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Abstract

One of the most intriguing questions in evolution is how organisms exhibit suitable pheno-

typic variation to rapidly adapt in novel selective environments. Such variability is crucial for

evolvability, but poorly understood. In particular, how can natural selection favour develop-

mental organisations that facilitate adaptive evolution in previously unseen environments?

Such a capacity suggests foresight that is incompatible with the short-sighted concept of

natural selection. A potential resolution is provided by the idea that evolution may discover

and exploit information not only about the particular phenotypes selected in the past, but

their underlying structural regularities: new phenotypes, with the same underlying regulari-

ties, but novel particulars, may then be useful in new environments. If true, we still need to

understand the conditions in which natural selection will discover such deep regularities

rather than exploiting ‘quick fixes’ (i.e., fixes that provide adaptive phenotypes in the short

term, but limit future evolvability). Here we argue that the ability of evolution to discover such

regularities is formally analogous to learning principles, familiar in humans and machines,

that enable generalisation from past experience. Conversely, natural selection that fails to

enhance evolvability is directly analogous to the learning problem of over-fitting and the sub-

sequent failure to generalise. We support the conclusion that evolving systems and learning

systems are different instantiations of the same algorithmic principles by showing that exist-

ing results from the learning domain can be transferred to the evolution domain. Specifically,

we show that conditions that alleviate over-fitting in learning systems successfully predict

which biological conditions (e.g., environmental variation, regularity, noise or a pressure for

developmental simplicity) enhance evolvability. This equivalence provides access to a well-

developed theoretical framework from learning theory that enables a characterisation of the

general conditions for the evolution of evolvability.

Author summary

A striking feature of evolving organisms is their ability to acquire novel characteristics

that help them adapt in new environments. The origin and the conditions of such ability
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remain elusive and is a long-standing question in evolutionary biology. Recent theory sug-

gests that organisms can evolve designs that help them generate novel features that are

more likely to be beneficial. Specifically, this is possible when the environments that

organisms are exposed to share common regularities. However, the organisms develop

robust designs that tend to produce what had been selected in the past and might be

inflexible for future environments. The resolution comes from a recent theory introduced

by Watson and Szathmáry that suggests a deep analogy between learning and evolution.

Accordingly, here we utilise learning theory to explain the conditions that lead to more

evolvable designs. We successfully demonstrate this by equating evolvability to the way

humans and machines generalise to previously-unseen situations. Specifically, we show

that the same conditions that enhance generalisation in learning systems have biological

analogues and help us understand why environmental noise and the reproductive and

maintenance costs of gene-regulatory connections can lead to more evolvable designs.

Introduction

Linking the evolution of evolvability with generalisation in learning

systems

Explaining how organisms adapt in novel selective environments is central to evolutionary

biology [1–5]. Living organisms are both robust and capable of change. The former property

allows for stability and reliable functionality against genetic and environmental perturbations,

while the latter provides flexibility allowing for the evolutionary acquisition of new potentially

adaptive traits [5–9]. This capacity of an organism to produce suitable phenotypic variation to

adapt to new environments is often identified as a prerequisite for evolvability, i.e., the capacity

for adaptive evolution [7, 10, 11]. It is thus important to understand the underlying variational

mechanisms that enable the production of adaptive phenotypic variation [6, 7, 12–18].

Phenotypic variations are heavily determined by intrinsic tendencies imposed by the

genetic and the developmental architecture [18–21]. For instance, developmental biases may

permit high variability for a particular phenotypic trait and limited variability for another, or

cause certain phenotypic traits to co-vary [6, 15, 22–26]. Developmental processes are them-

selves also shaped by previous selection. As a result, we may expect that past evolution could

adapt the distribution of phenotypes explored by future natural selection to amplify promising

variations and avoid less useful ones by evolving developmental architectures that are predis-

posed to exhibit effective adaptation [10, 13]. Selection though cannot favour traits for benefits

that have not yet been realised. Moreover, in situations when selection can control phenotypic

variation, it nearly always reduces such variation because it favours canalisation over flexibility

[23, 27–29].

Developmental canalisation may seem to be intrinsically opposed to an increase in pheno-

typic variability. Some, however, view these notions as two sides of the same coin, i.e., a predis-

position to evolve some phenotypes more readily goes hand in hand with a decrease in the

propensity to produce other phenotypes [8, 30, 31]. Kirschner and Gerhart integrated findings

that support these ideas under the unified framework of facilitated variation [8, 32]. Similar

ideas and concepts include the variational properties of the organisms [13], the self-facilitation
of evolution [20] and evolution as tinkering [33] and related notions [6, 7, 10, 12]. In facilitated

variation, the key observation is that the intrinsic developmental structure of the organisms

biases both the amount and the direction of the phenotypic variation. Recent work in the area

of facilitated variation has shown that multiple selective environments were necessary to evolve
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evolvable structures [25, 27, 34–36]. When selective environments contain underlying struc-

tural regularities, it is possible that evolution learns to limit the phenotypic space to regions

that are evolutionarily more advantageous, promoting the discovery of useful phenotypes in a

single or a few mutations [35, 36]. But, as we will show, these conditions do not necessarily

enhance evolvability in novel environments. Thus the general conditions which favour the

emergence of adaptive developmental constraints that enhance evolvability are not well-

understood.

To address this we study the conditions where evolution by natural selection can find devel-

opmental organisations that produce what we refer to here as generalised phenotypic distribu-
tions—i.e., not only are these distributions capable of producing multiple distinct phenotypes

that have been selected in the past, but they can also produce novel phenotypes from the same

family. Parter et al. have already shown that this is possible in specific cases studying models of

RNA structures and logic gates [34]. Here we wish to understand more general conditions

under which, and to what extent, natural selection can enhance the capacity of developmental

structures to produce suitable variation for selection in the future. We follow previous work

on the evolution of development [25] through computer simulations based in gene-regulatory

network (GRN) models. Many authors have noted that GRNs share common functionality to

artificial neural networks [25, 37–40]. Watson et al. demonstrated a further result, more

important to our purposes here; that the way regulatory interactions evolve under natural

selection is mathematically equivalent to the way neural networks learn [25]. During evolution

a GRN is capable of learning a memory of multiple phenotypes that were fit in multiple past

selective environments by internalising their statistical correlation structure into its ontoge-

netic interactions, in the same way that learning neural networks store and recall training pat-

terns. Phenotypes that were fit in the past can then be recreated by the network spontaneously

(under genetic drift without selection) in the future or as a response to new selective environ-

ments that are partially similar to past environments [25]. An important aspect of the evolved

systems mentioned above is modularity. Modularity has been a key feature of work on evolva-

bility [6, 29, 41, 42] aiming to facilitate variability that respects the natural decomposable struc-

ture of the selective environment, i.e., keep the things together that need to be kept together

and separate the things that are independent [6, 12, 20, 41]. Accordingly, the system can per-

form a simple form of generalisation by separating knowledge from the context in which it

was originally observed and re-deploying it in new situations.

Here we show that this functional equivalence between learning and evolution predicts the

evolutionary conditions that enable the evolution of generalised phenotypic distributions. We

test this analogy between learning and evolution by testing its predictions. Specifically, we

resolve the tension between canalisation of phenotypes that have been successful in past envi-

ronments and anticipation of phenotypes that are fit in future environments by recognising

that this is equivalent to prediction in learning systems. Such predictive ability follows simply

from the ability to represent structural regularities in previously seen observations (i.e., the

training set) that are also true in the yet-unseen ones (i.e., the test set). In learning systems,

such generalization is commonplace and not considered mysterious. But it is also understood

that successful generalisation in learning systems is not for granted and requires certain well-

understood conditions. We argue here that understanding the evolution of development is for-

mally analogous to model learning and can provide useful insights and testable hypotheses

about the conditions that enhance the evolution of evolvability under natural selection [42,

43]. Thus, in recognising that learning systems do not really ‘see into the future’ but can none-

theless make useful predictions by generalising past experience, we demystify the notion that

short-sighted natural selection can produce novel phenotypes that are fit for previously-unseen

selective environments and, more importantly, we can predict the general conditions where
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this is possible. This functional equivalence between learning and evolution produces many

interesting, testable predictions (Table 1).

In particular, the following experiments show that techniques that enhance generalisation

in machine learning correspond to evolutionary conditions that facilitate generalised pheno-

typic distributions and hence increased evolvability. Specifically, we describe how well-known

machine learning techniques, such as learning with noise and penalising model complexity,

that improve the generalisation ability of learning models have biological analogues and can

help us understand how noisy selective environments and the direct selection pressure on the

reproduction cost of the gene regulatory interactions can enhance evolvability in gene regula-

tion networks. This is a much more sophisticated and powerful form of generalisation than

previous notions that simply extrapolate previous experience. The system does not merely

extend its learned behaviour outside its past ‘known’ domain. Instead, we are interested in sit-

uations where the system can create new knowledge by discovering and systematising emerg-

ing patterns from past experience, and more notably, how the system separates that knowledge

Table 1. Predictions made by porting key lessons of learning theory to evolutionary theory. Confirmed by experiment: † Conditions that facilitate gener-

alised phenotypic distributions, ‡ How generalisation changes over evolutionary time, � Conditions that facilitate generalised phenotypic distributions and ?

Sensitivity analysis to parameters affecting phenotypic generalisation.

Learning Theory Evolutionary Theory

(a) Generalisation; ability to produce an appropriate response to novel

situations by exploiting regularities observed in past experience (i.e., not

rote learning).

Facilitated variation; predisposition to produce fit phenotypes in novel

environments (i.e., not just canalisation of past selected targets).†

(b) The performance of online learning algorithms (i.e., processing one

training example at a time) are learning-rate dependent. Both high and

low learning rates can lead to situations of under-fitting; failure of the

learning system to capture the regularities of the training data [51].

The evolution of generalised phenotypic distributions is dependent on the

time-scale of environmental switching. Both high and low time-scales can

lead to inflexible developmental structures that fail to capture the

functional dependencies of the past phenotypic targets.�

(c) The problem of over-fitting: improved performance on the training set

comes at the expense of generalisation performance on the test set.

Over-fitting occurs when the model learns to focus on idiosyncrasies or

noise in the training set [52]. Accordingly, the model starts learning the

particular irrelevant relationships existing in the training examples rather

than the ‘true’ underlying relationships that are relevant to the general

class. This leads to memorisation of specific training examples, which

decreases the ability to generalize, and thus perform well, on new data.

Failure of natural selection to evolve generalised developmental

organisations: improved average fitness gained by decreasing the

phenotypic variation of descendants comes at the expense of potentially

useful variability for future selective environments. Favouring immediate

fitness benefits would lead to robust developmental structures that

canalise the production of the selected phenotypes in the current selective

environment. Yet, this sets up a trade-off between robustness and

evolvability, since natural selection would always favour inflexible

developmental organisations that reduce phenotypic variability and thus

hinder the discovery of useful phenotypes that can have fitness benefits in

the future.‡

(d) Conditions that alleviate the problem of over-fitting: (1) training with noisy

data, i.e., adding noise during the learning phase (jittering), (2)

regularisation (parsimony pressure), i.e., introducing a connection cost

term into the objective function that favours connections of small values

(L2-regularisation) or fewer connections (L1-regularisation).

Evolutionary conditions that facilitate the evolution of generalised

phenotypic distributions, and thus evolvability: (1) extrinsic noise in

selective environments, (2) direct selection pressure on the cost of

ontogenetic interactions, which favour simpler developmental processes

and sparse network structures.†‡

(e) L2-regularisation results in similar behaviour as early stopping; an ad-hoc

technique that prevents over-fitting by stopping learning when over-fitting

begins [51].

Favouring weak connectivity via connection costs results in similar

behaviour as stopping adaptation at an early stage.†‡.

(f) Training with noise results in similar behaviour to L2-regularisation [51]. Noisy environments can enhance the evolution of generalised

developmental organisation in a similar manner as favouring weak

connectivity.†‡.

(g) Generalisation performance is dependent on the appropriate level of

regularisation and the level of noise, i.e., it depends on the inductive

biases, or prior assumptions about which models are more likely to be

correct, such as a priori perference for simple models via parsimony

pressures.

The evolution of generalised phenotypic distributions is dependent on the

strength of selection pressure on the cost of connections and the level of

environmental noise.?

(h) L1-regularisation results in better generalisation performance than L2-

regularisation in problems with simple modularity/independent features.

Favouring sparsity results in more evolvable developmental structures

than favouring weak connectivity for modularly varying environments with

weak or unimportant inter-modular dependencies.†‡

doi:10.1371/journal.pcbi.1005358.t001
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from the context in which it was originally observed, so that it can be re-deployed in new

situations.

Some evolutionary mechanisms and conditions have been proposed as important factors

for improved evolvability. Some concern the modification of genetic variability (e.g., [36, 44,

45] and [46]), while others concern the nature of selective environments and the organisation

of development including multiple selective environments [36], sparsity [47], the direct selec-

tive pressure on the cost of connections (which can induce modularity [27, 44] and hierarchy

[48]), low developmental biases and constraints [49] and stochasticity in GRNs [50]. In this

paper, we focus on mechanisms and conditions that can be unified and better understood in

machine learning terms, and more notably, how we can utilise well-established theory in learn-

ing to characterise general conditions under which evolvability is enhanced. We thus provide

the first theory to characterise the general conditions that enhance the evolution of develop-

mental organisations that generalise information gained from past selection, as required to

enhance evolvability in novel environments.

Experimental setup

The main experimental setup involves a non-linear recurrent GRN which develops an embry-

onic phenotypic pattern, G, into an adult phenotype, Pa, upon which selection can act [25]. An

adult phenotype represents the gene expression profile that results from the dynamics of the

GRN. Those dynamics are determined by the gene regulatory interactions of the network, B
[38, 39, 47, 53, 54] (see Developmental Model in S1 Appendix). We evaluate the fitness of a

given genetic structure based on how close the developed phenotype is to the target phenotypic

pattern, S. S characterises the direction of selection for each phenotypic trait, i.e., element of

gene expression profile, in the current environment. The dynamics of selective environments

are modelled by switching from one target phenotype to another every K generations. K is cho-

sen to be considerably smaller than the overall number of generations simulated. Below, we

measure evolutionary time in epochs, where each epoch denotes NT × K generations and NT

corresponds to the number of target phenotypes. (Note that epoch here is a term we are bor-

rowing from machine learning and does not represent geological timescale.)

In the following experiments all phenotypic targets are chosen from the same class (as in

[25, 34]). This class consists of 8 different modular patterns that correspond to different com-

binations of sub-patterns. Each sub-pattern serves as a different function as pictorialised in Fig

1. This modular structure ensures that the environments (and thus the phenotypes that are fit-

test in those environments) share common regularities, i.e., they are all built from different

combinations from the same set of modules. We can then examine whether the system can

actually ‘learn’ these systematicities from a limited set of examples and thereby generalise from

these to produce novel phenotypes within the same class. Our experiments are carried out as

follows. The population is evolved by exposure to a limited number of selective environments

(training). We then analyse conditions under which new phenotypes from the same family are

produced (test). As an exemplary problem we choose a training set comprised of three pheno-

typic patterns from the class (see Fig 2a).

One way to evaluate the generalisation ability of developmental organisations is to evolve a

population to new selective environments and evaluate the evolved predisposition of the devel-

opment system to produce suitable phenotypes for those environments (as per [34]). We do

this at the end of experimental section. We also use a more stringent test and examine the

spontaneous production of such phenotypes induced by development from random genetic

variation. Specifically, we examine what phenotypes the evolved developmental constraints

and biases B are predisposed to create starting from random initial gene expression levels, G.

How evolution learns to generalise
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For this purpose, we perform a post-hoc analysis. First, we estimate the phenotypic distribu-

tions induced by the evolved developmental architecture under drift. Since mutation on the

direct effects on the embryonic phenotypes (G) in this model is much greater than mutation

on regulatory interactions (B) (see Methods), we estimate drift with a uniformly random dis-

tribution over G (keeping B constant). Then we assess how successful the evolved system is at

producing high-fitness phenotypes, by seeing if the phenotypes produced by the evolved corre-

lations, B, tend to be members of the general class (see Methods).

Results and discussion

Conditions that facilitate generalised phenotypic distributions

In this section, we focus on the conditions that promote the evolution of adaptive developmen-

tal biases that facilitate generalised variational structures. To address this, we examine the

Fig 1. Pictorial representation of phenotypes. (Top) Schematic representation of mapping from

phenotypic pattern sequences onto pictorial features. Each phenotypic ‘slot’ represents a set of features (here

4) controlling a certain aspect of the phenotype (e.g., front wings, halteres and antennae). Within the possible

configurations in each slot (here 16), there are two particular configurations (state A and B) that are fit in some

environment or another (see Developmental Model in S1 Appendix). For example, ‘+ + −−’ in the second slot

(from the top, green) of the phenotypic pattern encodes for a pair of front wings (state B), while ‘− − ++’

encodes for their absence (state A). States A and B are the complement of one another, i.e., not neighbours in

phenotype space. All of the other intermediate states (here 14) are represented by a random mosaic image of

state A and B, based on their respective distance. dA indicates the Hamming distance between a given state

and state A. Accordingly, there exist ð
4
dA
Þ potential intermediate states (i.e., 4 for dA = 1, 6 for dA = 2 and 4 for

dA = 3). (Bottom) Pictorial representation of all phenotypes that are perfectly adapted to each of eight different

environments. Each target phenotype is analogous to an insect-like organism comprised of 4 functional

features. The grey phenotypic targets correspond to bit-wise complementary patterns of the phenotypes on

the top half of the space. For example, in the rightmost, top insect, the antennae, forewings, and hindwings

are present, and the tail is not. In the rightmost, bottom insect (the bitwise complement of the insect above it),

the antennae, forewings, and hindwings are absent, but the tail is present. We define the top row as ‘the class’

and we disregard the bottom complements as degenerate forms of generalisation.

doi:10.1371/journal.pcbi.1005358.g001
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distributions of potential phenotypic variants induced by the evolved developmental structure

in a series of different evolutionary scenarios: 1) different time-scales of environmental switch-

ing, 2) environmental noise and 3) direct selection pressure for simple developmental pro-

cesses applied via a the cost of ontogenetic interactions favouring i) weak and ii) sparse

connectivity.

Rate of environmental switching (learning rates). In this scenario, we assess the impact

of the rate at which selective environments switch on the evolution of generalised developmen-

tal organisations. This demonstrates prediction (b) from Table 1. The total number of genera-

tions was kept fixed at 24 × 106, while the switching intervals, K, varied. In all reproductive

events, G is mutated by adding a uniformly distributed random value drawn in [−0.1, 0.1].

Additionally, in half the reproduction events, all interaction coefficients are mutated slightly

by adding a uniformly distributed value drawn from [−0.1/(15N2), 0.1/(15N2)], where N corre-

sponds to the number of phenotypic traits.

Fig 2. Conditions that facilitate generalised phenotypic distributions. Potential phenotypic distributions

induced by the evolved developmental process under 1) different time-scales of environmental switching, 2)

environmental noise (κ = 35 × 10−4) and 3) direct selection pressure for weak (λ = 38) and sparse connectivity

(λ = 0.22). The organisms were exposed to three selective environments (a) from the general class (i).

Developmental memorisation of past phenotypic targets clearly depends on the time-scale of environmental

change. Noisy environments and parsimony pressures enhance the generalisation ability of development

predisposing the production of previously unseen targets from the class. The size of the insect-like creatures

describes relative frequencies and indicates the propensity of development to express the respective

phenotype (phenotypes with frequency less than 0.01 were ignored). Note that the initial developmental

structure represented all possible phenotypic patterns equally (here 212 possible phenotypes).

doi:10.1371/journal.pcbi.1005358.g002
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Prior work on facilitated variation has shown that the evolution of evolvability in varying

selective environments is dependent on the time-scale of environmental change [34–36]. This

is analogous to the sensitivity of generalisation to learning rate in learning systems. The longer

a population is exposed to a selective environment, the higher the expected adaptation accu-

mulated to that environment would be. Accordingly, the rate of change in a given environment

(learning rate) can be controlled by the rate of environmental change (sample rate). Slow and

fast environmental changes thus correspond to fast and slow learning rates respectively.

We find that when the environments rapidly alternated from one to another (e.g., K = 2),

natural selection canalised a single phenotypic pattern (Fig 2b). This phenotype however did

not correspond to any of the previously selected ones (Fig 2a). Rather, this corresponds to the

combination of phenotypic characters that occurs most in each of the seen target phenotypes.

Hence, it does best on average over the past selective environments. For example, over the

three patterns selected in the past it is more common that halteres are selected than a pair of

back wings, or a pair of front wings is present more often than not and so on.

When environments changed very slowly (e.g., K = 4 × 106), development canalised the

first selective environment experienced, prohibiting the acquisition of any useful information

regarding other selective environments (Fig 2c). The situation was improved for a range of

slightly faster environmental switching times (e.g., K = 2 × 106), where natural selection also

canalised the second target phenotype experienced, but not all three (Fig 2d). Canalisation can

therefore be opposed to evolvability, resulting in very inflexible models that fail to capture any

or some of the relevant regularities in the past or current environments, i.e., under-fitting.

Such developmental organisations could provide some limited immediate fitness benefits in

the short-term, but are not good representatives of either the past, or the general class.

When the rate of environmental switching was intermediate (e.g., K = 4 × 104), the organ-

isms exhibited developmental memory [25]. Although initially all possible phenotypic patterns

(here 212) were equally represented by development, the variational structure of development

was adapted over evolutionary time to fit the problem structure of that past, by canalising the

production of previously seen targets (Fig 2e, see also Fig B in Supporting Figures in S1 Appen-

dix). This holds for a wide range of intermediate switching intervals (see Fig C in Supporting

Figures in S1 Appendix). This observations illustrates the ability of evolution to genetically

acquire and utilise information regarding the statistical structure of previously experienced

environments.

The evolved developmental constraints also exhibited generalised behaviour by allowing

the production of three additional phenotypes that were not directly selected in the past, but

share the same structural regularities with the target phenotypes. These new phenotypic pat-

terns correspond to novel combinations of previously-seen phenotypic features. Yet, the pro-

pensity to express these extra phenotypes was still limited. The evolved variational mechanism

over-represented past targets, failing to properly generalise to all potential, but yet-unseen

selective environments from the same class as the past ones, i.e., over-fitted (see below). We

find no rate of environmental variation capable of causing evolution by natural selection to

evolve a developmental organisation that produces the entire class. Consequently, the rate of

environmental change can facilitate the evolution of developmental memory, but does not

always produce good developmental generalisation.

Here we argue that the problem of natural selection failing to evolve generalised phenotypic

distributions in certain cases is formally analogous to the problem of learning systems failing

to generalise due to either under- or over-fitting. In learning, under-fitting is observed when a

learning system is incapable of capturing a set of exemplary observations. On the other hand,

over-fitting is observed when a model is over-trained and memorises a particular set of exem-

plary observations, at the expense of predictive performance on previously unseen data from

How evolution learns to generalise
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the class [51]. Over-fitting occurs when the model learns to focus on idiosyncrasies or noise in

the training set [52]. Similarly, canalisation to past selective environments can be opposed to

evolvability if canalised phenotypes from past environments are not fit in future environments.

Specifically, canalisation can be opposed to evolvability by either 1) (first type of underfitting,

from high learning rates) reducing the production of all phenotypic characters except those

that are fit in the selective environments that happen to come early (Fig 2c), 2) (second type of

under-fitting, from low learning rates) reducing the production of all characters except those

that are fit on average over the past selective environments (Fig 2b), or 3) (over-fitting) suc-

cessfully producing a sub-set of or all phenotypes that were fit in the past selective environ-

ments, but inhibiting the production of new and potentially useful phenotypic variants for

future selective environments (Fig 2d and 2e).

Below, we investigate the conditions under which an evolutionary process can avoid canalis-

ing the past and remain appropriately flexible to respond to novel selective environments in the

future. To do so, we test whether techniques used to avoid under-fitting and over-fitting that

improve generalisation to unseen test sets in learning models will likewise alleviate canalisation

to past phenotypic targets and improve fit to novel selective environments in evolutionary sys-

tems. For this purpose, we choose the time scale of environmental change to be moderate

(K = 20000). This constitutes our control experiment in the absence of environmental noise

and/or any selective pressure on the cost of connections. In the following evolutionary scenar-

ios, simulations were run for 150 epochs. This demonstrates prediction d,e, and f from Table 1.

Noisy environments (training with noisy data). In this scenario, we investigate the evo-

lution of generalised developmental organisations in noisy environments by adding Gaussian

noise, nμ * N(0, 1) to the respective target phenotype, S, at each generation. The level of noise

was scaled by parameter κ. In order to assess the potential of noisy selection to facilitate pheno-

typic generalisation, we show results for the optimal amount of noise (here κ = 35 × 10−4).

Later, we will show how performance varies with the amount of noise.

We find that the distribution of potential phenotypic variants induced by the evolved devel-

opment in noisy environments was still biased in generating past phenotypic patterns (Fig 2f).

However, it slightly improved fit to other selective environments in the class compared with

Fig 2e. The evolved developmental structure was characterised by more suitable variability,

displaying higher propensity, compared to the control, in producing those variants from the

class that were not directly selected in the past.

Masking spurious details in the training set by adding noise to the training samples during

the training phase is a general method to combat the problem of over-fitting in learning sys-

tems. This technique is known as ‘training with noise’ or ‘jittering’ [51] and is closely related to

the use of intrinsic noise in deep neural networks; a technique known as ‘dropout’ [55]. The

intuition is that when noise is applied during the training phase, it makes it difficult for the

optimisation process to fit the data precisely, and thus it inhibits capturing the idiosyncrasies

of the training set. Training with noise is mathematically equivalent to a particular way of con-

trolling model complexity known as Tikhonov regularisation [51].

Favouring weak connectivity (L2-regularisation). In this scenario, the developmental

structure was evolved under the direct selective pressure for weak connectivity—favouring reg-

ulatory interactions of small magnitude, i.e., L2-regularisation (see Methods). Weak connectiv-

ity is achieved by applying a direct pressure on the cost of connections that is proportional to

their magnitude. This imposes constraints on the evolution of the model parameters by penal-

ising extreme values.

Under these conditions natural selection discovered more general phenotypic distributions.

Specifically, developmental generalisation was enhanced in a similar manner as in the presence

of environmental noise, favouring similar weakly generalised phenotypic distributions. The
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distribution of potential phenotypic variants induced by development displayed higher pro-

pensity in producing useful phenotypic variants for potential future selective environments

(Fig 2g).

Favouring sparse connectivity (L1-regularisation). In this scenario, the developmental

structure was evolved under the direct selective pressure for sparse connectivity—favouring

fewer regulatory interactions, i.e., L1-regularisation. Sparse connectivity is achieved by apply-

ing an equal direct pressure on the cost of connections. This imposes constraints on the evolu-

tion of the parameters by decreasing all non-zero values equally, and thus favouring models

using fewer connections.

We find that under these conditions the evolution of generalised developmental organisa-

tions was dramatically enhanced. The evolved phenotypic distribution (Fig 2h) was a perfect

representation of the class (Fig 2i). We see that the evolved developmental process under the

pressure for sparsity favoured the production of novel phenotypes that were not directly

selected in the past. Those novel phenotypes were not arbitrary, but characterised by the time-

invariant intra-modular regularities common to past selective environments. Although the

developmental system was only exposed to three selective environments, it was able to general-

ise and produce all of the phenotypes from the class by creating novel combinations of previ-

ously-seen modules. More notably, we see that the evolved developmental process also pre-

disposed the production of that phenotypic pattern that was missing under the conditions for

weak connectivity and environmental noise due to strong developmental constraints.

Moreover, the parsimonious network topologies we find here arise as a consequence of a

direct pressure on the cost of connections. The hypothesis that sparse network can arise

through a cost minimisation process is also supported by previous theoretical findings advo-

cating the advantages of sparse gene regulation networks [56]. Accordingly, natural selection

favours the emergence of gene-regulatory networks of minimal complexity. In [56], Leclerc

argues that sparser GRNs exhibit higher dynamical robustness. Thus, when the cost of com-

plexity is considered, robustness also implies sparsity. In this study, however, we demonstrated

that sparsity gives rise to enhanced evolvability. This indicates that parsimony on the connec-

tivity of the GRNs is a property that may facilitate both robustness and evolvability.

Favouring weak or sparse connectivity belongs in a general category of regularisation meth-

ods that alleviate over-fitting by penalising unnecessary model complexity via the application

of a parsimony pressure that favours simple models with fewer assumptions on the data, i.e.,

imposing a form of Occam’s razor on solutions (e.g., the Akaike [57] and [58] Bayesian infor-

mation criteria, limiting the number of features in decision trees [59], or limiting the tree

depth in genetic programming [60]). The key observation is that networks with too few con-

nections will tend to under-fit the data (because they are unable to represent the relevant inter-

actions or correlations in the data); whereas networks with more connections than necessary

will tend to over-fit the idiosyncrasies of the training data, because they can memorize those

idiosyncrasies instead of being forced to learn the underlying general pattern.

How generalisation changes over evolutionary time

We next asked why costly interactions and noisy environments facilitate generalised develop-

mental organisations. To understand this, we monitor the match between the phenotypic dis-

tribution induced by the evolved developmental process and the ones that describe the past

selective environments (training set) and all potential selective environments (test set) respec-

tively over evolutionary time in each evolutionary setting (see Methods). Following conven-

tions in learning theory, we term the first measure ‘training error’ and the second ‘test error’.

This demonstrates predictions c, e and f from Table 1.
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The dependence of the respective errors on evolutionary time are shown in Fig 3. For the

control scenario (panel A) we observe the following trend. Natural selection initially improved

the fit of the phenotypic distributions to both distributions of past and future selective environ-

ments. Then, while the fit to past selective environments continued improving over evolution-

ary time, the fit to potential, but yet-unseen, environments started to deteriorate (see also Fig B

in Supporting Figures in S1 Appendix). The evolving organisms tended to accurately memorise
the idiosyncrasies of their past environments, at the cost of losing their ability to retain appro-

priate flexibility for the future, i.e., over-fitting. The dashed-line in Fig 3A indicates when the

problem of over-fitting begins, i.e., when the test error first increases. We see that canalisation

can be opposed to the evolution of generalised phenotypic distributions in the same way over-

fitting is opposed to generalisation. Then, we expect that preventing the canalisation of past

targets can enhance the generalisation performance of the evolved developmental structure.

Indeed, Fig 3B, 3C and 3D confirm this hypothesis (predictions a-c from Table 1).

In the presence of environmental noise, the generalisation performance of the developmen-

tal structure was improved by discovering a set of regulatory interactions that corresponds to

the minimum of the generalisation error curve of 0.34 (Fig 3B). However, natural selection in

noisy environments was only able to postpone canalisation of past targets and was unable to

avoid it in the long term. Consequently, stochasticity improved evolvability by decreasing the

speed at which over-fitting occurs, allowing for the developmental system to spend more time

at a state which was characterised by high generalisation ability (see also Fig A in The Structure

of Developmental Organisation in S1 Appendix). On the other hand, under the parsimony

pressure for weak connectivity, the evolving developmental system maintained the same gen-

eralisation performance over evolutionary time. The canalisation of the selected phenotypes

was thus prevented by preventing further limitation of the system’s phenotypic variability.

Note that the outcome of these two methods (Fig 3B and 3C) resembles in many ways the out-

come as if we stopped at the moment when the generalisation error was minimum, i.e., early

stopping; an ad-hoc solution to preventing over-fitting [51]. Accordingly, learning is stopped

before the problem of over-fitting begins (see also Fig A in The Structure of Developmental

Organisation in S1 Appendix). Under parsimony pressure for sparse connectivity, we observe

that the generalisation error of the evolving developmental system reached zero (Fig 3D).

Accordingly, natural selection successfully exploited the time-invariant regularities of the

Fig 3. How generalisation changes over evolutionary time. The match between phenotypic distributions generated by evolved GRN and the target

phenotypes of selective environments the developmental system has been exposed to (training error) and all selective environments (test error)

against evolutionary time for (A) moderate environmental switching, (B) noisy environments, (C) favouring weak connectivity and (D) favouring sparse

connectivity. The vertical dashed line denotes when the ad-hoc technique of early stopping would be ideal, i.e. at the moment the problem of over-

fitting begins. Favouring weak connectivity and jittering exhibits similar effects on test error as applying early stopping.

doi:10.1371/journal.pcbi.1005358.g003
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environment properly representing the entire class (Fig 2h). Additionally, Fig D in Supporting

Figures in S1 Appendix shows that the entropy of the phenotypic distribution reduces as

expected over evolutionary time as the developmental process increasingly canalises the train-

ing set phenotypes. In the case of perfect generalisation to the class (sparse connectivity), this

convergence reduces from 16 bits (the original phenotype space) to four bits, corresponding to

four degrees of freedom where each of the four modules vary independently. In the other

cases, overfitting is indicated by reducing to less than four bits.

Sensitivity analysis to parameters affecting phenotypic generalisation

As seen so far, the generalisation ability of development can be enhanced under the direct

selective pressure for both sparse and weak connectivity and the presence of noise in the selec-

tive environment, when the strength of parsimony pressure and the level of noise were prop-

erly tuned. Different values of λ and κ denote different evolutionary contexts, where λ
determines the relative burden placed on the fitness of the developmental system due to repro-

duction and maintenance of its elements, or other physical constraints and limitations, and κ
determines the amount of extrinsic noise found in the selective environments (see Evaluation

of fitness).

In the following, we analyse the impact of the strength of parsimony pressure and the level

of environmental noise on the evolution of generalised developmental organisations. Simula-

tions were run for various values of parameters λ and κ. Then, the training and generalisation

error were evaluated and recorded (Fig 4). This demonstrates prediction (g) from Table 1.

We find that in the extremes, low and high levels of parsimony pressures, or noise, gave rise

to situations of over-fitting and under-fitting respectively (Fig 4). Very small values of λ, or κ,

were insufficient at finding good regulatory interactions to facilitate high evolvability to yet-

unseen environments, resulting in the canalisation of past targets, i.e., over-fitting. On the

other hand, very large values of λ over-constrained the search process hindering the acquisi-

tion of any useful information regarding environment’s causal structure, i.e., under-fitting.

Specifically, with a small amount of L1-regularisation, the generalisation error is dropped to

zero. This outcome holds for a wide spectrum of the regularisation parameter ln(λ) 2 [0.15,

0.35]. However, when λ is very high (here λ = 0.4), the selective pressure on the cost of

Fig 4. Role of the strength of parsimony pressure and the level of environmental noise. The match between phenotypic distributions and the

selective environments the network has been exposed to (training error) and all possible selective environments of the same class (generalisation

error) for (A) noisy environments against parameter κ and under the parsimony pressure weak (B) and sparse (C) connectivity against parameter λ.

doi:10.1371/journal.pcbi.1005358.g004
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connection was too large; this resulted in the training and the generalisation errors corre-

sponds to the original ‘no model’ situation (Fig 4C). Similarly, with a small amount of L2-regu-

larisation, the generalisation error quickly drops. In the range [10, 38] the process became less

sensitive to changes in λ, resulting in one optimum at λ = 38 (Fig 4B). Similar results were also

obtained for jittering (Fig 4A). But the generalisation performance of the developmental pro-

cess changes ‘smoothly’ with κ, resulting in one optimum at κ = 35 × 10−4 (Fig 4A). Inductive

biases need to be appropriate for a given problem, but in many cases a moderate bias favouring

simple models is sufficient for non-trivial generalisation.

Generalised developmental biases improve the rate of adaptation

Lastly we examine whether generalised phenotypic distributions can actually facilitate evolva-

bility. For this purpose, we consider the rate of adaptation to each of all potential selective envi-

ronments as the number of generations needed for the evolving entities to reach the respective

target phenotype.

To evaluate the propensity of the organisms to reach a target phenotype as a systemic prop-

erty of its developmental architecture, the regulatory interactions were kept fixed, while the

direct effects on the embryonic phenotype were free to evolve for 2500 generations, which was

empirically found to be sufficient for the organisms to find a phenotypic target in each selective

environment (when that was allowed by the developmental structure). In each run, the initial

gene expression levels were uniformly chosen at random. The results here were averaged over

1000 independent runs, for each selective environment and for each of the four different evo-

lutionary scenarios (as described in the previous sections). Then, counts of the average number

of generations to reach the target phenotype of the corresponding selective environment were

taken. This was evaluated by measuring the first time the developmental system achieved max-

imum fitness possible. If the target was not reached, the maximum number of generations

2500 was assigned.

We find that organisms with developmental organisations evolved in noisy environments

or the parsimony pressure on the cost of connections adapted faster than the ones in the con-

trol scenario (Fig 5). The outliers in the evolutionary settings of moderate environmental

switching, noisy environments and favouring weak connectivity, indicate the inability of the

developmental system to express the target phenotypic pattern for that selective environment

due to the strong developmental constraints that evolved in those conditions. This corresponds

to the missing phenotype from the class we saw above in the evolved phenotypic distributions

induced by development (Fig 2e, 2f and 2g). In all these three cases development allowed for

the production of the same set of phenotypic patterns. Yet, developmental structures evolved

in the presence of environmental noise or under the pressure for weak connectivity exhibited

higher adaptability due to their higher propensity to produce other phenotypes of the struc-

tural family. In particular, we see that for the developmental process evolved under the pres-

sure for sparsity, the rate of adaptation of the organisms was significantly improved. The

variability structure evolved under sparsity to perfectly represent the functional dependencies

between phenotypic traits. Thus, it provided a selective advantage guiding phenotypic varia-

tion in more promising directions.

Conclusions

The above experiments demonstrated the transfer of predictions from learning models into

evolution, by specifically showing that: a) the evolution of generalised phenotypic distributions

is dependent on the time-scale of environmental switching, in the same way that generalisation

in online learning algorithms is learning-rate dependent, b) the presence of environmental
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noise can be beneficial for the evolution of generalised phenotypic distributions in the same

way training with corrupted data can improve the generalisation performance of learning sys-

tems with the same limitations, c) direct selection pressure for weak connectivity can enhance

the evolution of generalised phenotypic distributions in the same way L2-regularisation can

improve the generalisation performance in learning systems, d) noisy environments result in

similar behaviour as favouring weak connectivity, in the same way that Jittering can have simi-

lar effects to L2-regularisation in learning systems, e) direct selection pressure for sparse con-

nectivity can enhance the evolution of generalised phenotypic distributions in the same way

that L1-regularisation can improve the generalisation performance in learning systems, f)

favouring weak connectivity (i.e., L2-regularisation) results in similar behaviour to early stop-

ping, g) the evolution of generalised phenotypic distributions is dependent on the strength of

selection pressure on the cost of connections and the level of environmental noise, in the same

way generalisation is dependent on the level of inductive biases and h) in simple modularly

varying environments with independent modules, sparse connectivity enhances the generalisa-

tion of phenotypic distributions better than weak connectivity, in the same way that in prob-

lems with independent features, L1-regularisation results in better generalisation than L2-

regularisation.

Learning is generally contextual; it gradually builds upon what concepts are already known.

Here these concepts correspond to the repeated modular sub-patterns persisting over all obser-

vations in the training set which become encoded in the modular components of the evolved

network. The inter-module connections determine which combinations of (sub-)attractors in

each module are compatible and which are not. Therefore, the evolved network representation

can be seen as dictating a higher-order conceptual (combinatorial) space based on previous

experience. This enables the evolved developmental system to explore permitted combinations

of features constrained by past selection. Novel phenotypes can thus arise through new

Fig 5. Generalised developmental organisations improve the rate of adaptation to novel selective

environments. Boxplot of the generations taken for the evolved developmental systems to reach the target

phenotype for all potential selective environments under different evolutionary conditions. The developmental

architecture is kept fixed and only the direct effects on the embryonic phenotype are free to evolve.

Organisms that facilitate generalised phenotypic distributions, such as the ones evolved in noisy

environments or under the direct pressure on the cost connections, adapt faster to novel selective

environments exhibiting enhanced evolvability. The outliers indicate the inability of the corresponding evolved

developmental structures to reach that selective target due to strong developmental constraints.

doi:10.1371/journal.pcbi.1005358.g005
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combinations of previously selected phenotypic features explicitly embedded in the develop-

mental architecture of the system [25]. Indeed, under the selective pressure for sparse connec-

tivity, we observe that the phenotypic patterns generated by the evolved developmental process

consisted of combinations of features from past selected phenotypic patterns. Thus, we see that

the ‘developmental memories’ are stored and recalled in combinatorial fashion allowing

generalisation.

We see that noisy environments and the parsimony pressure on the cost of connections led

to more evolvable genotypes by internalising more general models of the environment into

their developmental organisation. The evolved developmental systems did not solely capture

and represent the specific idiosyncrasies of past selective environments, but internalised the

regularities that remained time-invariant in all environments of the given class. This enabled

natural selection to ‘anticipate’ novel situations by accumulating information about and

exploiting the tendencies in that class of environments defined by the regularities. Peculiarities

of past targets were generally represented by weak correlations between phenotypic characters

as these structural regularities were not typically present in all of the previously-seen selective

environments. Parsimony pressures and noise then provided the necessary selective pressure

to neglect or de-emphasise such spurious correlations and maintain only the strong ones

which tended to correspond to the underlying problem structure (in this case, the intra-mod-

ule correlations only, allowing all combinations of fit modules). More notably, we see that the

parsimony pressure for sparsity favoured more evolvable developmental organisations that

allowed for the production of a novel and otherwise inaccessible phenotype. Enhancing evol-

vability by means of inductive biases is not for granted in evolutionary systems any more than

such methods have guarantees in learning systems. The quality of the method depends on

information about past targets and the strength of the parsimony pressure. Inductive biases

can however constrain phenotypic evolution into more promising directions and exploit sys-

tematicities in the environment when opportunities arise.

In this study we demonstrated that canalisation can be opposed to evolvability in biological

systems the same way under- or over-fitting can be opposed to generalisation in learning sys-

tems. We showed that conditions that are known to alleviate over-fitting in learning are

directly analogous to the conditions that enhance the evolution of evolvability under natural

selection. Specifically, we described how well-known techniques, such as learning with noise

and penalising model complexity, that improve the generalisation ability of learning models

can help us understand how noisy selective environments and the direct selection pressure on

the reproduction cost of the gene regulatory interactions can enhance context-specific evolva-

bility in gene regulation networks. This opens-up a well-established theoretical framework,

enabling it to be exploited in evolutionary theory. This equivalence demystifies the basic idea

of the evolution of evolvability by equating it with generalisation in learning systems. This

framework predicts the conditions that will enhance generalised phenotypic distributions and

evolvability in natural systems.

Methods

Evolution of GRNs

We model the evolution of a population of GRNs under strong selection and weak mutation

where each new mutation is either fixed or lost before the next arises. This emphasises that the

effects we demonstrate do not require lineage-level selection [61–63]—i.e., they do not require

multiple genetic lineages to coexist long enough for their mutational distributions to be visible

to selection. Accordingly a simple hill-climbing model of evolution is sufficient [25, 36].
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The population is represented by a single genotype [G, B] (the direct effects and the regula-

tory interactions respectively) corresponding to the average genotype of the population. Simi-

larly, mutations in G and B indicate slight variations in population means. Consider that G0

and B0 denote the respective mutants. Then the adult mutant phenotype, P0a, is the result of the

developmental process, which is characterised by the interaction B0, given the direct effects G0.
Subsequently, the fitness of Pa and P0a are calculated for the current selective environment, S. If

fSðP0aÞ > fSðPaÞ, the mutation is beneficial and therefore adopted, i.e., Gt+1 = G0 and Bt+1 = B0.
On the other hand, when a mutation is deleterious, G and B remain unchanged.

The variation on the direct effects, G, occurs by applying a simple point mutation operator.

At each evolutionary time step, t, an amount of μ1 mutation, drawn from [−0.1, 0.1] is added

to a single gene i. Note that we enforce all gi 2 [−1, 1] and hence the direct effects are hard

bounded, i.e., gi = min{max{gi + μ1, −1}, 1}. For a developmental architecture to have a mean-

ingful effect on the phenotypic variation, the developmental constraints should evolve consid-

erably slower than the phenotypic variation they control. We model this by setting the rate of

change of B to lower values as that for G. More specifically, at each evolutionary time step, t,
mutation occurs on the matrix with probability 1/15. The magnitude μ2 is drawn from [−0.1/

(15N2), 0.1/(15N2)] for each element bij independently, where N corresponds to the number of

phenotypic traits.

Evaluation of fitness

Following the framework used in [64], we define the fitness of the developmental system as a

benefit minus cost function.

The benefit of a given genetic structure, b, is evaluated based on how close the developed

adult phenotype is to the target phenotype of a given selective environment. The target pheno-

type characterises a favourable direction for each phenotypic trait and is described by a binary

vector, S = hs1, . . ., sNi, where si 2 {−1, 1}, 8i. For a certain selective environment, S, the selec-

tive benefit of an adult phenotype, Pa, is given by (modified from [25]):

b ¼ wðPa; SÞ ¼
1

2
1þ

Pa � S
N

� �

; ð1Þ

where the term Pa � S indicates the inner product between the two respective vectors. The adult

phenotype is normalised in [−1, 1] by Pa Pa/(τ1/τ2), i.e., b 2 [0, 1].

The cost term, c, is related to the values of the regulatory coefficients, bij 2 B [65]. The cost

represents how fitness is reduced as a result of the system’s effort to maintain and reproduce

its elements, e.g., in E. coli it corresponds to the cost of regulatory protein production. The cost

of connection has biological significance [27, 64–67], such as being related to the number of

different transcription factors or the strength of the regulatory influence. We consider two cost

functions proportional to i) the sum of the absolute magnitudes of the interactions,

c ¼ k B k1 ¼
PN2

i¼1
jbijj=N2, and ii) the sum of the squares of the magnitudes of the interac-

tions, c ¼k B k2
2
¼
PN2

i¼1
b2
ij=N

2, which put a direct selection pressure on the weights of con-

nections, favouring sparse (L1-regularisation) and weak connectivity (L2-regularisation)

respectively [68].

Then, the overall fitness of Pa for a certain selective environment S is given by:

fSðPaÞ ¼ b � lc; ð2Þ

where parameter λ indicates the relative importance between b and c. Note that the selective
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advantage of structure B is solely determined by its immediate fitness benefits on the current

selective environment.

Chi-squared error

The χ2 measure is used to quantify the lack of fit of the evolved phenotypic distribution P̂t ðsiÞ
against the distribution of the previously experienced target phenotypes Pt(si) and/or the one

of all potential target phenotypes of the same family P(si). Consider two discrete distribution

profiles, the observed frequencies O(si) and the expected frequencies E(si), si 2 S, 8i = 1, . . ., k.

Then, the chi square error between distribution O and E is given by:

w2ðO;EÞ ¼
X

i

ðOðsiÞ � EðsiÞÞ
2

EðsiÞ
ð3Þ

S corresponds to the training set and the test set when the training and the generalisation error

are respectively estimated. Each si 2 S indicates a phenotypic pattern and P(si) denotes the

probability of this phenotype pattern to arise.

The samples, over which the distribution profiles are estimated, are uniformly drawn at

random (see Estimating the empirical distributions). This guarantees that the sample is not

biased and the observations under consideration are independent. Although the phenotypic

profiles here are continuous variables, they are classified into binned categories (discrete phe-

notypic patterns). These categories are mutually exclusive and the sum of all individual counts

in the empirical distribution is equal to the total number of observations. This indicates that

no observation is considered twice, and also that the categories include all observations in the

sample. Lastly, the sample size is large enough to ensure large expected frequencies, given the

small number of expected categories.

Estimating the empirical distributions

For the estimation of the empirical (sample) probability distribution of the phenotypic variants

over the genotypic space, we follow the Classify and Count (CC) approach [69]. Accordingly,

5000 embryonic phenotypes, P(0) = G, are uniformly generated at random in the hypercube

[−1, 1]N. Next, each of these phenotypes is developed into an adult phenotype and the pro-

duced phenotypes are categorised by their closeness to target patterns to take counts. Note that

the development of each embryonic pattern in the sample is unaffected by development of

other embryonic patterns in the sample. Also, the empirical distributions are estimated over all

possible combinations of phenotypic traits, and thus each developed phenotype in the sample

falls into exactly one of those categories. Finally, low discrepancy quasi-random sequences

(Sobol sequences; [70]) with Matousek’s linear random scramble [71] were used to reduce the

stochastic effects of the sampling process, by generating more homogeneous fillings over the

genotypic space.
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