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Abstract: Microbial antibiotic resistance is an important global world health problem. Recently, an
interest in nanoparticles (NPs) of silver oxides as compounds with antibacterial potential has signifi-
cantly increased. From a practical point of view, composites of silver oxide NPs and biocompatible
material are of interest. A borosiloxane (BS) can be used as one such material. A composite material
combining BS and silver oxide NPs has been synthesized. Composites containing BS have adjustable
viscoelastic properties. The silver oxide NPs synthesized by laser ablation have a size of ~65 nm
(half-width 60 nm) and an elemental composition of Ag2O. The synthesized material exhibits strong
bacteriostatic properties against E. coli at a concentration of nanoparticles of silver oxide more than
0.01%. The bacteriostatic effect depends on the silver oxide NPs concentration in the matrix. The
BS/silver oxide NPs have no cytotoxic effect on a eukaryotic cell culture when the concentration of
nanoparticles of silver oxide is less than 0.1%. The use of the resulting composite based on BS and
silver oxide NPs as a reusable dry disinfectant is due to its low toxicity and bacteriostatic activity and
its characteristics are not inferior to the medical alloy nitinol.

Keywords: borosiloxane; composite; silver oxide; nanoparticles; antibacterial; cytotoxicity;
biocompatibility

1. Introduction

Currently, there is a significant growth of interest in metal oxide nanoparticles (MexOyNPs)
as compounds with antibacterial potential, including Ag [1,2], which find many applica-
tions in technology and medicine. Despite the large number of antibiotics available for
treatment, resistance to almost all of them has been confirmed. Antibiotic resistance may
occur soon after the approval of a new drug for use [3,4]. The mode of antibacterial action
for metals includes disruption of enzyme functioning [5], reactive oxygen species (ROS)
production (Fenton’s reaction) [6], disruption of cell membrane functioning, prevention of
absorption of essential microelements by microorganisms [7] and genotoxic action [8,9]. The
issues of compatibility of the polymer matrix and nanoparticles are raised in articles [10–13],
which are relevant in applied aspects. Controlled synthesis of a polymer in the presence of
inorganic NPs permits the generation of a blend with desired physicochemical properties.
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Distribution of silver NPs in a polymer matrix increases the effectiveness of antibacterial
action via controlled release of Ag+ cations which can significantly reduce the transmission
of infectious agents [14–18]. The synthesis of a composition of silver oxide NPs and a
polymer also prevents particle aggregation, because Ag+ cations are well distributed in
the matrix [19]. In addition, a polymer doped with silver NPs prevents the reproduction
and development of microorganisms on the surface [20,21]. Borosiloxane (BS) is a poly-
meric material with unique physical properties. It is a characteristics material with needed
stickiness [22], self-repair [23,24] and crack resist ones [25]. Therefore, BS can be a used
in development of composites with NPs. BS-based materials are widely used in various
industries. An example of BS is used in manufacturing of protective sport wear for racing,
skiing and other extreme sports [26]. Thus, the BS and silver oxide NPs system (with
antibacterial properties) can find wide application in the production of sports equipment.
The development self-healing electronics based on BS has been reported [27–30]. BS-based
polymers can also be used in the development of electro-optical devices and electronic
apparatus [31–33]. A nanocomposite based on BS and silver oxide NPs for biomedical
applications has been synthesized. A comprehensive study of antibacterial, cytotoxic and
mechanical properties of the material has been carried out. A main objective was to reduce
the amount of administered dopant while maintaining strong antibacterial properties.

2. Materials and Methods
2.1. Characterization of Silver Oxide Nanoparticles

Silver oxide NPs were synthesized by laser ablation technique using a pulsed ytterbium-
doped fiber laser (YDFL). Laser pulses: wavelength 1064 nm, pulse duration 4–200 ns,
frequency of repetition 20 kHz, average power ≤20 W, average energy 1 mJ. Radiation
time was 5–20 min. Deionized water was chosen as work liquid. A 10 g of pure Ag (99.9%)
was placed in the 10 mL of water so that water covered the all surface of the metal (maxi-
mum water layer thickness ≤1 mm. The experimental setup and its main components are
described in [34].

NPs size and ζ-potential of NPs were measured with Zetasizer Ultra Red Label
(Malvern Panalytical, Malvern, UK). In addition, the diameter of nanoparticles was es-
timated using an CPS 24,000 disk analytical centrifuge. The NPs size, morphology and
elements composition were analyzed by transmission electron microscopy using Libra
200 FE HR (Carl Zeiss, Jena, Germany). The NPs colloid spectra were recorded using Ocean
Optics USB3000T spectrometer (Ocean Optics, Dunedin, FL, USA).

2.2. BS and NPs Composition Synthesis and Study of Rheological Properties

The BS was synthesized from hydroxyl-terminated polydimethylsiloxane (PDMS)
(MW 20 kDa) and boric acid (BA) (99.9% BA, 57.1% boric anhydride, ~75 µm particles size).
PDMS was mixed with boric acid in a ratio of 10:1. Mixture of PDMS and BA were heated
at temperatures ≥200 ◦C. BS was dissolved in ethanol and doped by NPs with known
concentration: 0.1, 0.01 and 0.001% of mass. The ethanol was then evaporated at reduced
pressure. BS without dopants was also dissolved in ethanol and then dried under reduced
pressure. The study of the rheological behavior of borosiloxane-based nanocomposites was
carried out on a rheometer MCR 302e (Anton Paar, Graz, Austria). The multiparameter
rheological equations were used to evaluate the non-Newtonian properties of studied
polymers [35]. These equations may be applied in a wide shear ranges.

2.3. BS Segments Preparation to Analysis

The synthesized materials were rolled out on a substrate heated to 40 ◦C. The thickness
of resulting polymer film was 0.7–0.9 mm. The polymer film was cut into rectangular pieces
with a size of 20–25 mm and a total area of 10 cm2. The films were placed in 20 mL of water
to further measuring ROS and markers of biomacromolecules damage.
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2.4. Hydrogen Peroxide Generation Assay

The hydrogen peroxide (H2O2) concentration was measured by highly sensitive chemi-
luminescence (CL) method. The method based on oxidation of the luminol-p-iodophenol
by horseradish peroxidase with subsequent emission of light quanta. Measures were
carried out with ultrasensitive Biotox-7A-USE high sensitivity chemiluminometer (ANO
Engineering Center—Ecology, Moscow, Russia). The H2O2 concentration was evaluated
with calibration curves. These curves were built on the CL intensity values of samples with
known H2O2 concentrations. The H2O2 concentration used for calibration was measured
by spectrophotometry using Cintra 4040 (GBC Scientific Equipment, Boulevard, Australia)
at a wavelength of 240 nm with a extinction coefficient of 43.6 (M−1 × cm−1) [36]. The
samples were mixed with 1 mL of a “counting solution” in polypropylene vials. “Counting
solution” contained 1 mM Tris-HCl buffer (pH 8.5), 50 µM p-iodophenol, 50 µM luminol,
10 nM horseradish peroxidase. The “counting solution” was prepared immediately before
a study. The chemiluminescence method sensitivity <1 nM H2O2 [37].

2.5. OH-Radicals Generation Assay

Concentrations of OH-radicals were measured by reaction with coumarin-3-carboxylic
acid (CCA). CCA hydroxylated to 7-hydroxycoumarin-3-carboxylic acid (7-OH-CCA). The
7-OH-CCA is a widely used fluorescent probe for detecting of OH-radicals generation.
Phosphate buffer (0.2 M, pH 6.8) was added to a CCA solution in water (0.5 mM, pH = 3.6).
Experimental (and control) samples were heated for 2 h at 80 ± 0.1 ◦C. The fluorescence
intensity of 7-OH-CCA was measured with a JASCO 8300 spectrofluorimeter (JASCO,
Tokyo, Japan) with excitation and emission wavelengths 400 nad 450 nm, respectively.
Calibration was carried out with solution of commercial 7-OH-CCA [38].

2.6. Long-Lived Reactive Protein Species Generation Assay

The interaction of radicals with other molecules often leads to emission of light quanta.
Therefore, chemiluminescence method is a suitable and high sensitive method of measured
free radical reactions. Concentrations of long-lived reactive protein species were measured
in heated protein solutions by the chemiluminescence with Biotox-7A chemiluminometer
(ANO Engineering Center—Ecology, Moscow, Russia). The measurements were carried out
at 25 ◦C in the dark, in 20 mL plastic polypropylene vials for liquid scintillation counting
(Beckman, Brea, CA, USA). These modifications increased the sensitivity of method in
~200 times in comparison with canonical conditions (0.1 mL) [39]. The proteins without
heating were used as as controls. The more detailed description of the method may be
found in [40].

2.7. Enzyme-Linked Immunosorbent Assay (ELISA)

DNA (350 µg per mL) were denatured by boiling 5 min with subsequent cooled on
ice 3–4 min. 42 µL of each sample were added in a correspond well of 96-wells plate.
DNA was immobilized by 3 h incubation for at 80 ◦C until completely drying of solutions.
The blocking of nonspecific adsorption was performed by overnight incubation in 1%
skimmed milk solution in 0.15 M Tris-HCl buffer, pH 8.7 supplemented by 0.15 M NaCl at
room temperature. Further, 100 µL of blocking solution with anti-8-OG antibody (dilution
1:2000) was added in each well. Plates were incubated 3 h at 37 ◦C. Wells were washed
twice with 50 mM Tris-HCl buffer (pH 8.7) supplemented by 0.15 M NaCl and 0.1%
Triton X-100. Further, secondary anti-mouse-IgG antibody conjugated with horseradish
peroxidase (dilution 1:1000) in blocking 80 µL of solution was added into each well. Plate
was incubated 1.5 h at 37 ◦C. Further, all wells were washed 3 times as described above.
Next, 100 µL of 75 mM pH 4.2 citrate buffer containing 18.2 mM ABTS and H2O2 (2.6 mM)
were added to each well. The chromogenic reactions were stopped by 1.5 mM NaN3) upon
reaching color. The optical density was evaluated with a photometer (Titertek Multiscan,
Helsinki, Finland) at 405 nm. The more detailed information about method may be found
in previous work [41,42].
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2.8. Antibacterial Properties Assay

BS or NPs·BS composite films were preliminary sterilized by three washes with 70%
ethanol. Escherichia coli (Gram-negative) was chosen to antibacterial properties assay
as most common human commensal. Bacteria were cultured in LB medium by standard
protocols. Bacteria concentrations were measured by spectrophotometric study with drop
spectrophotometer UV5Nano Excellence (Mettler Toledo, Columbus, OH, USA). In each
experiment 10 µL of the medium with known concentration of E. coli was diluted in a
1 mL LB medium. This suspension was applied to the surface of BS or NPs·BS composite
films (10 × 15 × 0.8 mm3), placed in sterile chamber. The samples were incubated in
an ES-20 shaker incubator (Biosan, Latvia) at 37 ◦C and ~150 rpm. After exposition, the
concentration of bacteria was measured with a drop spectrometer.

The effects of BS or NPs·BS compositions on detachment of E. coli from a substrate
were evaluated by the technique described below. E. coli were cultured on Petri dishes
with LB agar. The Petri dishes were incubated 8 h at 37 ◦C. Further studies compositions
were applied on LB agar in Petri dishes at 1 h. Finally, compositions were removed and
concentrations of E. coli on compositions surfaces were evaluated by microscopy. Microor-
ganisms stained with crystal violet indicator and counted with microscope Micromed
MET (Micromed, Moscow, Russia) at magnification 1000. The experimental details were
described in work [43].

2.9. Assay of Biocompatibility with Mammalian Cells

The SH-SY5Y human neuroblastoma cell culture was chosen as standard in vitro test
system. These cells line widely used to study mammalian cells viability, proliferation,
differentiation, morphology and functions [44].

The cells were cultured by standard protocols in CO2 incubator (Binder, Tuttlingen,
Germany). Culture medium contained DMEM (Biolot, Moscow, Russia), 10% fetal calf
serum (Gibco, Dublin, Ireland) and 30 µg/mL gentamicin. Cells were cultured on surface
of BS and NPs·BS compositions samples (20 × 20 mm2) in Petri dishes (35 mm diameter)
in 3 mL of culture medium. The initial cells count was 104 cells per cm2 in each experi-
ment. Cells were cultured on the experimental samples within 3 days. Cells viability was
evaluated by fluorescence microscopy. Cells were stained 10 min with fluorescent probes
2 µg/mL Hoechst 33342 (Sigma, Burlington, MA, USA) and 2 µg/mL propidium iodide
(Sigma, Burlington, MA, USA) to evaluate the amount of live and dead cells, respectively.
An example of cells stained by Hoechst 33342 stains (marks all cells), and propidium
iodide (marks dead cells) are shown on Figure 1. Cells were analyzed with Leica DMI6000
confocal microscope (Leica, Wetzlar, Germany). In each sample ≤500 cells were counted
for analysis [45].

Cell proliferation was characterized using the mitotic index (MI). MI of cells were
evaluated in logarithmic phase of growth (3 days after seeding). MI is a proportion of
number of cells in mitosis to number of all living cells in a field of view. MI was eval-
uated by fluorescence microscopy. Cells were stained with Hoechst 33342 fluorescent
dye (Sigma, Burlington, MA, USA). Mitotic cells were identified by the chromatin prop-
erties in prophase (P), metaphase (M), anaphase (A), and telophase (T). In each sample
≤500 cells were taken in a further analysis. The mitotic index (MI) was calculated by the
formula MI = (P+M+A+T)/N × 100%, where P, M, A and T is the cells amount in prophase,
metaphase, anaphase and telophase mitosis stage, respectively, and N is amount of all
studied cells [46].

2.10. Statistics

Statistical processing was carried out with SigmaPlot, Origin and MS Exel software.
Data are presented as means ± standard errors of mean (SEM). In each condition results
of least 3 independent experiments were used for statistical processing. Criteria used to
evaluation of statistically significant of differences between sample means are indicated in
legends of corresponding figures.
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Figure 1. The example of photomicrograph of a cell culture. Green staining corresponds to mitochon-
dria (used to evaluate shape and size of cells); blue staining indicates nuclei of viable. Purple staining
indicates of nuclei of non-viable cells.

3. Results and Discussion

Silver oxide NPs were synthesized by dint of laser ablation technique in aqueous
solution. The nanoparticle size distribution was measured by two independent methods:
differential centrifugation and dynamic light scattering. The measurement results are shown
in Figure 2A. The main mode of the resulting distribution is 65 nm, and the half-width is
60 nm. The concentration of particles in the initial colloid was 3.5 × 108 particles per ml. The
zeta potential of the synthesized colloidal particles is in a wide range from −40 to −8 mV
with an average value of −22 mV (Figure 2B). Figure 2C shows the optical absorption
spectrum of the synthesized colloid, which corresponds to silver oxide nanoparticles.
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Figure 2. Physicochemical characterization of silver oxide NPs. (A)—Concentration (DLS) and size
(CPS) distribution of silver oxide NPs. (B)—Zeta potential distribution of synthesized silver oxide
NPs. (C)—Optical absorption spectrum of silver oxide NPs colloid. (D)—TEM microphotography
silver oxide NPs.
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Electron microscopy was performed to confirm the data of granulometric and spectral
analysis. TEM images of nanoparticles are shown in Figure 2D. In addition to the morphol-
ogy of nanoparticles, electron microscopy allows for elemental analysis (Figure 3). The
results of electron microscopy confirm that the synthesized nanoparticles correspond to
silver oxide, and their size is about 80 nm. The ratio of Ag/O atoms corresponds to the
oxide Ag2O.
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(E)—Spectrum of the sample (X-axis—Energy, keV, Y-axis—Distribution, pulse/sec/eV).

Borosiloxane polymer material was chosen as the carrier medium for silver oxide
nanoparticles. The picture of the borosiloxane sample and its structural formula is shown
in Figure 4. The molecular structure of borosiloxane is close to organosilicon compounds
containing Si-O and B-O fragments. The mechanical properties of borosiloxane can be
widely varied at the synthesis stage. This will depend on the molecular weight of PDMS,
temperature conditions, as well as functional additives [47]. In borosiloxane, covalent
bonds are not destroyed during any deformations. As a result, borosiloxane can undergo
multiple destructions while preserving the properties of the material.

Borosiloxane has a low surface energy, which excludes the possibility of a strong
chemical interaction between metal oxide nanoparticles and the polymer matrix [48,49].
Nevertheless, the formation of S-Ag interactions in the presence of aliphatic disulfides in
the matrix has been reported [50,51]. Thus, the synthesized materials should be considered
as compositions or blends rather than composites.

The high stability of the composition is due to the high viscosity of the polymer matrix,
which greatly increases the diffusion time of nanoparticles and almost completely eliminates
particle agglomeration. Measurements of rheological and bacteriostatic properties were
carried out for 3 months. During this time, no systematic changes were detected in the
results obtained.
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The results of rheological measurements are shown in Figure 5. The contribution of
viscous and elastic properties depends on the frequency of the applied force. The storage
modulus G’ increases monotonically with increasing oscillation frequency and reaches a
constant value in the high frequency region. At the same time, the loss modulus G” has a
characteristic peak in the region of 40–60 rad/s, after which there is a decrease in viscous
losses. Thus, the transition region from a viscous state to an elastic one can be adjusted at
the synthesis stage by the previously mentioned methods.
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Figure 5. Frequency (a) and temperature (b) dependences of viscoelastic properties of the
resulting compositions.

Figure 5 also shows the behavior of the rheological properties of the resulting compo-
sitions with varying dopant concentrations. An increase in the mass content of the dopant
leads to a significant increase in both components of the shear modulus. Synthesized
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compositions have a complex rheological response depending on the frequency of the
applied force due to microstructural rearrangements.

The resulting compositions are homogeneous, which is also confirmed by atomic force
microscopy (AFM). Figure 6 shows the topography of the composition surface. It is clearly
visible that there are no cracks, breaks and other defects on the surface of the material.
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Figure 6. AFM surface topography of a composition based on borosiloxane and silver oxide nanoparticles.

The crystallographic structure of the compositions was studied by X-ray (XRD) diffrac-
tion analysis. The X-ray diffraction patterns of the obtained compositions are characterized
by the presence of a wide diffraction peak in the range from 5 to 10◦ (Figure 7). The presence
of this peak mainly indicates the amorphous nature of the material. At the same time, the
presence of microcrystalline domains with a corresponding peak of 2θ = 12◦ is observed,
confirming the semi-crystalline nature of the material.
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Figure 7. X-ray diffraction patterns of the resulting compositions.

Metals with variable valence and their oxides can induce generation of ROS. The
effect of BS/silver oxide NPs on ROS production was studied. Hydrogen peroxide (H2O2)
and hydroxyl radicals (OH-radicals) were chosen as representative ROS. First ROS is the
most long-lived ROS (Figure 8A). Second ROS is the most reactionary (Figure 8B). It was
shown that BS did not change on H2O2 and OH-radicals concentration in samples. The
composition Ag2O NPs BS increased H2O2 concentration on 45, 300 and 700% at mass
percentage of Ag2O NPs 0.001, 0.01 and 0.1%. The composition Ag2O NPs BS increased
the OH-radicals concentration in samples by 35% at a NPs concentration of 0.001%. The
nanoparticle concentration of 0.01% and 0.1% increased the OH-radicals concentration in
samples by 2 and 3 times, respectively.
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Figure 8. Influense of a BS and composition Ag2O NPs·BS on the generation of ROS during 2 h at
40 °C. (A)—H2O2 generation. (B)—OH-radicals production. *—p < 0.05 vs. control. Data are shown
as means ± SEMs.

Generation of high amount of ROS can lead to damage to DNA and proteins. Con-
centrations long-lived reactive proteins species (LRPS) and 8-oxoguanine (8-oxoGua) were
evaluated. First compound is a protein oxidation damage marker. Second compound is
DNA damage marker. The effect of a composition Ag2O NPs·BS on rate of generation or
half-life of LRPS was studied (Figure 9A). BS without NPs did not change generation or
half-life of LRPS. Supplementation of Ag2O NPs in BS doubled the thickness of the rate
LRPS formation. Supplementation of 0.001% Ag2O NPs increased LRPS production at 25%.
With the Ag2O NPs concentration increased to 0.01%, the generation of LRPS increases by
75%, with a concentration of 0.1% by 125%. At the same time, Ag2O NPs did not change the
half-life of LRPS. The half-lives of LRPS in all samples are same and did not exceeded 5 h.

The effect of a composition Ag2O NPs·BS on the 8-oxoGua generation in vitro was
studied (Figure 9B). BS did not increase 8-oxoGua generation. The composition Ag2O
NPs·BS significantly increased a rate of 8-oxoGua generation compared with BS. At Ag2O
NPs concentrations of 0.001, 0.01 and 0.1%, the production of 8-oxoGua increased by 0.3,
2.1 and 2.5 times, respectively.

The influence of Ag2O NPs BS and BS on E. coli proliferation and adsorption of was
studied (Figure 10A). It was shown that BS without Ag2O NPs did not change the growth
E. coli bacteria. Supplementation of Ag2O NPs in BS decreased E. coli amount on studied
materials by 62% at 0.001% Ag2O NPs, by 94% at 0.01%Ag2O NPs and by 97% at 0.1%
Ag2O NPs.

The effect of a composition Ag2O NPs·BS on E. coli bacteria adhesion were investigated
(Figure 10B). BS without Ag2O NPs decreased adsorption the E. coli bacteria from the
substrate in 10 times. The supplementation of BS by 0.001 and 0.01% Ag2O NPs did not
change on adhesion the E. coli. Increasing mass concentration of Ag2O NPs in the dose
to 0.1% decreased bacteria adsorption in 250% times compared with BS. The amount of
bacterial cells on the 0.1% Ag2O NPs·BS decreased in 27 times compared with control.
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generation. (A)—Production of long-lived reactive protein species. (B)—Production of 8-oxoGua.
*—p < 0.05 versus control. Data are shown as means ± SEMs.
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Figure 10. Effect of BS and composition Ag2O NPs·BS on the Escherichia coli proliferation and
adhesion. (A)—E. coli proliferation during 24 h. (B)—Bacteria count on a substrate after detachment.
*—p < 0.05 vs. control. Data are shown as means ± SEMs.

The influence of BS and composition Ag2O NPs·BS on the mammalian cells survival
was investigated (Figure 11A). The amount of dead cells on culture plastic (control) was not
more than 4%. The same amount of dead cells was observed on BS and composition 0.001%
Ag2O NPs·BS. Medical alloy nitinol (NiTi) was used as positive control. The amount of
dead cells was about 50% higher (~6%) on nitinol. In cell culture on a composition 0.01 or
0.1% Ag2O NPs·BS approximately 5.5 or 6.5% of cells were dead, respectively.
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Figure 11. Effect of a BS and composition Ag2O NPs·BS the of cell line SH-SY5Y proliferation,
adhesion and survival. (A)—Survival of cells. (B)—Mitotic indexes. (C)—Density of cells monolayer.
(D)—Space of surface without cells. *—p < 0.05 vs. control, **—p < 0.05 vs, NiTi. Data are shown as
means ± SEMs.

The proliferation rate of cells was studied using mitotic index in the logarithmic phase
of growth (Figure 11B). The mitotic index in control was 1.2%. Nitinol increased mitotic
index up to 1.9%. The mitotic index values on BS and composition Ag2O NPs·BS were
0.9–1.3%.

The SH-SY5Y culture density in control was 1.1 × 103 cells/mm2 (Figure 11C). The
density of SH-SY5Y culture on nitinol increased up to 1.45 × 103 cells/mm2. The density of
SH-SY5Y cells BS was 1.15 × 103 cells/mm2, which comparable with control. The density
of SH-SY5Y cells on composition Ag2O NPs·BS reached 8.0–1.15 × 103 cells/mm2.

Morphological analysis was performed on 3 day of cell growth on studied samples.
The space of free surface in control was ~30%. Nitinol decreased free surface to 25%.
BS and composition 0.001% Ag2O NPs·BS also decreased free surface to 26 and 27%,
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respectively. Therefore 0.001% Ag2O NPs·BS is suitable for cell adhesion and spreading
(Figure 11D). Compositions 0.01% Ag2O NPs·BS and 0.01% Ag2O NPs·BS did not affect
space of free surface.

The rheological behavior of synthesized compositions with silver oxide nanoparticles
is mainly depends on the polymer matrix medium. Therefore, they may be easily adjusted
for various tasks at the synthesis stage.

The generation of high amount of ROS can limit application of NPs of MexOy/Me in
medicine [52]. ROS production is a main mechanism of MexOy/Me NPs cytotoxicity [53], but
potential employment of MexOy NPs in wounds healing [54,55] and cancer therapy [56–61]
is discussed. In present work BS itself did not induce production of ROS. The addition
of Ag2O NPs in BS significantly increased ROS production. Supplementation of ≥0.1%,
Ag2O NPs increased H2O2 production on 700%, and OH-radicals production on 300%. The
key required property of MexOy/Me NPs composites is balanced cytotoxicity. MexOy/Me
NPs·polymer composite must kill bacteria, but not act on mammalian cells. It was shown
that the Ag2O NPs have a more pronounced antibacterial effect against Escherichia coli
than solid Ag2O [62]. Our data on the high antibacterial action of the composition Ag2O
NPs·BS are in agreement with literature data. A good marker of oxidative stress of cells and
oxidation of proteins and DNA are levels of LRPS and 8-oxoGua, respectively [63–65]. We
observed that BS does not change the production of LRPS and 8-oxoGua. At a concentration
of silver oxide nanoparticles of 0.1 wt%, the concentrations of LRPS and 8-oxoGua increased
by 2–2.5 times compared to pure BS, approximately 4 molecules of 8-oxoGua per hundred
thousand base pairs are formed. This roughly corresponds to the effect of 5 Gy dose of
ionizing radiation (radiation-chemical yield 0.78 molecules/100 eV). It is known that 4 Gy
is absolutely a lethal dose for humans.

Our data about the level of cytotoxicity of Ag2O NPs are lower than literature data in
10–20 times [66–68]. We proposed that the difference between our and literature data are
caused by differences in applied NPs concentration. We used lesser doses of Ag2O NPs.

The BS matrix itself decreased bacterial adsorption to substrate by in 10 times com-
pared with control. The addition of 0.1 Ag2O NPs decreases the count of bacteria in culture
medium in 33 times and decreased the bacterial adhesion in 2.5 times. In other works, on
the addition of silver to various polymer bases, particles of Ag [69–71], Ag2O [70,72,73],
and AgNO3 [70] are usually used. In literature NPs concentrations often are more than
1% [70,72], wherein the antibacterial activity of the obtained compositions is less than that
of Ag2O NPs·BS [73]. Such composites have high antibacterial action against both Gram-
positive and Gram-negative bacteria, for example strains of Klebsiella, Listeria, Staphylococcus
and Bacillus [74–78].

Ag+ cations are known to replace other important metal cations, such as Zn2+ and
Ca2+ in active centers of enzymes, disrupt electron transport chain and oxidative phospho-
rylation, which cause cell death. In addition, it was suggested that silver ions released by
NPs could facilitate the interaction with phosphorous DNA fragments, causing inactivation
of DNA replication [52,79]. In present study the effect of the Ag2O NPs·BS composite on
mammalian cells viability and proliferation (evaluated by mitotic index) were researched.
BS itself did not influence on cell viability and proliferation. The supplementation of
0.1 Ag2O NPs into BS increased the amount of dead cells in 50% and decreased mitotic
index in 30%. Obtained data are in agreement with the literature data on the cytotoxicity of
MexOy NPs [80–88]. To evaluate the created materials, readers are invited to compare the
properties of our material and the closest analogues created earlier (Table 1).

Thus, a promising material based on BS and Ag2O NPs has been developed. Obtained
material exhibits significant bacteriostatic properties and does not exhibit acute toxicity
towards eukaryotic cells. Further directions of research of these composite materials can
go in the following directions: (1) Development of composite materials that significantly
change the mechanical properties in the transition from the temperature of the human
body to room temperature. (2) Investigation of the mechanical properties of materials
during long-term operation. (3) Investigation of the possibility of composition regeneration.
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(4) Evaluate of the influence of nanoparticle size on the main features of the composition.
(5) Study of clustering and aggregation of silver oxide nanoparticles with each other and
with biological material. (6) Development of compositions with an ordered structure.
(7) Investigation of the antibacterial properties of composite materials, including on differ-
ent types of bacteria. (8) Investigation of the possibility of using a composite material in the
fight against biofilms. (9) Research on the long-term effects of compositions on eukaryotic
cells. (10) Investigation of the possibility of using the composition in biomedical research,
agricultural research, environmental work, the use of the material in the manufacture of
clothing and packaging.

Table 1. Comparison of physical and biological properties of previously manufactured nanocompos-
ites based on polymers and nanoparticles containing silver.

Materials NPs
Size, nm Bacterial Strains Effect * MIC/MBC Results R **

Chitosan
+

Ag2O NPs
300 S. aureus, E. coli BS –

coating resistant to external
influences; antibacterial

effect
[89]

Chitosan/
PVP

+
Ag2O NPs

10–30 S. aureus, E. coli BS – the prepared film has more
wound healing property [90]

Chitosan
+

Ag2O NPs,
prepared

under various
conditions

43–55 S. aureus BS, BC

MIC 4.5 ± 1.5
µg/mL, MBC 19 ±
3 µg/mL for UCLA

8076;
MIC 6 ± 0 µg/mL,

MBC 22 ± 0
µg/mL, for 1190R

nanocomposites exhibit
higher antibacterial activity
than any component acting

alone

[91]

Polyester
(PES) and
polyamide
(PA) fibers

+
Ag NPs

10 S. aureus, E. coli BS –

corona-treated PES and PA
fibers supplemented by

silver NPs exhibited more
pronounced antibacterial
effect in comparison with

fibers without NPs

[92]

Polyurethane
(PU) + Ag

NPs

∼5
B. subtilis

E. coli BS –
PU–Ag 30 ppm had the
maximum bacteriostatic

effect

[93]
S. aureus,
B. subtilis,

E. coli,
P. aeruginosa,

K. pneumoniae

Epoxy/
clay

composite +
Ag2O NPs

5–20

S. aureus
(ATCC11632); B. subtilis

(ATCC11774); E. coli
(MTCC40); P.

aeruginosa
(MTCC7814); K.

pneumoniae
(ATCC10031)

BS – Antibacterial activity against
all tested strains [94]

Ag-doped
poly (ε-

caprolactone)
(PCL) fibers

- E. coli,
P. aeruginosa BS –

antibacterial activities
against E. coli of the all
composites were equal

(nearly 100), the antibacterial
activity against P. aeruginosa

depended on spinning
temperature

[95]
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Table 1. cont.

Materials NPs
Size, nm Bacterial Strains Effect * MIC/MBC Results R **

poly-N-
isopropylacryla

-mide
(pNIPAM)

+
Ag NPs

1–10 E. coli,
S. aureus BS –

significant bacteriostatic
activity against

gram-negative E. coli and
gram-positive S. aureus,

depending on the size of
nanoparticles and the

amount of AgNO 3 used in
the synthesis

[96]

Chitosan
+

Ag NPs
1–50

E. faecalis,
S. typhimurium,

L. monocytogenes,
P. aeruginosa

BS

MIC 1.56 µg/mL
for E. faecalis;

3.125 µg/mL, for
S. typhimurium;
7.8 µg/mL, for

L. monocytogenes;
12.5 µg/mL, for

P. aeruginosa

nanocomposites exhibited
bacteriostatic activity, but
did not exhibit antifungal

activity

[97]

composite
resins

containing 1%
Ag2O and
ZnO NPs

20 S. mutans,
Lactobacillus sp. BS –

composite resins containing
zinc oxide and silver

nanoparticles can
significantly inhibit the

growth of two important
microorganisms in the oral
cavity: Streptococcus mutans

and Lactobacillus

[98]

*—BS—bacteriostatic, BC—bactericidal; **—R—references.

4. Conclusions

A borosiloxane-based composition with silver oxide nanoparticles has been synthe-
sized and characterized for further biomedical applications. The polymer matrix is chosen
in such a way that it does not affect the growth and viability of both bacteria and mammalian
cells. The resulting composition with silver oxide nanoparticles has strong bacteriostatic
properties with respect to E. coli culture, but low cytotoxicity with respect to mammalian
cells. The rheological behavior of the composition at low dopant contents is determined
mainly by the polymer matrix and is strictly controlled at the synthesis stage. The rheologi-
cal features of borosiloxane increase the detachment of bacteria from the substrate by one
order of magnitude, and the addition of 0.1 wt% Ag2O nanoparticles reduces the density of
bacterial cultures by 3 times and increases the detachment of bacteria by another 2.5 times.
The resulting polymer composition with Ag2O nanoparticles has great potential in the field
of hyenas and dry disinfectants.
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