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We investigate key principles underlying individual, and collective, visual
detection of stimuli, and how this relates to the internal structure of
groups. While the individual and collective detection principles are gener-
ally applicable, we employ a model experimental system of schooling
golden shiner fish (Notemigonus crysoleucas) to relate theory directly to
empirical data, using computational reconstruction of the visual fields of
all individuals. This reveals how the external visual information available
to each group member depends on the number of individuals in the
group, the position within the group, and the location of the external visu-
ally detectable stimulus. We find that in small groups, individuals have
detection capability in nearly all directions, while in large groups, occlusion
by neighbours causes detection capability to vary with position within the
group. To understand the principles that drive detection in groups, we for-
mulate a simple, and generally applicable, model that captures how visual
detection properties emerge due to geometric scaling of the space occupied
by the group and occlusion caused by neighbours. We employ these insights
to discuss principles that extend beyond our specific system, such as how
collective detection depends on individual body shape, and the size and
structure of the group.
1. Introduction
Being part of a group is an effective strategy for avoiding predation threats [1–4]
and locating promising resources [5,6]. Enhanced detection of external objects
(for example a predator, or a source of food) is a key aspect of being part of
a group, with the benefits referred to as the ‘many eyes’ effect [7,8]. The struc-
ture within a group influences how individuals interact with one another and
the surrounding environment. For example, groups tend to have more individ-
uals and an increased density under heightened predation risk [9–15] (but see
[16,17]). An individual’s position within the group can determine both its poss-
ible risk to predation [18], as well as the extent of its social interactions [19,20].
Despite the importance of social grouping for gathering information about the
external environment [21,22], there has been little quantification of how within-
group structure and the size of the group influence the group’s interactions
with their environment.

Many species that form coordinated, mobile groups employ vision as a pri-
mary modality for mediating social interactions [23–25]. It is important to
consider the actual visual sensory information available to each individual in
order to make realistic predictions [26]. Visual connectivity among individuals
can predict how a social contagion spreads through a group, such as when
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Figure 1. External visual detection of individuals. (a) A focal individual has external detection in a given direction if neighbours do not block vision in that direction.
Computationally, this is implemented by considering a set of discrete locations outside of the group, which are located far away and thus represent detection in a
certain direction (figure 10). (b–d ) External visual detection coverage over all possible directions of a single individual located at the centre of a school of 70 fish.
Shown is the detection coverage determined using different parameters. Directions where the left eye has external detection capability are shown in blue, and that
for the right eye in red. (b) Full visual blockage and a full 360° field of view. (c) Including a blind angle where fish cannot see behind themselves, with otherwise
full blockage from neighbours. The blind angle area is highlighted by the dotted lines, and detection directions omitted due to the blind angle are shown in grey.
(d ) Blind angle along with out-of-plane effects, where neighbours considered as out-of-plane (shown in grey) do not block the external view in a certain direction.
Because tracking is in two dimensions, we approximate this effect by randomly choosing neighbours to designate as out-of-plane, here using a 25% probability that
a neighbour will be out-of-plane. Additional detection directions due to out of plane effects are shown in darker colours (compare with c).
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‘informed’ individuals detect and move towards a cue associ-
ated with food, and are followed by other naive group
members [19,27], or when a startle response propagates
across a group [14,20]. As groups get larger, occlusion due to
neighbours means that individuals differ in the visual infor-
mation they have available to them. The available visual
information determines whether individuals will respond to
other group members [19,20], as well as if any individuals in
the group will have the ability to detect cryptic stimuli, such
as a predator [7,8]. Simulations demonstrate that effects of
visual occlusion increase with the number of individuals,
and in particular for very large groups, visual occlusion can
even drive fluctuations in internal structure [28].

Here, we examine how the visual information available to
individuals in a group depends on both the number of group
members and on how individuals are positioned within the
group (i.e. the group’s internal structure). We first analyse,
quantitatively via computational visual field reconstruction
[14,19,20], the visual information available to all individuals
within groups of golden shiner fish, whose social behaviour
is predominantly mediated by vision [20]. The experiments
include groups of different numbers of fish, ranging from
10 to 151 in number. We examine how the detection coverage,
which is the angular fraction of the external visual area that
an individual can see, depends on the number of group mem-
bers and an individual’s position within the group. To
understand the general principles of collective detection, we
formulate a simple model that demonstrates how the observed
detection abilities of different groups arise fromgeometric prin-
ciples. The model generalizes to show how detection scales
when a group contains more individuals and we use these
results to discuss the implications and generalizations to
other animal groups.
2. Results
We filmed free-schooling groups of 10, 30, 70 and 151 golden
shiner fish (Notemigonus crysoleucas) in the laboratory and used
a combination of automated andmanual tracking to extract pos-
itions and orientations while maintaining individual identities
over the course of each trial (see Methods). Golden shiners are
awidespread species of freshwater fish [29] that are surface fee-
ders and thus swim close to the surface of the water [30]. We
estimated the external visual detection capabilities of each indi-
vidual using a procedure where a neighbouring individual can
block the external vision of a focal individual in a certain direc-
tion (figure 1a,b). This method estimates detection capability by
considering visual blockage due to neighbours; thus, the detec-
tion capability is a general descriptive measure that reflects the
individual and group properties, and is not a representation of
a distinct virtual stimulus (see Methods). Individuals tend to
have a ‘blind angle’ to the rear, which for this species has been
determined tobe25� [31], andwe include this in thevisualdetec-
tion procedure (figure 1c). In addition, we note while
individuals form a relatively planar group structure, near the
surface, the arrangement is not perfectly two dimensional.
Neighbouring individuals that are not in the same plane may
not block detection in a certain direction. Since our tracking is
only in two dimensions, we investigate how detection results
maybe sensitive to out-of-plane effects byusinganapproximate
procedure, where we randomly choose certain neighbours as
out of theplaneofvisual detection, andas therefore not blocking
detection in associated directions (figure 1d).

Figure 1 shows examples to illustrate a single individual’s
detection coverage outside of the group. Applying the detec-
tion algorithm to each individual in the school and
overlaying the results illustrates the overall external detection
abilities of the group (figure 2) [32].
2.1. Individual detection coverage
We first examine individual detection coverage, which ranges
from 0 to 1 and represents the fraction of the external visual
space that an individual can see, and then following this, in
§2.2, examine the total number of group members with detec-
tion capability in a certain direction at a moment in time. For
small groups of 10, all individuals have a large detection cov-
erage and can see nearly the full range around the group, i.e.
in directions to the front, back, and side of the group, regard-
less of their position within the group. As the number in the
group increases, however, the average detection coverage
decreases due to occlusion caused by neighbours. Addition-
ally, the variance of individual external visual coverage in
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Figure 2. Collective detection capabilities of the group. Illustration of the external visual field of the entire group at a single frame. Each heatmap shows detection
capability obtained by summing the overlapping regions of the external visual fields of all individuals, using results with a blind angle and out-of-plane effects (25%
out-of-plane probability). Results are displayed by scaling to show either (a) absolute detection capability in terms of the number of individuals with detection
capability or (b) the fraction of the maximum possible total detection capability among group members.
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Figure 3. Individual detection coverage. The detection coverage is the fraction of the external visual field that an individual can see. (a) Example snapshot of the
external detection coverage for groups with different numbers of individuals. (b) Distributions of individual detection coverage for the different groups, combining all
individuals during a trial, calculated using different settings: full blockage–full field (dashed line), full blockage–blind angle (dotted line), full blockage–blind angle
with detection capability any time over a 1/3 second time window (dashed-dotted line), and out-of-plane effects (25% out-of-plane probability)–blind angle.
(c) Detection coverage, comparing individual differences to the combined distribution. Results use out-of-plane effects (25% out-of-plane probability)–blind
angle. The mean and standard deviation of the combined distribution from B are shown as the large point and error bars for each group size. The mean individual
detection coverages during a trial are the small points, and individual standard deviations are the shaded bars. Note that 3 trials were performed for N = (10, 30,
70), while only 1 trial was performed for N = 151. The individual points are spaced on the x-axis for display purposes. The dashed line shows the contribution from
‘consistent individual differences’ (the variance of individual means) to the overall distribution, while the dotted line shows the contribution of ‘individuals differing
during a trial’ (the mean of individual variances; see Methods, equation (4.5)).
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the group increases with the number of individuals, reflecting
an increased heterogeneity in visual access resulting from
individuals of the group having their visual field increasingly
dominated by others, thus occluding their view of areas
external to the group (figure 3). Considering a blind angle
decreases the instantaneous detection coverage, with the lar-
gest effect for the group of 10. This is because in small groups,
the rearward area, in the absence of a blind angle, would be
visible, while in large groups, it is likely that vision to the rear
is already blocked by a neighbour.

Although we determine detection using the instantaneous
positions of individuals in a given frame, actual motion
decisions do not occur instantaneously, but rather use infor-
mation that has been accumulated over a finite amount of



polarized

1.0

0.8
50 10 000

8000

6000

4000

2000

0

40

30

20

10

0

fr
ac

tio
n 

of
 ti

m
e

in
 c

er
ta

in
 g

ro
up

 s
ta

te

no
. d

et
ec

tio
ns

 in
 th

e 
gr

ou
p

ar
ea

 o
f 

th
e 

gr
ou

p 
(c

m
2 )

0.6

0.4

0.2

0
10 30 70

number in group
151

polarized
milling
swarm
other

all states
polarized
milling
swarm
other

all states
polarized
milling
swarm
other

10 30 70
number in group

151 10 30 70
number in group

151

(a)

(b) (c) (d)

milling swarm
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time [33]. We therefore ask how small positional changes over
a short time interval could affect the detection coverage over
time. To represent this, we say an individual has detection
capability in a certain direction at time t if there was visual
access in that direction at any time within the previous T
seconds, i.e. within the time window of t− T to t. Because
this representation uses an OR function to determine coverage
(detection capability in a certain direction at time t, OR time
t + 1, etc.), it increases the average detection coverage, with
the largest effect on the most numerous group (N = 151). For
all groups, the results using a blind angle and a time
window of T = 1/3 s yield average detection coverage values
that are near to or greater than that without using a blind
angle. This demonstrates that considering small positional
changes over a short time could effectively ‘mitigate’ the
decrease in detection coverage caused by having a blind angle.

As expected, considering out-of-plane effects increases an
individual’s detection coverage, with the largest shift for the
most numerous group (N = 151). Figure 3 shows results with
an out-of plane probability of 25%; this represents the prob-
ability that a given neighbour is not in the dominant plane of
the group, and therefore does not block external detection.
Using other values causes the coverage to progressively increase
as the probability of neighbours being out of plane increases.
Despite the shifts in distributions when considering a blind
angle, time-window averaging, or out-of-plane blockage, we
see the same main trends: individual detection coverage
decreases and the variance of the distribution of individual
detection coverage increases when there are more individuals
in the group (figure 3). We do not know precisely how individ-
uals use information over a finite timewindow, but we do know
that real groups do have out-of-plane effects, and that individ-
uals have a blind angle. Because of this, in the following we
focus in detail on the instantaneous detection results using a
blind angle and out-of-plane effects. While tracking three-
dimensional positions could give precise information to relate
out-of-plane effects to detection in actual group configurations,
figure 3 suggests that general detection trends would be similar,
and that an increase in relative out-of-plane positioning predo-
minantly leads to an increase in detection capability on the
dominant plane of the group. Although we do not have an
exact value of what the effective out-of-plane probability is,
we use the intermediate value of 25% as a reasonable value
andproceed by focusing on this case, noting that the general fea-
tures of the results do not depend on the exact value.

The distributions in figure 3b combine all individuals over
each trial. Are there consistent differences in detection cover-
age among particular individuals during a trial? We can
quantify the contribution of consistent individual differences
versus changes over time to the overall variance of detection
coverage by calculating the variance of individual mean detec-
tion coverage (see Methods, equation (4.5)). This yields that
consistent individual differences explain on average only 8%
of the total variance, and therefore most of the variance in
detection coverage is driven by individuals changing their
position within the group over the course of a trial (figure 3c).
2.2. Collective detection capability
Instead of examining detection coverage of individuals, we can
instead ask about the total number of group members with
external detection capability in a certain direction at a moment
in time (figure 2). This can depend on the group state and
group area, e.g. whether the group is swimming in a polarized,
milling, swarm, or other configuration (figure 4a) [34], as well
as on the external direction with respect to the group travel
direction. We first examine the former. To define the group
states of polarized, milling, swarm or other, we use the group
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polarization and rotation order parameters, with the same defi-
nitions as in [34]. While the polarized state is the most common
configuration—the groups of 10 and 30 do not spend significant
time in particular in the milling state—the groups of 70 and 151
do spend time indifferent states (figure 4b). Thegroups of 70 and
151 spend large fractions of time in the other state, which is
characterized by intermediate values of the polarization and
rotation order coefficients; we note that this may be partially
due to boundary and confinement effects which impact this
large group more so than the other values of N (figure 8). We
use the different group states to ask how these configurations
impact external detection—see [34] for a detailed analysis of
transitions between different collective states and how this is
affected by the number of individuals in the group as well as
the arena boundary. Here, we see that while the total number
of possible external detections among all group members in
any direction increases with N, it does not strongly depend on
the group state (figure 4c).

In addition to swimming in different configurations, the
density of the group can differ, for example with a dense
versus tightly packed group configuration. Naturally,
groups with more individuals occupy a larger spatial area.
For the different group states, the median area occupied by
the group is slightly less in the swarm states compared to
other states; for the group of 151, the instances of very
large area in the swarm state represent times when the
group is not a single cohesive unit (figure 4d ). The range of
values of the spatial area occupied is larger for groups with
more individuals (figures 4d and 5a).

The median spatial area per individual slightly decreases
for larger N, reflecting that although the distributions were
overlapping, individuals tend to pack slightly more tightly
when there are more individuals in the group (figure 5b).
For a group with a given number of individuals, the
number of possible external detections is higher when the
group occupies a larger area; this is because when individuals
are spaced further apart, each neighbour subtends a smaller
angle on the visual field of others and therefore blocks less
of the external view (figure 5c). Overall, these results demon-
strate that although detection capability does not depend
strongly on group state (figure 4c), it has a clear dependence
on group area (figure 5c).
2.3. Angular dependence of detection
The number of individuals with detection capability in a cer-
tain direction also depends on the angle with respect to the
group travel direction. Note that if the group is not moving,
then there is no ‘group travel direction’, and no front or back
of the group. However, if the group is moving cohesively in
a polarized configuration (e.g. figure 4a), then there is a clear
travel direction and a difference between individuals at the
front versus the rear of the group. Because of this, we consider
only movement when in a polarized state to examine the
angular dependence of detection [34]. For fish, which like
many animals have elongated body shapes, detection capabili-
ties are higher to the front of the group than to the side of the
group. Due to the blind angle, detection capabilities are lowest
to the rear of the group (figure 6a) [32].

We next examine how detection capability to the front or
the side of the group depends on an individual’s in-group
position. In-group position is represented by defining the
‘edge’ of the group as the individual furthest away from
the centroid in that direction, and then calculating an individ-
ual’s distance from either the front or side edge of the group
(figure 6b). An individual located at a certain edge always has
detection capability in the corresponding direction, and
therefore average detection capability is 1 at a distance of
zero from the edge. Detection capability then decreases
with distance from the edge. However, the decrease in detec-
tion capability with distance from the edge depends on both
the angle with respect to the group travel direction and the
number of individuals in the group. In the smallest group
(N = 10), nearly all individuals have detection capabilities to
the front of the group, and the detection capability shows
only a small decrease with distance from the front edge.
The steepness of decay of detection capability with distance
from the front edge of the group increases with the number
of individuals in the group (figure 6c).

By contrast, the detection capability with respect to
the distance from the side edge of the group shows a
similar initial decay for all group sizes, but extends ‘further’
for the larger groups because they take up a larger area
(figure 6d ). This difference between front versus side detec-
tion is due to the elongated body shapes of fish as well as
the alignment of individuals when swimming as a polarized
group. While an individual’s vision to a region to the side of
the group may be completely blocked by a single nearby
aligned neighbour, visual blockage to a region to the front
is more likely to depend on the positions and orientations
of several neighbours [32].

Although the presence of tank boundaries has some effect
on the distribution of individuals in the group, we expect the
same trends regarding differences in front versus side
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detection (figure 6c,d ) to hold for groups that are moving in
an open area. Overall, while we see a weak dependence of
detection capability on the group motion state (figure 4c),
we see a stronger dependence on the overall area occupied
by the group (figure 5c). This suggests that if the group
takes on a different configuration due to the presence or
not of a boundary, or if the configuration changes in response
to a threat [14], that overall area occupied is a primary driver
of collective detection trends, while the specific positioning of
individuals has a secondary effect. This agrees with a pre-
vious investigation that found that randomizing individual
positions within a group to only have a small effect on
detection capability [32].
2.4. Model of external detection
To understand the general geometric principles that drive col-
lective detection, we formulate a simple model of the external
visual detection capability of a group of individuals. Previous
work using an agent-based representation found that because
individuals change positions over time, the individual prop-
erties of body shape and size along with overall group
configuration affect inter-individual connectivity and detec-
tion more so than the precise relative positions of
individuals in the group [32]. Building on this, we represent
these aspects as key input parameters—i.e. the probability
of visual blockage by a neighbour, and the density of the
group—and construct the simplest possible minimal model
that is able to capture how visual detection capability
changes when there are more individuals in the group.
Because of the simplicity of this approach, the model is not
specific to our study system of fish, and can be generally
used to describe detection capability of any group in a
planar configuration.

In the model, a group of N individuals occupies a circular
area with radius R, within which there is a constant visual
blockage probability of λ. At a distance r from the centre,
the probability of having detection capability at an angle of
θ is proportional to the blockage probability multiplied by
g(r, θ), which is the distance to the edge of the group in
that direction (figure 7a; see Methods). For a group with N
individuals, we specify that the visual blocking probability
scales according to

l ¼ l0Nq, (2:1)

where λ0 is a baseline blocking probability and q is a scaling
exponent. We fit the values of λ0 and q by comparing individ-
ual mean detection probabilities from the model to the data
(figure 7b).

We furthermore include the effect that a group may
change the spatial area it occupies by using a parameter σ
for the standard deviation of the radius of group. Since a
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Figure 7. Model of external visual detection coverage. (a) Illustration of the quantities in the model. (b) Individual detection coverage in the model compared to the
data. The baseline blockage probability λ0 and the scaling exponent q are fitted to the average detection coverage in the data, yielding λ0 = 0.129 and = 0.58. The
error bars show the standard deviations of the distributions from the data, and the grey shaded area shows the standard deviation for the model. (c) Total number
of detections in the group in the model compared to the data. The parameter σ, which represents the standard deviation of the radius of the group in the model, is
fitted to the standard deviation of the number of possible detections in the data (error bars), leading to σ = 0.263. The grey shaded area shows the standard
deviation of total detections in the model. (d,e) Average detection capability for different model parameters and number of individuals in a group. In each, the
points show the values from the data, the solid lines are obtained numerically from the model, and the dashed lines are the series approximation in equation (2.2).
The solid brown line shows the best fit from model, which is obtained using numerical evaluation. (d ) Average detection capability for different values of the scaling
exponent q, with λ0 set to the best fit value. (e) Average detection capability for different values of the baseline blocking probability λ0, with q set to the best fit
value. See Methods for model details and fit procedure.
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given group occupying a larger area has a higher average
number of possible detections (figure 5c), spatial area
changes increase the standard deviation of the total number
of possible detections of group members in a given configur-
ation. We therefore fit the parameter σ to the standard
deviation of the number of possible detections for the differ-
ent group sizes (figure 7c). Note that all model predictions,
for all possible values of N, are defined by the three
parameters of λ0, q and σ.

An approximate solution for the average detection coverage
is obtained using a series expansion (see Methods), yielding

�v � e�l 1þ
Xkmax
k¼1

cklk
 !

, (2:2)

where �v is the average detection coverage, λ is specified in
equation (2.1), and the numerical values of the coefficients ci
are listed in Methods from an expansion to sixth-order
terms. Equation (2.2) shows that to leading order, average
detection decays exponentially in λ. From this, we clearly see
that increases in both the scaling exponent (q) or the baseline
blocking probability (λ0) both decrease the average detection
capability. However, these two parameters affect the shape
of the decrease differently, with q having more of an effect
on the shape of the exponential decay with increasing N
(figure 7d,e).

Overall, the model demonstrates how our experimental
findings for detection results are explained by the geometry
of how neighbouring individuals occlude an external view;
even with fairly drastic simplifying assumptions (a circular
shape of the group and a constant blockage probability),
the model captures the main experimental trends for how
detection scales with N (figure 7b,c). In particular, the
model can replicate the experimental observations that aver-
age individual detection decreases with N (due to an
increased probability of occlusion from neighbours), and
that the variance of the number of possible detections in
the group increases with N (due to the variance in the spatial
area occupied by the group). Because of the simplicity of the
model, we can use it to describe general expected trends of
detection for planar groups at different densities, with differ-
ent scaling properties with N, or where individuals have
different sizes. A higher value of the baseline blocking prob-
ability λ0 could represent larger individuals, or a higher
average density for a given value of N. The parameter σ rep-
resents the standard deviation of the spatial area that the
group occupies about the average; since density affects detec-
tion coverage, a higher value of σ means a higher variance in
the number of possible detections in the group. The par-
ameter q represents how individual detection coverage
changes with the number of individuals in the group (N);
in particular, a higher value of q could represent groups
that show a sharper decrease in the area per individual
with N than we observed experimentally.
3. Discussion
In general, in small groups individuals have detection
capability in nearly any direction, while in large groups indi-
viduals can differ substantially from one another in their
visual information due to occlusion from neighbours. For
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our study system (golden shiner fish), we thus find that
meaningful distinctions in available visual information
emerge when groups contain between 30 and 70 fish; at
these sizes and larger, some individuals may detect an
object while others do not. While previous work has used
position-based metrics to define, for example, ‘peripheral’
versus ‘central’ locations within a group (e.g. [18,22,35]), we
note that these distinctions are only meaningful with respect
to detection for groups with sufficiently many individuals.

The density of a group affects visual detection abilities
(figure 5c). What functional aspects may lead a group to
adopt a certain density? Previous work has suggested that
up to a certain point, higher group density is associated
with an increased ability to spread information among
group members; or in other words, denser groups tend to
be more ‘tightly connected’ [19,20]. The reason for this,
as has been found for animals from fish [20] to humans
[36–38], is that the spreading of social behaviour is best
described by a fractional contagion process, whereby an indi-
vidual’s probability of response depends on the fraction of
their neighbours that have responded [39]. In denser
groups, the closer packing means that close neighbours
occupy a large field of view, and therefore individuals will
see fewer other group members. Visual access to others was
shown to be the best predictor of individual response [19].
In denser groups, each individual has fewer visual neigh-
bours, and thus a contagion is more likely to spread [19,20].
This is further supported by what happens when fish are
exposed to schreckstoff, a chemical that is typically released
to signal that a predator is nearby. In this case, individuals
move closer together, which facilitates an increase in their
ability to spread behavioural change, and thus exhibit a
greater responsiveness to external threats [14]. While trans-
mission of behavioural change among group members may
be enhanced at higher density, our results show that external
detection is enhanced at lower density (figure 5c). This is
because at lower density, neighbours subtend a smaller
angle in the visual field of others. In the model, an overall
lowering of the density of the group can be represented by
a lower value of λ0. The ‘trade-off’ between external detection
and internal communication may be a driver of the optimal
group density, and can explain why the overall spatial area
of the group does not predict how quickly a group will
respond [40]. At an individual level, a low external detection
capability to the side of the group tends to be compensated
by stronger visual connectivity to neighbours [32].

With more individuals, the overall detection capability of
the group increases, due to both having a full coverage of the
surrounding area as well as having multiple overlapping
visual areas for detection redundancy. However, blockage
effects cause this trend to be sub-linear with respect to the
number of individuals in the group (figure 7c). This demon-
strates that one of the benefits of being part of a group—the
‘many eyes’ effect [7,8]—has a decreasing marginal utility as
group size continues to increase. To explore possible func-
tional consequences of this, consider that individuals in a
group need to not only detect an object, but also respond
to the detection. While a predator may elicit a sudden startle
response [20], movement towards a potential food source is
more likely to be gradual. Previous work has shown that
only a small fraction of ‘informed’ group members (e.g.
group members that can detect the food source) are needed
in order to successfully guide the group towards the target
[19,27,41]. Here, we note that although the fraction of
informed individuals needed to lead the group decreases
with N, the average detection capability of each individual
also decreases with N. Therefore, we can not generalize to
say whether small or large groups are expected to have a
better ability to both detect and move towards a promising
food source, since the scaling of detection capability with N
depends on the characteristics of individuals and the con-
figuration of the group.

In our calculations, we considered that an individual can
detect an outside point in a given direction if they have a
clear view in that direction. However, this does not take into
account differences in detection capability for near versus far
away objects that arise due to visual projection, angular differ-
ences when the object is close to the group, and contrast
effects. Real objects have a finite size and thus the total angle
subtended by the object decreases with distance. An object
located close to the group thus projects onto a larger range
of angular directions compared to the same object located
farther away. This naturally results in a lower overall detection
capability if an object is located farther away. For distant
objects, the relative angular position of the object with respect
to each individual is nearly the same for all group members,
regardless of their position within the group. Position within
the group, however, strongly affects an individual’s relative
angular position to a nearby object. For example, for a group
swimming in a polarized configuration, an object located at
90° with respect to the group travel direction will be located
greater than 90� from the travel directions of individuals at
the front of the group, and less than 90� with respect to the
travel directions of individuals at the rear of the group.
While these angular differences are negligible for objects
located far away from the group, they will be significant
when the object is located only several centimetres away
from the front, back, or side of the group. While such finite
group size effects impact the quantitative values of the
visual detection capability, they do not affect the general detec-
tion trends we analysed in this study, because the general
trends are driven by visual blockage due to neighbours.
Specific relationships that could be important to certain exper-
iments, such as contrast effects, finite group size effects, and
decreases in visibility due to turbidity, could be examined in
the relevant context using extensions of our method to esti-
mate detection capability. Nonetheless, since a basic driving
factor in detection is the capability to see outside the group,
the same qualitative trends with respect to how individual
detection scales with group size (figures 3 and 7), depends
on group configuration and spatial area (figures 4 and 5),
and depends on within-group position and object location
(figure 6), are applicable in any context where individuals
move in groups in planar configuration.

The contrast an object appears at with respect to the back-
ground decreases with distance due to the effects of light
scattering and absorption. This can have a significant effect
in attenuating media such as water, and can be particularly
strong in conditions of poor visibility (e.g. in turbid, or
‘cloudy’, water—see [42,43]). A decrease in contrast with dis-
tance could have two effects on detection ability. First, it
would lower the effective detection capability for each indi-
vidual in the group. In the model, this is represented by
increasing the effective baseline visual blocking probability
λ0 (figure 7e). Second, because visual detection only occurs
if an object appears above a certain contrast threshold [43],



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210142

9
individuals may be able to detect an object if they are close to
it (i.e. located on the side of the group where the object is
located), but individuals on the other side of the group
may not have sufficient contrast to detect the object. Since
such mechanisms represent individuals as imperfect sensors,
they affect the many eyes abilities of the group: while a group
with a small number of individuals could be certain to detect
an object in a condition of clear visibility, the same group may
not have any individuals that detect the object in conditions
of poor visibility. In a group with a larger number of individ-
uals, the pure increase in numbers makes it more likely at
least some individuals are able to detect an object even in
conditions of poor visibility. This is similar to the ‘pool-of-
competence’ effect, whereby larger groups effectively act as
better problem solvers because it is more likely they contain
an individual that has the knowledge needed to solve the
problem [44,45]. Applying this to the case of visual detection,
a larger group is more likely to contain an individual that can
detect the object.

While we obtained data from freely moving groups
of fish, we note that the effective transition point from
homogeneous to heterogeneous visual information available
among individuals will be different for groups of different
animals. Based on our results, we would expect differences
due to the shape of the animal, the spacing between individ-
uals in the group, and the overall space that the group
occupies. For example, while we studied fish moving in a
planar configuration in shallow water, and approximated
out-of-plane effects using probabilistic visual blockage, we
expect that fish moving in a fully three-dimensional (non-
planar) shape would have overall a smaller fraction of their
vision blocked by neighbours, for a group containing the
same number of individuals. However, experiments also
show that fish schools in open water often adopt planar struc-
tures, in particular in response to a nearby predator [46], and
that using two-dimensional motion coordinates yields the
same results for leader–follower dynamics as considering
full three-dimensional motion [47]. Other animals that form
non-planar groups [48], such as midges or birds, can differ
in the effective visual blockage due to neighbours. In a
midge swarm, where the inter-individual spacing relative to
body size is larger than that for fish [49], we would expect
relatively low visual blockage. Different from fish, we
would also expect minimal directional dependence, due to
the body shape of midges. In contrast to midges, birds have
elongated body shapes, and therefore we could expect similar
direction-dependent detection trends for birds as we found
for the fish schools studied here; in addition, although
birds move in three dimensions, data from starlings have
shown that flocks are generally thinnest in the direction of
gravity and therefore also have planar characteristics [50].
Ungulates moving in a herd, such as zebra, gazelles, caribou
or wildebeest (e.g. [51,52]), have both elongated body shapes
and move on a two-dimensional surface, and thus may have
directly comparable trends for visual detection as fish
moving in shallow water.

We used a minimal model to show how individual and
collective detection capabilities scale with the number of indi-
viduals in the group. Because of the simplicity in our model,
we expect it to describe the general scaling trends of detection
for any group in a planar configuration for the different
animal groups in all of these cases. However, our modelling
approach does not capture specific differences, that for
example may be due to the shape of the group (e.g. elongated
or more circular groups), or direction dependencies related to
the shape of individuals (e.g. the differences in front versus
side detection seen in figure 6). As a complementary
approach, agent-based modelling can be used to understand
specific differences due to such effects (e.g. [32]).

In summary, we used fish as a model system to examine
the visual information available to individuals in the group,
and formulated a simple model to show how visual infor-
mation changes with number of individuals in the group.
In future work, it will be valuable to compare results to
other animal groups that vary in their individual properties
and group dynamics, and to test the expected changes in
detection ability with respect to individual placement and
group motion direction.
4. Methods
4.1. Experiments
Golden shiners (Notemigonus crysoleucas) are a small minnow
native to the northeastern USA and Canada [29]. Juvenile shiners
approximately 5 cm in length were purchased from Anderson
Farms (www.andersonminnows.com) and were allowed to
acclimate to the laboratory for two months prior to experiments.
Fish were stored in seven 20-gallon tanks at a density of
approximately 150 fish per tank. Tank water was conditioned,
de-chlorinated, oxygenated, and filtered continuously. Fifty per
cent of tank water was exchanged twice per week. Nitrates,
nitrites, pH, saline and ammonia levels were tested weekly.
The room temperature was controlled at 16°C, with 12 h of
light and 12 h of dark, using dawn–dusk simulating lights.
Fish were fed three times daily with crushed flake food and
experiments were conducted 2–4 h after feeding. These
methodologies are identical to those used in [53].

Trials with groups of 10, 30 and 70 shiners (3 trials each) and
with 151 shiners (1 trial) were allowed to swim freely in a 2.1 ×
1.2 m experimental tank. Water depth was 4.5–5 cm. Fish were
filmed for 2 h from a Sony EX-1 camera placed 2 m above the
tank, filming at 30 frames per second (figure 8).

The arena was acoustically and visually isolated from exter-
nal stimuli: two layers of sound insulation were placed under
the tank, and the tank was enclosed in a tent of featureless
white sheets. Trials took place in a quiet laboratory with no
people present during filming. All experimental procedures
were approved by the Princeton University Institutional
Animal Care and Use Committee.

4.2. Tracking and group area
We focused analysis on a 13min segment for each trial. We chose
a time 1 h after the onset of the trial to minimize stress on the fish
from handling. Fish positions, orientations and body postures
were extracted from videos via the SchoolTracker algorithm
used in [20]. Briefly, SchoolTracker works by detecting fish in
each frame, then creating tracks by linking detected fish across
frames. We then performed manual data correction to ensure
accuracy in the tracks.

We used a convex hull and Voronoi tessalation to quantify
the overall spatial area occupied by the group as well as the
spatial area per individual (figure 9).

4.3. External detection
To examine external detection, we represent individuals as simpli-
fied four-sided polygons defined by their head, eyes, and tail
(figures 1a and 10a). We compute detection capability using an

http://www.andersonminnows.com
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Figure 8. Tank configuration and different numbers of fish. Snapshots showing groups with different numbers of fish in the experimental tank. See also electronic
supplementary material video for a short clip, and Data availability to access full videos.

N = 10 N = 30 N = 70 N = 151

Figure 9. Group and individual area calculations. (a) The area of the group is calculated by a convex hull that contains the head positions of all group members (grey
shading). Individual area is calculated using a Voronoi tesselation, keeping only Voronoi polygons that are enclosed in the overall group boundaries (coloured areas).
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Figure 10. Polygon representation of fish and detection analysis quantities. (a) Example zoomed-in video frame from a group of 10 fish with the four-sided fish
polygon model shown as the red overlay. (b) By setting the origin at the group centroid and the group travel direction along the x-axis, we define the (ξ, ν)
coordinate system. The front–back coordinate is ξ, and the side–side coordinate is ν. The front, back, left side and right side of the group (ξF, ξB, νL and νR,
respectively) are defined as the head position of the individual farthest away from the group centroid in that direction. The group direction of travel is along the
x-axis. (c) To examine detection, we consider m points placed at a distance of L from the group centroid; we used values of m = 200 and L ¼ 1200 pixels (135 cm),
and note that none of the results depend on these exact values; we use this representation for simplicity to represent detection with respect to different locations.
The angle θk defines the angular location of an external point with respect to the group travel direction.
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algorithm that considers m points located in a circular arrange-
ment at a distance L from the group centroid. Note that
geometry dictates that individuals will have different relative
angles with respect to a point located close to the group (i.e.
small L), but all group members have the same relative angle to
an point located at an infinite distance away (i.e. for large L). In
order to obtain dominant trends and simplify our analysis, we
use a large value of L such that results do not depend on the pre-
cise value. With this, the results represent an angular dependence
of detection, and not detection of a discrete virtual stimulus; thus
L should be seen as a parameter that enables a simple compu-
tational algorithm to yield a well-defined estimate of visual
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detection capability. We use this representation because we wish to
analyse general trends in detection capability, which are driven by
visual blockage due to the presence of neighbouring individuals.
We note that the same algorithm for estimating detection capability
could be used to examine quantitative differences in detection capa-
bility due to finite size effects if a particular experiment was to
consider distinct stimuli at a specified distance L. We use the
values m = 200 and L ¼ 1200 pixels (135 cm), noting that none of
the results depend on these exact values. In our representation, we
specify that an individual has direction capability in a certain direc-
tion if there is a clear visual line in that direction, without blockage
from neighbours (figure 1a).

To determine external detection coverage, at each time step,
we first shift coordinates such that the group centroid is at the
origin, and follow this by a rotation that sets the direction of
travel of the group centroid to be along the x-axis. In this coordi-
nate system, each individual’s location is defined by a front–back
distance ξi(t) along the x-axis, and a side–side distance νi(t) along
the y-axis (figure 10a). The edge of the group in each direction is
defined as the individual furthest away in that direction; we
denote these values as ξF(t), ξB(t), νL(t) and νR(t) for the front,
back, left and right edges, respectively (figure 10a). In the (ξ, ν)
coordinate system, we expect side-to-side symmetry for reflec-
tions about the ξ-axis. However, due to both eye positions
being located at the head, and a ‘blind angle’ where individuals
cannot see behind themselves, there is no front–back symmetry.
We used a blind angle value of 25°, which was obtained from a
visual study of our study species [31].

Figure 10b shows both a small and large group with the
‘circle of points’ surrounding it. Each point has an angular
location θk relative to the direction of travel of the group centroid,
where k = 1… 200. Individual i has both left and right eyes
located to the sides of its body, the positions of which were esti-
mated from the tracking software. We say that individual i has
detection capability at relative angle θk at time t if there is no
visual blockage between either its left eye or its right eye and
the point at θk. This defines the function

h(N)
tik ¼ 1, at time t, individual i can detect the point at uk

0, otherwise,

�
(4:1)

which is calculated for each group containing a different number
(N ) of individuals.

To approximate out-of-plane effects, we use an analogous
calculation to that described above, but instead define a prob-
ability that the presence of a neighbour in a certain direction
blocks external vision in that direction. This is done with consist-
ent random draws that affect the left eye and right eye together.
To consider the blind angle to the rear of an individual, we
simply exclude directions within the blind angle and mark
them as not detected. Although other than the blind angle we
did not place an explicit limit on the range of the left eye
versus the right eye in the detection calculations, an individual’s
own body blocks vision to their opposite side, so that the left eye
does not have a clear visual path to the right side, and vice versa.

We use equation (4.1) to calculate the distributions of individ-
ual detection coverage and the total number of detections in the
group. Using 〈· 〉 to represent an average over the specified indi-
ces, first we define the following notation to simplify the
calculations of individual detection:

h(N)
ti ¼ �h(N)

tik

�
k, (4:2)

which is the individual detection at an instant in time, calculated
by averaging over all possible detection directions k. The average
individual detection coverage is

H(N)
indiv ¼ �h(N)

tik

�
t,i,k ¼

�
h(N)
ti

�
t,i: (4:3)
The variance of individual detection coverage is

DH(N)
indiv

� �2¼ D(h(N)
ti �H(N)

indiv)
2
E
t,i

(4:4)

¼
D

h(N)
ti � �h(N)

ti

�
t

� �2E
t,i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mean of individual variances

þ
D �

h(N)
ti

�
t �H(N)

indiv

� �2E
i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

variance of individual means

, (4:5)

where the second line follows because the individual and tem-
poral differences are symmetric about the mean. The first term
in equation (4.5) is the mean of the individual variances,
which is associated with individuals having different values
of detection coverage during the course of a trial. The
second term in equation (4.5) is the variance of the individual
means, which is associated with consistent individual differ-
ences. Applying this to the data with results from out-of-
plane effects (25% out-of-plane probability) and blind angle,
we obtain that the variance of the individual means explains
(8.2%, 7.7%, 6.4%, 9.0%) of the total variance for the group
sizes of N = (10, 30, 70, 151), respectively, with the remaining
fraction of the variance accounted for by the mean of the
individual variances.

The average number of detections in the group is

H(N)
group ¼

*XN
i¼1

h(N)
tik

+
t,k

¼ N
D
h(N)
tik

E
t,i,k

: (4:6)

Note that while the averages in equations (4.3) and (4.6) are
related by the simple formula H(N)

group ¼ NH(N)
indiv, the full distri-

butions of individual and total detections in the group do not
have such a simple relation to each other. The standard deviation
of the number of detections in the group is

DH(N)
group ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi* XN
i¼1

h(N)
tik �H(N)

group

 !2+
t,k

vuut , (4:7)

which is shown in figure 7c.
To compute detection with respect to the group direction of

travel in figure 6, we use only polarized group states where
the direction of travel is well defined. To categorize when the
group is in a polarized state or the other states used in
figure 4, we calculate the group’s polarization and rotation
order parameters using definitions and threshold values to
define the different states following [34].
4.4. Model
We formulate a simple model to describe the external visual
detection coverage of individuals in a group. In this model, the
group occupies a circular area with radius R, within which
there is a constant visual blockage probability. Using symmetry,
an individual’s field of view depends solely on its distance r from
the centre of group, where 0≤ r≤R. Whether or not an individ-
ual located at r can see outside the group in a direction θ depends
on the distance g(r, θ) from the individual to the edge of the
group in that direction (figure 7a). Using the law of cosines,
this distance is

g(r, u) ¼ r cos uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2 sin2 u

p
: (4:8)

We say that the probability of being able to see outside the
group in a given direction is the product of the blockage prob-
ability λ times the distance to the edge in that direction.
Assuming that blocking events are randomly distributed and
occur with a uniform probability through the group, we use
the Poisson distribution to represent the probability of external
detection:

Pext(r, u) ¼ e�lg(r,u):
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For the individual at position r, the total external detection capability
is an average, calculated by the integral over all possible angles:

v(r) ¼ 1
2p

ðp
�p

e�lg(r,u) du: (4:9)

To perform calculations, we set R= 1, which is done without loss of
generality because detection in equation (4.9) depends on the pro-
duct in the exponent.

Thus far we have assumed that the group occupies a fixed area
defined by the radius R. However, in the data we observe that
groups change the area they occupy over the course of a trial
(figure 5). To represent a distribution of the area occupied, con-
sider a group at two different sizes: R (the average radius), and
R1 (the ‘current’ radius). Defining the ratio α =R/R1, the distance
to the edge of the group scales as g1(r1, θ) = g(r, θ)/α. For the block-
age probability, we expect this to scale with the density within the
group, and thus have λ1 = λα2. For a current configuration of the
group defined by the size ratio α, the external visual detection cov-
erage of an individual is calculated by using equation (4.9) in the
current configuration:

v(r, a) ¼ 1
2p

ðp
�p

e�l1g1(r1,u) du ¼ 1
2p

ðp
�p

e�lg(r,u)a du: (4:10)

For simplicity, we represent different group areas by using aGaus-
sian with a mean of α = 1 to represent different possible values of
the group radius,

P(a) ¼ 1
M

exp � (a� 1)2

2s2

 !
, (4:11)

where σ represents the magnitude of changes in the group radius,
andM is a normalization factor. Because the radius must be posi-
tive, we restrict to values α > 0.

To compute the probability distribution of external detection,
we evaluate equation (4.10) on a discrete set of radii, calculating
the number of individuals in a shell around a given value of r as
proportional to

n(r, a) ¼ p((rþ d)2 � r2)P(a), (4:12)

where δ is the width of the shell. We then use binning to calculate
the probability distribution of detection coverage, using equation
(4.11) to represent the probability of different group areas. To
apply the model to the groups with different numbers of individ-
uals, we specify that λ varies to a power of the number of
individuals (N) in the group (main text equation (2.1), repeated
here):

l(N) ¼ l0Nq:

The model results for all values of N are defined by the three
parameters λ0, q, and σ. Because the average detection coverage
depends only very weakly on the value of σ, we use a two-step
procedure to fit these parameters to the data, fitting λ0 and q to
the average detection coverage, and then subsequently fitting σ
to the standard deviation of the total number of detections in
the group.

Note that individuals maintaining constant density with an
increase in N can be approximated with q = 0.5 (this represents
a linear increase in area with N). However, even if individuals
did maintain constant density, this scaling would only be strictly
true for point particles. To see why, consider the case where indi-
viduals are zero-dimensional ‘points’; then, the visual blockage
probability would only depend on the density of points, and
would be constant with distance for uniformly distributed
points. However, since instead a group member has a two-
dimensional projection represented in our calculations by a poly-
gon, the visual blockage probability depends both on the density
of neighbours and the distance from each observer. Because of
this, we fit both the values of λ0 and q. The fitting procedure
for these parameters minimizes the mean square error of the
model result for mean external detection capability compared
to the data for each value of N, where values from the data are
used that consider out-of-plane effects with a 25% out-of-plane
probability (figure 7b).

Following this, we fit σ by minimizing the mean square error
of the model result for the standard deviation of the total number
of detections in the group compared to the data (figure 7c). Note
that in the model, a single configuration of the group is defined
by a particular value of the group area.

4.4.1. Analytical approximation for average detection capability
To obtain an analytical approximation of mean model detection
results, consider equation (4.9), which is the detection capability
of an individual located at position r. Using a single value for the
group area, the average visual degree is an integral over the unit
sphere of equation (4.9) times the probability that an individual is
located at r:

�v ¼ 1
p

ðp
�p

ð1
0
e�l r cos uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2 sin2 u

p� �
rdudr: (4:13)

Although this cannot be evaluated in closed form, we can obtain
an approximation by considering the series expansion in powers
of r:

�v ¼ 1
p

ðp
�p

ð1
0
e�l r� l cos ur2 þ 1

2
l(l cos2 uþ sin2 u)r3 þ � � �

	 

dudr

(4:14)

Evaluating the integral for the individual terms yields an
expression in the form of an exponential times a series expansion
in powers of λ (main text equation (2.2), repeated here):

�v � e�l 1þ
Xjmax

j¼1

c jl j

0
@

1
A:

Keeping terms to sixth order in r has jmax = 6 and the following
coefficient values: c1 = 0.1455, c2 = 0.1455, c3 = 1.302 × 10−2, c4 =
6.185 × 10−3, c5 = 3.255 × 10−4, c6 = 1.085 × 10−4. We use the
above expression (equation (2.2)) with these coefficient values
to plot the series approximation in figure 7d,e.
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