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The adaptive immune response is initiated in lymph nodes by contact between

antigen-bearing dendritic cells (DCs) and antigen-specific T cells. A selected number

of naïve T cells that recognize a specific antigen may proliferate into expanded

clones, differentiate, and acquire an effector phenotype. Despite growing experimental

knowledge, certain mechanistic aspects of T cell behavior in lymph nodes remain

poorly understood. Computational modeling approaches may help in addressing such

gaps. Here we introduce an agent-based model describing T cell movements and their

interactions with DCs, leading to activation and expansion of cognate T cell clones, in a

two-dimensional representation of the lymph node paracortex. The primary objective was

to test the putative role of T cell chemotaxis toward DCs, and quantitatively assess the

impact of chemotaxis with respect to T cell priming efficacy. Firstly, we evaluated whether

chemotaxis of naïve T cells toward a nearest DC may accelerate the scanning process,

by quantifying, through simulations, the number of unique T cell—DC contact events. We

demonstrate that, in the presence of naïve T cell-to-DC chemoattraction, a higher total

number of contacts occurs, as compared to a T cell random walk scenario. However,

the forming swarm of naïve T cells, as these cells get attracted to the neighborhood

of a DC, may then physically restrict access of additional T cells to the DC, leading

to an actual decrease in the cumulative number of unique contacts between naïve T

cells and DCs. Secondly, we investigated the potential role of chemotaxis in maintaining

cognate T cell clone expansion. The time course of cognate T cells number in the system

was used as a quantitative characteristic of the expansion. Model-based simulations

indicate that inclusion of chemotaxis, which is selective for already activated (but not

naïve) antigen-specific T cells, may strongly accelerate the time of immune response

occurrence, which subsequently increases the overall amplitude of the T cell clone

expansion process.
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INTRODUCTION

After maturation in the thymus, immunologically-naïve T
lymphocytes (or T cells) continuously circulate between the
blood and secondary lymphoid organs, including lymphatic
nodes (LNs) and the spleen. Each one of the millions of T
cell clones bear unique T cell receptors (TCRs), which define
their antigen specificity. In LNs, naïve T cells may encounter
dendritic cells (DCs) presenting cognate antigens asMHC-bound
peptides (pMHC) on their surface. As a result of such a specific
and durable contact T cell-to-DC contact, a naïve T cell may
become activated and subsequently proliferate and differentiate
into effector forms. This constitutes, in most simplified terms,
the essence of the immune response. The fraction of naïve
T cells that recognize a particular antigen can be as small
as 10−5-10−6 (1). Since most naïve T cells feature irrelevant
specificities, the probability of an immediate contact between a
DC bearing a particular antigen and a cognate T cell appears to
be very low. Therefore, for efficient antigen recognition, each DC
should be in a position to scan a large number of T cells with
differing specificities.

Over the past two decades, experiments using two-photon
microscopy (2PM) have been applied in the study of murine
LNs in vivo and have provided a rich set of T cell migration
characteristics, as well as information on T cell interactions with
antigen-presenting DCs (2). Fibroblastic reticular cells (FRC)
form a spatial network throughout the T zone, which is used
by DCs as an adhesion scaffold, while T cells use this network
as an overall routing system underlying their random migration
process. As elucidated from 2PM observations, naïve T cells
move with a mean free path of 20–30µm, interrupted by a
change in direction every 2–3 min—a process which, over
time, results in a migratory pattern which roughly resembles a
“random walk” process (3). During their journey through the
LN, naïve T cells are involved in short contacts with DCs, lasting
several minutes on average (4–6). DCs migrate slower than T
cells, and continuously expand and retract long thin dendrites,
thereby significantly increasing the volume of the region they
may efficiently scan (6).

Intravital LN observations have shown that cognate T cell
interactions with antigen-presenting DCs can be categorized
into several stages—with may possibly overlap over time
(5, 7): (1) within the first 6 h: transient, serial encounters lasting
10–20min and upregulation of T cell activation markers; (2)
subsequently, and within 14 h: stable binding events lasting for
hours, and initiation of cytokine production; (3) consequently,
rapid motility followed by short contacts (10–20min) with DCs,
ultimately resulting in T cell proliferation. These observations
point to processes of T cells integrating TCR signaling over serial
DC contacts, with stage transitions occurring as signal thresholds
are being reached. T cell priming in the lymph node spans over
3–4 days, a period after which clonally expanded T cells exit
the LN via medullary sinuses (MS) and efferent lymphatics to
disseminate in peripheral organs.

Despite such detailed observations, there is no comprehensive
understanding, yet, of the detailed mechanisms and dynamics
of immune cell interactions; in particular, the fate of individual

cells is difficult to track for longer periods of time in vivo. As
reviewed in (8), methods of computational biology can be used
to integrate knowledge, to then simulate cellular dynamics which
occur in the LN. In this modeling study, we explored factors
influencing specifically the efficiency of T cell repertoire scanning
and further expansion of rare cognate T cell clones in a LN.
Toward this purpose, we developed a two-dimensional (2D)
computational model of T cell–DC interactions and subsequent
activation events. In this virtual lymph node, T cell migration,
contact dynamics, signal integration and cell division were
simulated while computationally tracking the contribution of
multiple parameters influencing the properties and functional
outcome of T cells, DCs, antigens. In particular, we sought to
answer the following questions: (1) May local chemoattraction of
naïve T cells toward the nearest DC accelerate the DC scanning
process? We chose to quantify this process by modeling the
number of unique T cell—DC contact events that occur per time
unit, and tracked the evolution of that number over time; (2)
May local chemoattraction of activated cognate T cells toward
a DC influence T cell expansion efficiency? To this end, the
time course of cognate T cell numbers in the virtual LN system
was computationally tracked, as a measure of such immune
response dynamics.

MATERIALS AND METHODS

Description of the Computational
Agent-Based Model
Overall, an agent-based model (ABM) represents a system
of interest, with a definition of key players and of relevant
interactions among these players that influence the system’s
behavior. A typical ABM consists of a simulation space (world),
stand-alone objects (agents), and rules to set the behavior of
individual agents as well as interactions among them (rules).
Thus, in our 2D ABM framework, we consider T cell motility and
emerging interactions of immune cells within the LN T zone. The
T zone was modeled as a lattice of 100 × 100 patches, resulting
in an effective physical surface area of 500 × 500 µm2 (i.e., 5 ×

5 µm2 per patch). This modeling framework also considers two
types of agents: T cells and antigen-presenting DCs.

In order to reproduce interactions between agents present in
the LN T zone, 2,000 naïve T cells were randomly placed in
this square domain, along with 8 antigen-bearing DCs, randomly
placed in 8 fixed positions, as shown in Figure 1. Each 5× 5µm2

patch was set to contain, at most, one T cell. DCs are typically
larger than T cells; thus, it was assumed that a given DC occupies
5 patches, thereby forming cross patterns as shown in Figure 1.
Such an initial geometric design would allow each DC to interact
with up to 11 neighboring T cells simultaneously.

For simplification, antigen-presenting DCs were assumed to
be immobilized, given their migration speed in LNs vs. that of
T cells is relatively slow (6), also recognizing that DCs may be
more fully anchored onto the reticular network vs. T cells. Once
a naïve T cell had found itself in contact with a DC within the
neighborhood of a patch, it was allowed to remain in such a state
of contact for 3min (4, 5).
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FIGURE 1 | 2D ABM model simulation snapshots. T cells are featured as small filled circles of different colors. DCs are shown as larger black cross symbols.

“Chemokine cloud” areas are colored in gray, around DCs. Green bars on the top and bottom boundaries of the computational domain physically restrict T cell

movement (no escape), while yellow spaces, in between, represent MS structures (T cell escape allowed). (A) Snapshot at the beginning of a simulation: 2,000 naïve,

non-cognate T cells (dark gray circles) and only one naïve cognate T cell (red circle) are present. (B) Snapshot on Day 7 of that simulation: a large number of activated

cognate T cells (red circles) proliferated and differentiated into effector T cells (orange circles). The feature of local chemoattraction for activated cognate T cells was

turned on in these simulations; consequently, formations of dense swarms of such T cells appear around DCs, as illustrated here.

Definition of T Cell Motion Rules
The stochastic motion of a T cell was implemented in two ways,
depending on the particular mechanism tested in the model:

(1) T Cell Motion via a RandomWalk Process:

In the context of the present 2D ABM model, it was
not possible to take explicitly into account interactions of
T cells with the FRC network. Hence, empirical rules were
introduced to describe T cell motion in this 2D space. To
describe the random walk motion process, a T cell was
allowed to move, at every discrete time step (30 s) of the
simulation, to an unoccupied adjacent position (at a 5µm
distance). This resulted in a modeled T cell velocity of 10
µm/min, in agreement with experimental observations (5).

To capture the short-term persistence character of T
cell movement, T cell motion at each time step was set to

be dependent on its previous direction. The new direction

was thus calculated by defining a take-off angle from the

previous direction, as the sum of two random angles sampled
clockwise and counterclockwise from a uniform distribution

in the range of (0, θmax) degrees. If the resulting adjacent
lattice position happened to be already occupied (e.g., by
another T cell, or a DC, or a boundary patch on the top
or bottom side of the computational domain), then the T
cell was computed to remain in its current position, and
another direction calculation would be attempted at the next
time step.

In our simulations, we aimed at reproducing not
only realistic velocities of T cell movement, but also
a physiologically-relevant T cell motility coefficient—
realistically reflecting the short-term persistence character
of T cell movement. Motility coefficients used in such 2D
simulations were calculated from time lapse microscopy

records using the formula:

M =

〈

1r2
〉

4τ
(1)

where
〈

1r2
〉

represents the mean squared displacement of
an individual T cell from its initial position at time τ .
Preliminary simulations were thus performed using different
values for θmax. Motility coefficient estimates were averaged
over 40 T cell trajectories, in each simulation. Simulations
with an θmax of 80◦ resulted in a calculated average
motility coefficient of 66 µm2/min, which nearly matched
experimentally determined estimates of motility coefficients
around 68 µm2/min (2).

(2) T Cell Motion Toward a Neighboring DC via a

Chemoattraction Process:

Physiologically, local chemoattraction, or chemotaxis,
may be mediated by a concentration gradient of specific
chemokine molecules around DCs. In our ABM framework,
the effective radius of a “chemokine cloud” around each
DC was taken to be 5 patches (∼25µm). T cell motion
would switch from a random walk process to a more-or-
less directed movement toward the DC center, once inside
the “chemokine cloud.” A chemotaxis strength parameter
was introduced, representing the probability of performing
a directed step instead of a random step. Typically, for
simulation purposes, a probability value of 1/3 for a
directed step can be used, in agreement with experimental
estimates (9).

After some time spent in the “chemokine cloud,” a T
cell loses its sensitivity to the chemokine gradient and starts
moving randomly again. The time of T cell de-sensitization
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to chemokine(s) was taken to be 10min (10). Such de-
sensitization potentially allows a T cell to leave the DC
neighborhood. The time for a T cell to get re-sensitized to
the chemokine gradient, once outside the cloud, was also
assumed to be 10 min.

Definition of Boundary Conditions
Periodic boundary conditions were applied on the left and
right sides of the computational domain: if a T cell were to
leave the domain through one side, it would be allowed to
immediately re-appear from the other side of the domain,
moving in the same direction. In contrast, T cells were not
allowed to randomly cross top and bottom boundaries of the
computational domain. These boundaries, instead, contained
“open patches,” functionally corresponding to medullary sinuses
(MS) and efferent lymphatics in a LN. Accordingly, if a T cell were
to leave the computational domain through anMS patch at either
the top or bottom side, a new T cell would be allowed to enter
the computational domain, from a random position through
its lateral borders. These settings allowed us to keep an overall
constant T cell density in the system under study. The model was
explored using a range of numbers of patches containing suchMS
escape structures (8–120 patches).

Cognate T Cell Activation and Proliferation
Relatively rare cognate naïve T cells, capable of recognizing DC-
presented antigens, were included in the model. No difference
in movements, between cognate vs. non-cognate naïve T cells
before their first encounter with DC was assumed. After a first
encounter, a cognate T cell was set to form a stable contact
with a DC for ∼24 h; specifically, the duration of contact for
each particular cognate T cell was a random value generated
from a normal distribution with a mean of 24 h and a variance
of 2 h. Upon completion of such a contact, a T cell became
activated. The model subsequently simulated activated T cells
which randomly migrated into a virtual LN and interacted with
DCs bearing cognate antigen complexes. We also explored the
option of chemoattraction of activated (but not naïve) T cells
toward a neighboring DC.

Similarly to the models by Bogle et al. (11, 12), we assumed
that the TCR stimulation signal could be summed over time,
during the period of binding and also through sequential DC
encounters. Milestones in the activation of a T cell were thus
reached when the integrated stimulation were to exceed certain
thresholds. In the present model, upon a DC encounter, activated
T cells established a contact lasting for about 20min (a random
value generated from a log-normal distribution with a variance of
10min). T cells were programmed to collect stimulation signals
as long as the contact was maintained and to integrate, through
summation, such collected stimulation signals upon additional
DC encounters. During contact with a DC and the presenting
cognate antigen, the stimulation level S of a lymphocyte was set
to start increasing to a certain saturation level of a sigmoid curve,
according to the following logistic equation:

S (t) = S0+
α

1+ e−βt
, (2)

where S0 is the stimulation level at the beginning of the
cognate contact. Parameters α = 2.0 and β = 0.005 min−1

values were selected manually, as further detailed in the
Supplementary Materials.

For activated T cells which ended up outside a DC contact
zone, the stimulation level was set to decrease according to an
exponential law:

S (t) = S0 · e
−λ t, (3)

where λ is the exponent indicator, corresponding to a half-life
period of 24 h (12), and S0 is the stimulation level at the start of
decay. A typical trajectory of a cognate T cell stimulation signal is
shown in Supplementary Figure 2.

Thus, a T cell was set to divide when the stimulation
level S reached a defined threshold. The threshold value
of the stimulation level Sn is one critical model parameter
which ultimately affects the proliferation intensity of cognate
T cells. We therefore tested multiple threshold values, to
estimate the sensitivity of the system to this parameter
(Supplementary Figure 3). For the simulations presented here,
we selected a value of Sn = 3.5, which was close to the
average S value for all cognate T cells represented in the
computational domain.

Two factors were used in the model, to limit the proliferation
of activated T cells: (i) a minimal time of about 8 h (random
value generated from a normal distribution with a variance of 1 h
for each newly formed T cell) was set between successive T cell
divisions; (ii) a maximal number of successive proliferating T cell
divisions was set. Following the last division of an activated T cell
reaching effector status, no further division was allowed, and the
cell was eliminated from the system within 24 h. Also, to avoid a
strong increase in overall T cell density in the model (as a result
of cognate T cell expansion), the following rule was added: if an
activated T cell were to leave the computational domain via “open
patches,” no new T cell was allowed to come back in (in contrast
to a naïve T cell leaving). This rule was set to take effect only if
the overall number of T cells in the computational domain were
to exceed the pre-set “equilibrium” value of 2,000.

Quantitative Outcomes Simulated via ABM
Numerical Experiments
The following quantitative outcome measures were generated:

1. LN transit time: average time from the moment a T cell object
appears in the computational domain of the model, until it
exits that space through MS patches.

2. Total number of T cell–DC contacts: a cumulative count of
contact events between any DC-T cell pair, including possible
repeat contacts, as detected during a given simulation time.

3. Calculation of the number of unique T cell–DC contacts: only
the first contact of a given T cell with any of the DCs was
taken into account. In the model, all DCs were assumed to be
strictly identical.

4 Dynamics of cognate T cell number in the computational
domain: included naïve, activated and effector T cells, in
simulations of up to Day 28.
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5. Cumulative outflux of cognate T cells: this was taken
as the characteristic measure of the adaptive immune
response intensity.

To calculate prediction intervals (90% PI) for each of the
model outcomes, 45–100 independent ABM simulations were
performed using identical model parameter values, yet different,
randomly generated initial T cell and DC positions within the
computational domain.

Software Packages
The NetLogo 5.0.1 software (13) was used as a computational
tool for ABM. Additional details on model development
and analysis, e.g., table with parameter values, results of
sensitivity analysis and NetLogo 5.0.1 model scripts are given
in the Supplementary Material. The NetLogo 5.0.1 model
code was also uploaded to an open-source repository and is
freely available under: https://github.com/Potamophylax/ABM_
immune-response/.

RESULTS

Using the 2D ABM model of a LN as described above,
a large number of simulations were performed for various
model parameter settings. For simplification purposes in
these exploratory simulations, several model parameters were
fixed using biologically reasonable estimates. In particular, the
assignment of values to T cell and DC densities (respectively,
2,000 and 8 cells per 500× 500 µm2) and to the T cell movement
parameter reflecting short-term persistence (θmax = 80◦) allowed
us to reproduce, via simulations, a realistic motility coefficient of
T cells in LN.

Exploration of T Cell Repertoire Scanning
Efficacy (Non-cognate Naïve T Cells Only)
Our first goal was to explore the impact of chemoattraction
upon efficiency in the process of T cell repertoire scanning, as
naïve T cells moved toward a DC. The measure of such efficacy
was computed as the rate of accumulation of unique T cell—
DC contact events. The chemotaxis strength estimate (P = 1/3)
was identical to the one used by Riggs et al. (14). A value for
an effective radius of the “chemokine cloud” around each DC
was selected from the observed size of activated T cell swarms
around a DC (∼25µm) (5). Time of T cell de-sensitization and
time to T cell re-sensitization (values of 10min taken for each)
reflected characteristic times of cytokine receptor internalization
and subsequent recycling.

We specifically explored the model behavior in relationship to
the parameter reflective of the size of overall medullary sinuses
(MS) and corresponding to the number of “open patches” at the
top and bottom boundaries of the computational domain. This
parameter is critical in the model, as it regulates T cell turnover
rate and thus influences most of the quantitative outcomes. As
shown in Supplementary Figure 1, setting the overall MS size in
the range of 15–50 patches within the computational domain led
to biologically realistic T cell transit times 10–20 h (15).

As shown in Figure 2A, the total number of contacts between

T cells and DCs was only minimally affected by the overall MS
size. In a “random walk” scenario, it is obvious that the total

number of T cell-DC hits depended mainly on the density of T
cells within the computational domain, which was kept constant
and did not depend on the overall MS size. Interestingly, under a
chemoattraction scenario, a much larger total number of contacts
was obtained, as compared to a “random walk” motility process
(respectively, 130,000 and 70,000 contacts counted during 3
days of simulations). Regions of high densities of naïve T cells
(“swarms”) formed locally, around DCs, in simulations under
the chemoattraction scenario—which explains this substantial
increase in the total number of T cell-DC contacts.

As shown in Figure 2B, the number of unique contacts
sharply increased with an increase in overall MS size (which itself
is an expression of increased T cell turnover rate through the
computational domain). Hence, a higher turnover rate in T cells
(from entering to leaving the computational domain) led to a
larger number of T cells appearing de novo in the computational
domain, thereby increasing the probability of new T cells to
establish first-time unique contacts with DCs. Conversely, in
the case of a slow T cell turnover rate, a larger proportion of
T cells may have contacted single DCs multiple times, as they
remained for longer times within the computational domain.
Simulation results displayed in Figure 2B thus support the
following important interpretation: a “random walk” motion
scenario for T cells resulted in a substantially higher number
of unique contacts between T cells and DCs—a number which
is about twice higher vs. a chemoattraction scenario. These
2D ABM simulation results are in full agreement with those
presented by Riggs et al. (14).

Figure 2C further displays the time evolution of this
number of unique T cell-DC contacts, over 14 days of
simulations. To explore the influence of the overall MS
size upon unique T cell-DC contact dynamics, simulations
were performed for two overall MS size values of 32 and
40 patches. The sensitivity of this number of unique T
cell-DC contacts with respect to overall MS size, in the
considered physiologically-reasonable range, was moderate.
The resulting linear dynamics of this number, observed
after 1–2 days of simulations, indicated that the system
represented by the computational domain reached an
equilibrium state by this time. The differing slopes of the
two sets of curves on Figure 2C point to different rates of
unique T cell-DC contact accumulation; this rate is indeed
significantly higher in the case of a “random walk” scenario
vs. chemoattraction.

Exploration of Activation and Expansion of
Cognate T Cell Clones
A second goal of this study was to explore simulations of cognate
T cell priming and expansion under different model parameter
settings. Here, we used small, albeit non-zero values for cognate T
cell frequency parameters, i.e., the probability of a new incoming
T cell to be cognate, which could be activated in contact with
DCs and proliferate as described above. Also, we tested different
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FIGURE 2 | Dependence of the number of total (A) and unique (B) T cell-DC contacts on overall MS size. Different cases of motion were observed for the two T

cell-toward-DC motility scenarios: “random walk” and chemoattraction. Chemotaxis strength ranged from 0 (blue line; “random walk”) to 1/3 (red line). The plot is

based on data from 100 simulations, each run over 3 days. Lines represent median values of contact search times; shaded areas represent 90% prediction intervals

(PI). (C) Accumulation, over time, of unique T cell-DC contacts. Two motility scenarios were used, to describe T cell motion in the vicinity of DCs: “random walk” (two

upper curves) vs. chemoattraction (two lower dashed curves). Red vs. blue lines reflects different overall MS size values (40 and 32 patches, respectively) used in the

simulations.

maximal numbers of activated T cell divisions, i.e., maximal
numbers of T cell generations starting from naïve cognate T
cells to finally differentiated effector T cell. Proceeding from
the previous part, we fixed the overall MS size at 32 patches:
it ensured a transit time through the LN T zone in agreement
with experimental values. All simulations were performed under
the assumption of a constant level of antigen stimulation in the
LN: neither the number of DCs, nor their positions, nor their
properties changed during the simulations.

In preliminary simulations not shown here, we sought to
reproduce T cell immune responses using the same “random
walk” scenario for both naïve and activated lymphocytes; under
such conditions, cognate T cell expansion levels were low and
not robust. By visual inspection of such simulation trajectories,
we observed that most activated cognate T cells would leave
the computational domain prior to any cell division occurring.
To resolve this technical modeling issue, we allowed chemotaxis
toward a neighboring DC to be selective for already activated
(but not naïve) cognate T cells. As shown in Figure 3, such
an approach allowed us to reproduce realistic T cell immune
response dynamics, after varying values of key unknown model
parameters over a wide range. Videos S1, S2 (available in the on-
line Supplementary Material) illustrate the kinetics of the system
at, respectively, the start and Day 7 of representative simulations.

In particular, following days 3–5 of simulations
(Figures 3A,C,E), a fast increase in cognate T cells numbers
was computed, with distinct peak values around Day 7, in
good agreement with the experimentally observed time of
5–7 days for an immune response to occur (16). Beyond 10
days of simulations, all the different trajectories exhibited
numbers of cognate T cells which fluctuated around some
“steady-state” values, due to a constant level of antigen
stimulation which had been assumed in our model. As
shown in Figures 3B,D,F simulations, cognate T cell outflux
rates also became nearly constant, which correlated with

the “steady-state” numbers of cognate T cells within the
computational domain.

Model outcomes were highly sensitive to the activated
T cell chemotaxis strength value (Figures 3A,B): stronger
chemotaxis led to a larger cognate T cell number within the
computational domain, via a facilitation of T cell proliferation.
Taking into account activated T cell chemoattraction led to
the accumulation of T cells in forms of swarms around
DCs (Figure 1B), which further led to: (a) a longer half-life
for these T cells in the LN, slowing down their elimination
rate from MS patches; and (b) more frequent contacts with
DCs, which favored the build-up of the activation signaling
(S) to higher levels. Both factors allowed to effectively
increase the number of overall cognate T cell divisions in
the system.

Another important factor was the cognate T cell frequency,
i.e., the probability for new incoming naïve T cells to recognize
antigens presented by DCs (Figures 3C,D). In our simulation
framework, a cognate frequency of 1/500 appeared sufficient
to induce a robust outflow of cognate T cells (as a main
characteristic measure of immune response intensity), however,
this outflow rate was twice lower vs. a cognate frequency of
1/100. A further increase in the cognate frequency to up to
1/50 only slightly increased the rate of cognate T cell outflow.
Additional simulations were performed, over a wide range of
cognate frequencies; we determined a non-linear dependence,
with a saturation of cognate T cell outflow vs. cognate frequency
(see Supplementary Figure 4).

Only moderate increases in “steady-state” cognate T cell
numbers and in the corresponding outflows were observed, when
the parameter value reflecting the maximal number of T cell
divisions was increased from 10 to 20 (Figures 3E,F). However,
for a maximal number of divisions ranging from 15 and 20,
the model predicted peak values of cognate T cell numbers
(within the computational domain) which were twice as high
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FIGURE 3 | Simulations of cognate T cell numbers in the LN T-zone (A,C,E) and their cumulative outflux through efferent lymphatics (B,D,F). (A,B) Simulations under

scenarios of different chemotaxis probabilities. Multiple chemotaxis strength values were tested: 1/8 (blue line), 1/4 (green line), and 1/3 (red line). The maximal number

of divisions was set at 10, and the cognate frequency was set at 1/100. (C,D) Simulations under scenarios of different cognate clone frequencies. Multiple cognate

frequency values were tested: 1/50 (red line), 1/100 (green line), and 1/500 (blue line). The maximal number of divisions was set at 10, and chemotaxis strength was

set at 1/3. (E,F) Simulations under scenarios of different maximal numbers of divisions: 10 (blue line), 15 (green line), and 20 divisions (red line). The cognate frequency

was set at 1/100, and chemotaxis strength was set at 1/3. All plots are based on measures from 45 simulations lasting 28 days each. Lines represent median values;

shaded areas represent 90% PI.

vs. when using a maximal number of divisions 10, on Day 10
of the simulations. This complex dynamic behavior reflected in
the outcome of cognate T cell numbers was technically traced
to a negative feedback loop included in the model, as described
in the Methods section. If, during the drive of cognate T cell
expansion, the overall T cell density became higher than 2,000
(pre-set T cell “equilibrium” density), the rate of new incoming
naïve T cell inflow became smaller. The rate of cognate naïve T
cell inflow decreased as well; this, consequently, led to a decrease
in the number of cognate T cells within the system. Thus, in
the absence of such a negative feedback loop, the domain would
become over-populated with T cells, also resulting in “paralysis”
of T cell motility.

DISCUSSION

The original motivation driving this modeling study was to
enable the exploration of dynamic spatial effects, in particular
a detailed investigation of the relationship between T cell
motility behavior and the timing and intensity of an immune
response. Intravital microscopy (2PM) yields a wealth of
information within a very restricted region of the LN and
during a short period of time (hours), whereas histology provides
complementary views, yet limited to two dimensions and with no
dynamic time element. An ABM of the LN allows for integrative
simulations which may help filling the gaps between these two
experimental approaches. To explore several hypotheses on T
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cell motility and their interactions with DCs, we independently
developed a simplified, yet biologically reasonable version of
a 2D ABM of the LN T cell zone. The model was developed
and qualified using NetLogo (13), a freely available and flexible
software tool.

The 2DABMpresented here, which includes T cell movement,
activation and proliferation in a LN, allows for the integration
of a number of processes and at the scale of the LN system,
and illustrates the necessity to consider all essential processes
simultaneously, in order to generate a realistic dynamic picture
of the immune response. Because detailed experimental data
required to characterize all these processes are not available, we
made assumptions regarding several parameters embedded in
the model; nonetheless, the model developed here realistically
reproduced key temporal characteristics, such as the T cell
motility coefficient (2), LN transit times (15) and kinetics of
immune response development (16).

Operating characteristics of the model were supported by
sensitivity analyses, whereby simulations were run over ranges of
model parameter values, with model outcomes being compared
against physiological values.Model simulations indicated that the
generated T cell response was sensitive to factors, such as naïve
cognate T cell frequency and the strength of the hypothetical
chemoattraction of T cells toward neighboring DCs. Thus,
despite a simplified, semi-empirical structure of the model, we
obtained reasonable and robust simulations over a wide range of
unknown parameter values.

The ABM LN model presented here was set as a two-
dimensional (2D) model, rather than a more physiological three-
dimensional (3D) model. A 2D setting of the model allowed
us, obviously, to drastically reduce the computational cost of
ABM simulations, while carefully estimating the impact of
stochastic effects on simulation outcomes. In most of ABMs, T
cell movement is implemented as a “random walk” in a non-
guided biophysical domain; under such settings, advantages of
3D vs. 2D models may, in fact, not be obvious. The role of
the fibroblastic reticular cell (FRC) network in guiding T cell
motion in the LN has been studied over many years (17);
such a network may adequately constrain T cell movement in
a 3D domain. Thus, a realistic spatial structure of the FRC
network, together with rules describing lymphocytes and DC
interaction within the FRC network should be included in a 3D
ABM of the LN. The development of such a detailed, highly
parameterized and computationally intensive 3D model is a
complex endeavor; the works from a number of such research
groups have been reviewed (18). One of the limitations of the
present 2D modeling work is the implicit consideration of the
FRC network influence, via a short-term persistence description
of T cell motility, since there would have been no other obvious
way to take FRC network effects into account more realistically.
In such a 2D context, it should not be expected to reproduce
either realistic densities of T cells or realistic numbers of sites
of T cells on the DC surface. Thus, the outcomes of our 2D
ABM reported here, such as T cells—DC contact numbers
and cognate T cell outflux from the LN should be viewed as
qualitative measures of behavior, rather than absolute values of
cell counts.

The numerical simulations reported here were focused on
two pivotal questions. The first question focused on whether
local chemoattraction of T cells toward DCs would promote
or hamper the scanning efficiency of DCs, within a LN.
We demonstrated that, for an effective DC scanning of the
T cell repertoire, a T cell “random walk” motility scenario
appeared to be the optimal strategy (vs. chemoattraction). We
provided a physiological rationale, via simulations, as to why
a chemoattraction motility scenario may actually lead to a
non-optimal DC repertoire scanning of T cells: indeed, under
chemoattraction, dense and relatively stable swarms of T cells
may form around each DC. T cells within these swarms may
experience repeated contacts with DCs; and owing to the higher
cellular density within swarms, it may take significant time
for a T cell to leave a swarm, even if it were to become
insensitive to the local chemokine gradient. In addition, swarms
may form a barrier for T cells outside the neighborhood, to
make contact with DCs. Thus, under a chemoattraction motility
scenario, our simulations demonstrated a large number of
repeated T cell-DC contacts, while the number of unique T cell-
DC contacts, reflective of T cell repertoire scanning efficacy,
remained relatively small.

Such results are in full agreement with results from earlier 2D
ABM research, in which T cell motility was accurately captured to
help determine the impact of chemotactic attraction of T cells-to-
DC on repertoire scanning (14). Accordingly, a T cell may move
randomly, with a short-term persistence, until it encounters a
chemokine gradient around a DC, at which point probabilities
are updated so that a T cell is more likely to move toward a
DC. Chemokine gradients were captured in a simplified manner,
by assigning concentrations in the DC neighborhood (up to
20µm from the DC). Chemotaxis parameters included strength
(related to the likelihood of moving toward a DC), duration (time
before de-sensitization occurs), and recovery (time before a T
cell may again detect a chemokine gradient). As strength and
duration increased, the total number of T cells-to-DC contacts
increased, yet the number of unique T cells-to-DC contacts
decreased, suggesting that an increased competition of T cells for
a DC, resulting from chemotactic-driven movement of T cells
toward a DC, interfered with efficient repertoire scanning. In
conclusion, a better strategy for efficient scanning is to briefly
contact, then clear non-cognate T cells away from an antigen-
presenting DC, to make scanning room for different, potentially
cognate T cells.

The relevance of a chemo-attraction process on T cell
scanning efficiency by DCs was also addressed in modeling work
by Vroomans et al. (19), who developed a 2D model of the LN
T zone, based on a Cellular Potts Model (CPM) formalism. The
CPM is a grid-based spatial model, initially developed to describe
the biophysics of cell sorting, based on differential adhesion
properties (20). Within this formalism, cell motion is driven
by the overall minimization of the energy of deformation and
stretching of the cell membrane through stochastic fluctuations,
in which global and local forces upon a cell edge are resolved
(21). Extension of this CPM approach have been made to
describe cell motion under control of a chemokine gradient,
including movement under conditions of high cell density in
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clusters around a DC. In contrast to (14) and our conclusions,
model simulations by Vroomans et al. (19) demonstrated that
chemo-attraction of T cells does enhance DC scanning efficiency,
leading to a greater probability for rare antigen-specific T cells
to find DCs bearing the cognate antigen. Also, these authors
found that de-sensitization of T cells following contact with a
DC would further increase DC scanning efficiency, providing
an improvement of nearly 3-fold, vs. a “random walk”-type
migration. We here offer one interpretation for this apparent
discrepancy: the CPM approach may not adequately reproduce
T cell motility in the LN T zone (19). Indeed, in that work,
motility was based on a cell adhesion process; also, very dense
packing of T cells in the computational domain was assumed.
Based on the experimental 2PM observations, a mean free
length characteristic of T cell motility was estimated, in the
range of 30–40µm (5, 7). Such a fast, intrinsic velocity of
T cell motility would not be possible in the CPM-modeled
system (19).

The second question which we sought to address here was
about a potential role for chemotaxis in immune response
initiation. For such a purpose, we simplified the description of
cognate T cell activation, to minimize the overall number of
parameters in the model. The concept of a TCR stimulation
signal (S) accumulation and dynamics of individual cognate T
cells was based on previous modeling work (12). However, the
implementations of this concept, between the present 2D vs.
the previously published 3D models were materially different:
(a) for simplification, we considered a single cognate T cell
clone instead of multiple cognate clones with varying affinities
of their TCR to pMHC; and (b) we took into account local
chemoattraction of activated cognate T cells toward a DC, as a
factor which may accelerate, or even be critical for T cell immune
response initiation.

Using our 2D ABM approach, we determined that a

feature of selection for activated cognate T cells is required,
to reproduce their pronounced expansion upon response to

antigen stimulation. As mentioned above, activated T cell

chemoattraction lead to T cell accumulation in swarms, around
DCs. This effectively caused a longer half-life of these T cells in

the LN, slowing down their elimination from MS patches, and

also causing frequent contacts with DCs, thereby contributing to
activation signaling (S) at a higher level. Both factors effectively
increased overall numbers of cognate T cell divisions in the
LN. The relative contributions of these two factors toward T
cell immune response potentiation depended on specific model
parameters, such as the activation threshold value (Sn), the
overall MS size, the T cell motility coefficient, and the overall
T cell density. If, indeed, a prolonged half-life of activated
T cells in the LN is critical, then an explicit accounting for
the effect of sphingosine-1-phosphate receptor down-regulation
during T cell activation, leading to retention (for a number
of days) of activated T cells in the LN, may be added to the
model (22).

Similarly to previous ABM applications tailored to the
LN, we showed that such a modeling technique proves to
be a useful tool to integrate current knowledge and data
on molecular and cellular interactions between immune cells,
to then generate novel hypotheses which may guide further
experimental studies, to overall improve our mechanistic
understanding of the immune activation process that takes place
in the LN. Many questions on this dynamical process in the
LN remain open, in particular questions on the emerging role
of the FRC network in regulating immune responses. Future
developments of 3D models, with detailed stromal elements,
may play an important role in further elucidating biological
mechanisms (18).
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