among control ducks and individ-
uals infected with H5N1 virus (Fig. 3). We predicted
function of DEIncRNAs in cis and trans. The cis
IncRNAs act on the neighboring genes. In trans, gene
executes cellular processes in functional modules [32].
Therefore, this study constructed the weighted gene
co-expression network and identified modules related to
H5NI1 virus titer. Among 13 detected modules (Fig. 4b),
the magenta module was correlated with virus titer and
DK/49 virus, while the other modules were correlated
with GS/65 or tissues or the days of duck growth and
development after inoculated. Moreover, we found that
the green module was highly associated with magenta
module and virus titer. Interestingly, TRIM25, IFNK,
DDXS58 (RIG-I), AvIFIT and OASL were found to be a
highly connected gene in the magenta module, and IL8,
FADD, NF-kB, IRF7, IFNE, IFNA and CXCL6 in the
green module, these protein-coding genes play import-
ant roles in anti-virus immune response (Fig. 5). For ex-
ample, Jiang et al. [33] found an IFN-induced long
noncoding RNA Inc-Lsm3b, played a negative feedback
regulatory role in the late immune response and
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inhibited the activity of RIG-I. Lnc-Lsm3b competes to
bind RIG-I monomers with viral RNAs using its multiva-
lent long stem domain, prevents conformational changes
of RIG-I and activation of its downstream signaling. Here,
we found that RIG-I was co-expressed with
XLOC_021920, XLOC_ 012442 and XLOC_040940
(weight > = 0.2) in the magenta and green modules. These
three IncRNAs showed differentially expressed in all three
H5NT1 infections in vivo and in vitro, implying that might
affect function of RIG-I in the immune response influenza
A viruses and be interested to further functional studies.

Due to limitations of available duck transcriptomes,
annotations of IncRNAs in this study are not compre-
hensive. These include: (1) some duck IncRNAs lacking
polyadenylation might be not annotated using mRNA
transcriptome; (2) due to the inherent limitations of
using 90 bp paired-end RNA-Seq, we did not get full se-
quences of all annotated duck IncRNAs; (3) some
IncRNAs may be annotated incorrectly due to error of
the available duck assembly.

Conclusion

LncRNAs have been functionally annotated and studied
extensively in mammals. However knowledge even se-
quences of avian IncRNA, especially duck IncRNA, is
scarce. We first identified duck IncRNAs associated with
immune response to avian influenza virus using
RNA-Seq data. We present a pipeline to investigate the
duck IncRNAs and predicted the function of IncRNAs
based on the coding gene neighbor loci and the enriched
functions of co-expression protein-coding genes. These
analyses together with duck IncRNA sequences provide
information to understand their functions in the im-
mune response.

Methods

Paired-end RNA sequencing

The RNA-Seq data (SRA accession SRP052742) were
from the duck genome paper [14].

Reads mapping and assembly

After clean reads, we build the index of the reference
genome [14] using Bowtie v2.2.6 and aligned paired-end
clean reads to the reference genome using Tophat
v2.1.0. Tophat was run with “-N 3 --read-edit-dist 5
-r 20 -a 9 -i 30 -I 4000 --min-segment-intron 30
-max-segment-intron 4000 --min-coverage-intron 30
--max-coverage-intron 4000 --microexon-search” and
“--phred64-quals”, other parameters were set as default.
Only the mapped reads with number of mismatches less
than three were used to construct transcripts using
Cufflinks (v2.2.1) in a reference-based approach. Finally,
we used Cuffmerge to merge all the transcripts into a final
irredundant transcript GTF file.
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Describing feature of IncRNAs and protein-coding genes
A total of 4094 IncRNAs and 16,353 mRNAs were char-
acterized in transcript length, exon number and expres-
sional profiles. Transcript length categories were < 300,
300-400, 400-500, 500-600, 600—700, 700—800, 800—
900, 900-1000, and >1000 nucleotides. Exon number
categories were: 1, 2, 3,4, 5, 6, 7, 8, 9, 10, and > 10. The
proportion of different types of IncRNAs and
protein-coding transcripts were calculated. Furthermore,
we used brain, lung and spleen transcriptomes of control
ducks to characterize the expression pattern of the
IncRNA genes and coding genes, whose FPKM value
were calculated using the Cufflinks (v2.2.1) program.

Identifying differentially expressed IncRNAs and neighbor
target genes

Differentially expressed IncRNAs between control ducks
and ducks infected by H5N1 viruses were identified using
the Cuffdiff program with the thresholds of |fold change| >
1 and adjusted p-values < 0.05. Protein-coding genes were
within 10 kb/100 kb upstream and downstream of the iden-
tified IncRNAs were inferred as neighbor target genes.

Analysis of co-expression, GO enrichment and KEGG
pathway
Co-expression networks were built using the WGCNA
package [24]. First, we used FPKM value of DEGs and
DEIncRNAs as the input file (Additional file 7: Table
S5). We then chose “soft power = 8” using the scale-free
topology criterion. After that, we constructed networks
using the blockwiseModules function in the WGCNA
package with the minimum module size to 30 genes,
and the minimum height for merging modules at 0.15
(default value). For each module, we calculated module
membership (also known as module eigengene based
connectivity kyg) based on Pearson’s correlation [24]. Fi-
nally, we used the virus titers of three tissues as trait
data to calculate the GS value (gene Trait Significance).
We chose modules which had a highly strength connec-
tion with virus titers. To visualize the chose modules
(together with GO and KEGG analysis), the connections
between the IncRNAs and the mRNAs were shown
using the Cytoscape program [34].

GO category and KEGG enrichment were performed
using DAVID software [35] and KOBAS software [36]
using a threshold of P < 0.05, respectively.

Cell culture, RNA isolation and qRT-PCR

Duck embryonic fibroblast (DEF) cells were isolated
from eleven-day-old embryos. Duck embryos were
digested with trypsin, suspended and filtered using
gauze. DEF cells were diluted and cultured in six-well
culture plates in an atmosphere of 5% CO, at 37°C.
Cells with a coverage ~90% were collected or infected
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with H5N1 virus. H5N1 virus infected cells were collected
after infection at 12, 24 and 36 h, respectively.

Total RNA was isolated from cells using RNeasy” Mini
Kit (QIAGEN, Germany). RNA quality was measured using
a NanoDrop-2000 spectrophotometer (Thermo Fisher Sci-
entific, USA) and by agarose gel electrophoresis. Genomic
DNA was removed from extracted total RNA using DNase
treatment. A 2 pg aliquot of total RNA was used for cDNA
synthesis using a M-MLV Reverse Transcriptase (Promega,
USA) with Oligo (dT);5 Primer.

Quantitative RT-PCR was performed using SYBR
Green PCR Master Mix with a real-time PCR System
ABI7500 (ABI, USA). Quantitative RT-PCR condition
were as follows: 94 °C for 2 min, followed by 40 cycles of
95°C for 5s and 60 °C for 30s. Fluorescence changes of
SYBR Green were monitored automatically in each cycle,
and the threshold cycle (Ct) over the background was
calculated for each reaction. Samples with three bio-
logical replicates were normalized using GAPDH, and
the relative expression levels were measured using the
27°*“" analysis method. Student’s t-test was used to de-
termine whether the qRT-PCR results were statistically
different from two samples (*P < 0.05; **P <0.01). PCR
primers are listed in Additional file 11: Table S9.

Additional files

Additional file 1: Figure S1. Features of IncRNA in five organisms.
Length distribution of duck IncRNAs transcript (A), ORF length (B) and
numbers of exons (C) were shown in the picture. (TIF 3391 kb)

Additional file 2: Table S1. Summary of RNA-Seq data and reads
mapped to the Anas platyrhynchos genome. (DOCX 21 kb)

Additional file 3: Information of INcRNA annotated with GTF files.
(GTF 1785 kb)

Additional file 4: Table S2. DEIncRNAs detected between duck

infected with DK/49 or GS/65 H5N1 virus and control individuals.
(XLSX 176 kb)

Additional file 5: Table S3. Protein-coding genes located within 10/
100 kb upstream and downstream of duck IncRNAs. (XLSX 642 kb)

Additional file 6: Table S4. List of DEGs used in co-expression analysis.
(XLSX 2055 kb)

Additional file 7: Table S5. FPKM value of DEInCRNAs and DEGs.

(CSV 1273 kb)

Additional file 8: Table S6. Thirteen co-expression modules were pre-
dicted with the WGCNA package. (CSV 2346 kb)

Additional file 9: Table S7. GO enrichment analysis of DEGs co-
expressed with DEINCRNAs. (XLSX 135 kb)

Additional file 10: Table S8. KEGG analysis of DEGs co-expressed with
DEINcRNAs. (XLSX 83 kb)

Additional file 11: Table S9. Primers used in qRT-PCR analysis.

(DOCX 18 kb)
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