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Abstract: This work reports the fabrication of iron oxide mesoporous magnetic nanostructures
(IO-MMNs) via the nano-replication method using acid-prepared mesoporous spheres (APMS) as
the rigid silica host and iron (III) nitrate as the iron precursor. The obtained nanosized mesostruc-
tures were fully characterized by SEM, TEM, DLS, FTIR, XRD, VSM, and nitrogen physisorption.
IO-MMNs exhibited relatively high surface areas and large pore volumes (SBET = 70–120 m2/g
and Vpore = 0.25–0.45 cm3/g), small sizes (~300 nm), good crystallinity and magnetization, and
excellent biocompatibility. With their intrinsic porosities, high drug loading efficiencies (up to 70%)
were achieved and the drug release rates were found to be pH-dependent. Cytotoxicity, confocal
microscopy, and flow cytometry experiments against different types of cancerous cells indicated that
Dox-loaded IO-MMNs reduced the viability of metastatic MCF-7 and KAIMRC-1 breast as well as
HT-29 colon cancer cells, with the least uptake and toxicity towards normal primary cells (up to
4-fold enhancement). These results strongly suggest the potential use of IO-MMNs as promising
agents for enhanced and effective drug delivery in cancer theranostics.

Keywords: magnetic nanoparticles; mesoporous; iron oxide; drug delivery; anticancer drugs; chemotherapy

1. Introduction

Mesoporous magnetic materials have been thoroughly investigated in a wide spectrum
of industrial and research areas ranging from catalytic, photonic, and electronic devices
and batteries to biological, biomedical, and drug delivery applications [1,2]. It is well
recognized that mesoporous materials exhibit exceptional unique properties that emerge
as a consequence of their small sizes, high surface areas, large pore volumes, and tunable
pore structures [3]. The functionality of such materials can be significantly improved when
their sizes are confined to the nanoscale and their morphologies are controlled to have a
high surface area. In addition, since mesoporous magnetic materials are both magnetic and
porous, their use in medicine as drug carriers, imaging agents, and hyperthermia vehicles
is highly appealing [4,5]. In fact, controlled drug delivery systems are incessantly explored
due to the promising potential to enhance the therapeutic efficacy of chemotherapeutic
drugs and reduce the systemic conventional side effects in cancer treatments. Of the
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various drug delivery systems [6,7], mesoporous magnetic nanomaterials are especially
attractive, because they can entrap large amounts of drug molecules in their pores, and
subsequently release them inside the cells. In addition, their minimal toxicity, stability, and
biocompatibility due to the iron oxide composition make such mesostructures particularly
unique for clinical applications. Magneto-based particles of similar composition have been
enormously used as magnetic imaging probes, hyperthermia agents, and magnetic-guided
drug delivery carriers for cancer theranostics [8]. Nevertheless, despite such distinctive
potentials, fabrication of nanosized mesostructures of iron oxides containing large surface
areas and pore volumes remain extremely challenging.

Many synthetic routes have been suggested to produce nano-scaled mesostructures of
iron oxides. In fact, the majority of research has focused on preparation of iron oxide mag-
netic nanoparticles (IO-MNPs) coated with mesoporous silica (core/shell) or embedded
in silica matrix [9–12]. The challenges and difficulties encountered in the preparation of
mesoporous magnetic metal oxides are well documented [13], with limited improvements
in recent years [14]. The synthetic methods for their formation are largely classified into
two major routes: Soft and hard templated methods [15–18]. The soft template process
employs the self-assembly induced by amphiphilic block copolymers or surfactants which
involves complex sol-gel chemistries and typically leads to materials with low surface
areas and pore volumes [19]. On the other hand, in the hard template approach, guest
materials replicate the inverse structures of the inorganic host, producing a mesostructured
replica [20–23]. This is preferred over the soft techniques due to the abrupt gelation char-
acteristics, difficulties in the direct derivation into homogeneous crystalline phase, and
frequent collapse of mesostructures during the synthesis [24]. In particular, mesoporous
silica, with ordered or disordered channels, which possess uniform pores, remarkably
high surface areas, and high silanol densities, act as an ideal host for the fabrication of
nanostructured mesoporous metal oxides [25–29]. For instance, iron (III) salts were used as
precursors that can either co-precipitate with the silica source or infiltrate into porous silica,
yielding IONPs embedded inside the silica matrix after thermal treatments [30,31]. More-
over, synthesis of ordered and disordered mesoporous Fe3O4 and Fe2O3 with crystalline
walls have been elegantly reported using mesostructured 3D bicontinuous KIT-6 and 2D
SBA-15 as the silica templates [32–35]. However, according to our knowledge, very few
reports have prepared mesoporous iron oxide nanoparticles for therapeutic drug delivery
applications [36–38]. Recently, we synthesized IO-magnetic mesoporous microparticles co-
loaded with the hydrophilic chemotherapeutic drug (daunorubicin) and the hydrophobic
hormonal drug (tamoxifen), and showed enhanced synergistic anticancer chemo/hormonal
therapy in both cancerous cells and patient tumor biopsies [39].

Herein, we report the preparation of iron oxide mesoporous magnetic nanostructures
(IO-MMNs) via nano-replicated impregnation-etching process using acid-prepared meso-
porous spheres (APMS) as the silica host and iron (III) nitrate as the iron precursor. The
fabricated IO-MMNs exhibited uniform spherical morphologies, high surface areas, large
pore volumes, and controllable pore structures, especially beneficial for enhanced therapeu-
tic drug delivery. In vitro release studies, cytotoxicities, intracellular uptake, and abilities
to kill different types of cancerous cells were systematically evaluated. The anticancer
drug-loaded IO-MMNs established in this work can potentially open new opportunities
for in vivo selective and directed cancer theranostics.

2. Materials and Methods
2.1. Materials

Unless otherwise indicated, all chemicals and solvents were obtained from com-
mercial suppliers and used as received without further purification. Iron (III) nitrate
nonahydrate (Fe(NO3)3·9H2O), zinc metal powder, cetyltrimethylammonium bromide
(CTAB), tetraethyl orthosilicate (TEOS), sodium fluoride (NaF), conc. HCl, dimethyl sulfox-
ide (DMSO), ammonium hydroxide (NH4OH), and the anticancer drug Doxorubicin (Dox)
were all purchased from UFC Biotechnology (Riyadh, Saudi Arabia). Dulbecco’s phosphate
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buffered saline (DPBS), phosphate buffered saline (PBS), advanced Dulbecco’s modified
eagle medium (DMEM), phenol red-free DMEM, fetal bovine serum (FBS), Hoechst 33,342
stain, L-glutamine, and penicillin-streptomycin (Pen-Strep) were all purchased from Invit-
rogen or UFC Biotechnology. MTT (thiazolyl blue tetrazolium bromide) was purchased
from Bioworld (Visalia, CA, USA). All cell lines were purchased from the American Type
Culture Collection (ATCC) and grown in RPMI 1640 medium supplemented with 10% FBS
and 1% penicillin/streptomycin. Human cancerous cells used in this study are: MCF-7
(Michigan Cancer Foundation-7 metastatic breast cancer cell line isolated from a 69-year-
old Caucasian woman), KAIMRC-1 (naturally transformed breast cancer cell line from
an Arab woman of age 62 suffering from stage IIB breast cancer isolated from one of the
primary breast tumor tissue), HT-29 (human colon adenocarcinoma cell line isolated from
the primary tumor of a 44-year-old Caucasian female), and primary normal fibroblast-like
cells used as controls.

2.2. Characterization

SEM images were processed using an FEI NanoSEM 450 scanning electron microscope
at 15 kV. TEM images were collected on a JEOL-JEM 1400 operating at 120 kV using
Gatan camera with TEM Center Ver.1.4.3222 (TEM Operating & Acquisition System).
FTIR spectra (400–4000 cm−1) were recorded as KBr pellets using Shimadzu IRAffinity-
1. DLS and zeta potential measurements were assessed on Malvern Zetasizer Nano ZS
instrument. X-ray powder diffraction (XRD) measurements were performed using Bruker
D8 Discover diffractometer (θ–2θ) equipped with Cu-Kα radiation (λ = 1.5406 Å). Magnetic
measurements were measured at room temperature using LakeShore 7404 model vibrating
sample magnetometer (VSM) having a 1.8 Tesla magnet. Calcinations were carried out
under flowing air atmosphere. The following heating profile was used for calcinations:
2 ◦C/min ramp to 550 ◦C with 4 h hold at 550 ◦C. Flow cytometry measurements were
assessed using BD FACSCantoTM II Flow Cytometer. Confocal images were visualized
using inverted Zeiss LSM 780 multiphoton laser scanning confocal microscope equipped
with 20× and 40× (oil immersion) objectives and axiocam cameras.

2.3. Preparation of IO-MMNs

APMS silica template was first prepared following our previous work [40,41] using
CTAB (10 g), H2O (200 mL), conc. HCl (20 mL), TEOS (20 mL), and ethanol (70 mL). NaF
(0.5 M in water, 20 mL) was then added and stirring was continued until turbidity was
reached. The mixture was then quickly transferred to a Teflon bottle and heated at 100 ◦C
for 120 min. The resulting APMS precipitate was filtered, washed with water and ethanol,
and dried under vacuum. Calcination at 550 ◦C using 2 ◦C/min ramp under air afforded
calcined APMS ready for iron impregnation, and 200 mg of APMS in 10 mL water was
sonicated, followed by the addition of 1 g of Fe(NO3)3·9H2O aqueous solution (5 mL). Trace
amounts of zinc metal were then added, and the reaction mixture was vigorously stirred
for 24 h at room temperature. A change in color was observed and the resulting material
was decanted to separate the zinc, purified by repeated centrifugation/washing steps with
water and ethanol (ethanol being the final wash), and finally dried under vacuum. This
process was then repeated using 0.85 g of Fe(NO3)3·9H2O solution to ensure complete iron
impregnation. The second iron impregnation is crucial, as it allows the complete filling
of the mesopores. The obtained product was then heated slowly to 350 ◦C at 2 ◦C/min
and then left at this temperature for 3 h. Finally, the sample was treated twice with hot
5 M NaOH solution to remove the silica template, purified by centrifugation, washed with
water and ethanol, and then dried to afford IO-MMNs.

2.4. Drug Loading and Release

One milliliter of aqueous dispersion of IO-MMNs (1.0 mg/mL) and aqueous Dox
solution (200 µg/mL) were gently shaken on a rotary shaker for 36 h. Dox@IO-MMNs
were then isolated via centrifugation, washed repeatedly with water until no drug was
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detected in the supernatant, and finally re-dispersed in water. Loading efficiencies were
determined by UV-vis spectroscopy. The absorbance of the residual drug in the supernatant
was measured (λmax = 490 nm for Dox) and the percentage of drug loading (w/w%) was
then quantified as in our previous reports [42,43]. For drug release, 5 mg of Dox@IO-MMNs
were suspended in 1 mL PBS buffer at two different pH values (pH = 7.4 and pH = 4.5)
and gently rotated at 37 ◦C. At specific time points, supernatants were taken from each
tube, measured by UV-vis, and returned to their respective tubes after measurements. The
percent drug release was calculated as per our earlier work [42,43].

2.5. Cell Viability Assay

Cell viability of the different cancer cells exposed to IO-MMNs was determined using
MTT assay. The cell lines were seeded in a 96-well plate at a density of 5 × 104 cells/well
and incubated in 95%/5% humidified air/CO2 at 37 ◦C. After 24 h, the media was removed
and fresh phenol red-free DMEM containing 0.5% FBS was added to the cells. Cells were
then treated with equivalent concentrations of IO-MMNs, Dox@IO-MMNs, or free Dox
(15, 12.5, 10, 7.5, 5, and 1.5 µL from the prepared tubes) in 200 µL supplemented DMEM.
After 24 h of incubation, the media was removed, and the cells were washed with PBS. Cell
viability was then determined using the MTT viability assay following the manufacturer’s
protocol. Experiments were conducted in triplicates and mean averages with standard
deviations were plotted.

2.6. Live Confocal Imaging

Cells were incubated in an 8-well dish for 24 h prior to IO-MMNs exposure. After
removing the supernatant, cells were then exposed to Dox@IO-MMNs, free Dox, or free
IO-MMNs at equivalent concentrations incubated for different periods of time (6 and 24 h).
The cells were then stained with Hoechst 33,342 and/or Calcein (when needed) and then
allowed to settle down for 20 min before live microscopic visualization (no fixation).

2.7. Fluorescence-Activated Cell Sorting (FACS)

First, FITC@IO-MMMs were prepared following literature procedure. Briefly, 22 µL of
FITC was reacted with 22 µL of APTES in 1 mL ethanol for 2 h in the dark. Then, 50 µL of
the above solution was added to 1 mL of IO-MMMs (1 mg/mL) followed by the addition of
50 µL of NH4OH. The reaction was shaken for 48 h, centrifuged, and then washed several
times with ethanol and water until no FITC was detected in the supernatant. Cell lines
(1 × 105 cells per well) were seeded in 6-well culture dishes, incubated for 24 h, and then
incubated with FITC@IO-MMMs (final concentration 35 µg/mL) for different time periods.
Cells were collected, pelleted, washed with PBS twice, and then transferred to FACS tubes
for analysis. Flow cytometry measurements were then assessed in triplicates.

3. Results and Discussion
3.1. Preparation and Characterization of IO-MMNs

The detailed synthetic procedure and therapeutic application of IO-MMN nanoplat-
form is illustrated in Figure 1. The construction of IO-MMNs is based on the nano-
replication wet-etching method [39], using APMS as the silica host and iron(III) nitrate
as the iron precursor. Briefly, APMS (~2 µm and 5 nm pore diameters) was first synthe-
sized [41], followed by in situ reduction of iron(III) salt precursors (i.e., aqueous solution of
Fe(NO3)3) during impregnation process, subsequent thermal heating, and finally etching
the silica with strong base to afford IO-MMNs (Figure 1). Iron precursors fill the continuous
3D mesopore system, which are subsequently replicated to spherical iron oxide nanoclus-
ters within the silica template during the drying and heating treatments. Interestingly, it
was remarked that when iron(III) nitrate was used instead of iron(III) chloride as the iron
source, smaller sized IO-MMNs compared to IO-MMMs were obtained. This is similar to
earlier observation where Fe(III) nitrate used as the iron precursor produced smaller sized
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iron oxide (~20 nm) compared to iron oxide nanoparticles (sizes ~120 nm) obtained from
the Fe(III) chloride precursor [44].

Figure 1. Schematic illustration for the preparation of iron oxide mesoporous magnetic nanostructures (IO-MMNs) from
an acid-prepared mesoporous sphere (APMS) silica template and their subsequent loading with anticancer drugs for
pH-dependent drug delivery.

The morphology and size for IO-MMNs were characterized by scanning electron
microscopy (SEM) and transmission electron microscopy (TEM). Figure 2a–c shows SEM
images of APMS, IO-impregnated APMS, and the final replicated IO-MMNs at different
magnifications. A typical averaged sized APMS (~1.5–2 µm) with a spherical-like morphol-
ogy was obtained. IO-APMS intermediate indicated iron oxide (as dots) infused on the
APMS spheres. IO-MMNs, on the other hand, appeared to have bumpy-like structures
with sizes about 250–350 nm. TEM images were then conducted to better elucidate the
structures at different steps. From the TEM images (Figure 2d–f), it is evident that the
original mesoporous silica system is replicated and that the obtained constructs possess
mesopores of nanoclustered iron oxide. While the APMS surface appeared unblemished,
IO-APMS intermediate showed iron oxide clustering within the pores and on the surface of
APMS. Appealingly, IO-MMNs strikingly display the mesostructured morphology, indicat-
ing the disordered interconnected channels present in silica template before etching. Next,
the mesoporous nature of IO-MMNs was examined by nitrogen physisorption isotherms.
As seen in Figure 3a, sequential iron impregnation indicated a progressive decrease in
the Brunauer-Emmett-Teller surface area (SBET) and pore volume (Vpore) compared to the
original APMS sample having SBET = 740 m2/g and Vpore = 1.35 cm3/g. These results
clearly indicate that the iron oxide precursors are incorporated and impregnated inside
the inner pore surfaces of the silica. Nitrogen physisorption isotherms showed that the
final replicated IO-MMNs exhibit quite high SBET of 120 m2/g and Vpore of 0.45 cm3/g
(Figure 3b).

Type IV isotherm pattern is clearly observed for IO-MMNs, consistent with reported
porosities for mesoporous iron oxide materials. The inset of Figure 3a,b displays Barrett,
Joyner, and Halenda (BJH) plots indicating pore size distributions estimated from des-
orption isotherms of each sample. A BJH plot for IO-MMNs is observed to have a major
average pore size diameter of ~15 nm that is broader than the samples before etching
(d ~7.5 nm). The decrease of pore volume accompanied with an increase in pore diame-
ter indicates that the IONPs were generated within the internal pores with formation of
interparticle spaces.
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Figure 2. Scanning and transmission electron microscopy images. SEM images of (a) APMS silica template, (b) iron
impregnated APMS (IO-APMS), and (c) IO-MMN replicated structures. Respective TEM images of (d) APMS, (e) IO-APMS,
and (f) IO-MMN. The electron microscopy images remarkably show the successful formation of iron oxide mesostructures.

Figure 3. Nitrogen physisorption isotherms for (a) APMS and its sequential loading with iron; (b) final IO-MMNs after
etching and removal of the silica template (inset: Corresponding pore size distribution plots). (c) Wide-angle XRD pattern
of IO-MMN. (d) Field-dependent magnetization hysteresis loops of IO-MMN at room temperature fitted with Langevin
function. The results depict the successful formation of IO-MMNs with high surface area and controllable pore volumes,
excellent crystallinity, and superparamagnetic nature.
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It is worth pinpointing that this experimental method was repeated several times
using different APMS samples to obtain IO-MMNs having SBET = 70–120 m2/g, Vpore =
0.25–0.45 cm3/g, and dpore = 15–30 nm. According to our knowledge, the IO-MMNs ob-
tained here possess relatively higher surface areas and controllable pore volumes compared
to other iron oxide mesostructured nanomaterials reported in the literature [27,34,45,46].
Fourier-transform infrared (FTIR) was then extended to identify the inorganic composition
of IO-MMNs. Similar to our earlier observation [39], FTIR spectroscopy for the obtained
IO-MMNs confirmed the characteristic absorption stretching bands of iron oxide Fe-O
(~535 and 600 cm−1) and O-H (~3200–3600 cm−1), pinpointing the formation of iron oxide
(i.e., Fe2O3). To better understand which phase of iron oxide we have, X-ray diffraction
(XRD) of IO-MMNs were conducted. As can be seen from Figure 3c, the sample is a
mixture of hematite (α-Fe2O3) and maghemite (γ-Fe2O3) phases. The most dominant
crystalline phase is α-Fe2O3 (JCPDS No. 79-0007), while the presence of (220), (400), and
(511) peaks confirm the presence of γ-Fe2O3 (JCPDS No. 39-1346) [47]. This is probably
due to thermal heating conditions conducted under normal air conditions without inert
argon. Magnetization-field (M-H) curves for the synthesized IO-MMNs were recorded
at room temperature of 300 K (Figure 3d). It can be seen that the magnetization curve
had almost zero retentivity and coercivity, indicating its superparamagnetic nature. This
is crucial as in the presence of an external magnetic field (H), these particles could be
easily magnetized to reach their saturation magnetization (MS), but when H was removed,
their overall magnetic moment dropped back to zero, making them extremely stable in
dispersion states and ready to be used for biomedical applications. In order to confirm
the superparamagnetic nature of the obtained IO-MMNs, the experimental magnetization
values were fitted with Langevin theory of paramagnetism using the following equation:

M(H, T) = MS

⌊
coth

(
mNPH

kBT

)
− kBT

mNPH

⌋
where mNP is nanoparticle magnetic moment and kB is Boltzmann constant. Fitting the
equation to the experimental magnetization shows that the M-H curves fitted well with the
Langevin model (Figure 3d). Moreover, the MS of IO-MMNs was calculated to be = 3.82
emu/g, which is largely higher than that reported for bulk α-Fe2O3 (0.3 emu/g) [48]. This
can be explained by the presence of maghemite in the sample, which induced an increase
of saturation.

Finally, hydrodynamic particle size and zeta potential measurements were recorded
by DLS. IO-MMNs dispersed in water indicated an average hydrodynamic radius (DH)
= 310 ± 12 nm and average zeta potential ξ = −13.6 ± 3.16 mV. The relatively sharp
peak at ~300 nm further confirmed the core size obtained by electron microscopy and
pinpointed the uniform size distribution of IO-MMNs (PDI ~0.6). All the above results
confirm the successful formation of IO-MMN mesostructures and their excellent water
dispersity, making them suitable for biological cellular assays.

3.2. Drug Loading and Release

With the IO-MMNs in hand, we first examined drug loading and release of the anti-
cancer chemotherapeutic drug, Dox, typically used in routine chemotherapeutic treatments
for patients with various types of cancer (mainly breast, colon, bladder, and leukemia). To
this end, loading of Dox into the pores of IO-MMNs was first studied. It was found that up
to 70% of Dox (i.e., 140 µg of Dox/mg of MMNs) was loaded onto IO-MMNs, as evident
from absorption spectroscopy (Figure 4a).
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Figure 4. Drug loading and release of Dox@IO-MMNs. (a) UV-vis spectroscopy of IO-MMN aliquot before and after Dox
loading; (b) size and zeta potential distribution graphs showing hydrodynamic sizes (DH = 290 nm) and zeta potential
(ξ = −35 mV) of Dox@IO-MMNs dispersed in water; (c) FTIR spectra for free Dox (above) and Dox@IO-MMNs (below)
showing the peaks associated with Dox and hence its successful loading; (d) Dox release profiles of Dox@IO-MMNs at two
different pH values, indicating the pH-dependent release of Dox at acidic (4.5) but not at physiological (7.4) pH.

DLS and zeta potential measurements of Dox@IO-MMNs in aqueous media revealed
size (DH ~290 ± 9.9 nm) and zeta potential (ξ = −15 ± 3.25 mV) (Figure 4b), pinpointing
that the particle size, uniformity, and surface properties did not significantly change after
drug loading. This proves that the drugs are in fact incorporated within the mesopores
of IO-MMNs. FTIR spectrum for Dox@IO-MMNs clearly showed the same characteristic
absorption peaks for Dox with distinctive bands at ~3400 cm−1 due to O-H/N-H and
~2900 cm−1 for C-H stretching vibrations (Figure 4c). Importantly, the spectrum showed
the appearance of Fe-O stretching at ~600 cm−1, confirming the presence of iron oxide,
and the disappearance of the band at 1730 cm−1, corresponding to carbonyl (C=O) of Dox.
This indicates the successful loading of Dox into IO-MMNs via the involvement of -NH2,
-OH and C=O groups, consistent with our previous reports. Mild shifts in IR spectra upon
drug loading along with DLS measurements indicate that no significant structural changes
occurred to either the drugs or the IO-MMN constructs upon drug loading.

Next, in vitro drug release studies of Dox@IO-MMNs in PBS buffer was investigated
at neutral (7.4) and acidic (4.5) pH values (Figure 4d). While almost negligible amounts
of less than 10% drug release was observed at neutral pH, a rather faster but sustained
drug release was evident at acidic pH representing ~50–60% of Dox content after 24 to
48 h. From the release studies, it is apparent that Dox is tightly held within the IO-MMN
pores due to strong electrostatic interactions and hydrogen bonding between the drugs
and particle/pore surfaces at neutral pH. Because of the protonation effect at lower pH
values [49], those interactions are broken, causing sustained-release of Dox. This controlled
drug-release at neutral pH with faster but sustained release at low acidic pH is particularly
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appealing for drug delivery systems. It is anticipated that the acidic environment of late
endosomes/lysosomes inside the cells will facilitate drug release from IO-MMNs, while the
release at normal physiological conditions will be much slower, reducing unwanted side
effects [43,49,50]. This relatively slow but controlled release of Dox is desirable to reach
cytotoxic concentrations of the drug once internalized inside the cells, achieving efficient
and sufficient dosages of the anticancer drug in the process of cancer therapy. Thus, the
pH-dependent drug release properties of the IO-MMNs found here make it a promising
pharmaceutical carrier for effective therapeutic drug delivery.

3.3. Biological Assays

Cell viability by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, com-
monly known as the MTT cytotoxicity assay, was evaluated. While the unloaded free
IO-MMNs were not toxic to any of the tested cells up to 75 µg/mL, Dox@IO-MMNs were
found to be cytotoxic to both MCF-7 and KAIMRC-1 breast cancer cells (proliferation inhi-
bition IC50 = 3.58 µg/mL Dox, and IC50 = 6.83 µg/mL Dox respectively) and to HT-29 colon
cancer cells (IC50 = 6.93 µg/mL Dox) (Figure 5). From the IC50 graphs, Dox@IO-MMNs
showed ~2-fold enhanced cytotoxicities against the metastatic breast cancer MCF-7 in
comparison to KAIMRC-1, probably due to their growth in 3D conformation [51,52]. The
potency of Dox@IO-MMNs on MCF-7, KAIMRC-1, and HT-29 was slightly better than the
potency of free Dox (IC50 = 4.32, 7.44, and 8.09 µg/mL, respectively), which was found
potent to the three different cells at almost equivalent inhibitory concentrations (Figure 5).

Nevertheless, primary normal human cells were found to be the least sensitive to
Dox@IO-MMNs with IC50 = 16.6 µg/mL Dox, while being equally sensitive to free Dox
(IC50 = 8.01 µg/mL Dox). In general, it is illustrated that Dox@IO-MMNs showed the
most cytotoxic effects on the tested cancerous cells with ~2–4-fold enhanced potencies
against the breast and colon cancer cells in comparison to normal cells. Importantly, the
free Dox at equivalent concentrations killed all the tested cancerous cell lines, including
the normal cells, equally. This was observed in the enhanced potencies of Dox@IO-MMNs
against the cancerous cells, with the least efficacies towards the normal cells suggest
promising capabilities for IO-MMNs to be employed as efficient and selective drug delivery
nano-pharmaceutics.

To better understand the observed phenomena, the uptake by the different cell lines
was measured using flow cytometry. We labeled IO-MMNs with a fluorescent label “Fluo-
rescein IsoThioCyanate (FITC)” and the uptake of the labeled FITC@IO-MMNs by different
cell lines at various time points were then recorded. Upon incubation with the FITC@IO-
MMNs, the tested cell types exhibited significant time-dependent cellular uptake, with
~20% observed in the first hour and ~40% after 2 h, but slowly declining thereafter to
reach ~60% after 24 h (Figure 6). Interestingly, the FACS results demonstrated an increased
uptake of both breast cancer cells ~2-fold greater compared to the primary normal cells
with the least uptake observed (61.2% vs. 30.9% after 24 h). This corroborated the obtained
MTT cytotoxicity assay results. It is important to note that the fluorescence signals of the
incubated cells were measured after thorough washing, indicating that the uptake is not
only due to the adherence to the cellular membrane, but rather to the intracellular delivery
inside the cells. No significant change in the fluorescent intensity was observed after
24 h, confirming that most of the uptake took place in the first hours, further validating
the in vitro release data. This is also consistent with many previous studies, including
ours, reporting on the increased uptake of NPs by cancer cells in the first few hours, and
gradually slowing down thereafter.
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Figure 5. MTT cell viability assays for IO-MMNs, Dox@IO-MMNs, and free Dox with the various types of cancerous
and primary normal cells. (a) Percentage of viable cells upon incubation with IO-MMNs (35 µg/mL), free Dox (5 µg/mL
Dox), or Dox@IO-MMNs (35 µg/mL IO-MMNs, 5 µg/mL Dox) at the same concentrations. (b) Dose-dependent non-linear
regression curves of the cytotoxicity assays on the different cancer cells as well as on normal primary cells determined using
MTT assay. Results show that while free IO-MMNs display no substantial toxicity to any of the tested cells, Dox@IO-MMNs
were found to be highly potent to the three cell lines with IC50 values ranging from ~3.5 to 7 µg/mL Dox content, and up to
4-fold more toxic as compared to normal cells (IC50 ~16.6 µg/mL Dox), being the least sensitive. Free Dox, however, at the
same concentrations, equally killed all the tested cells including normal cells. x-axis: Log of concentrations expressed in
µg/mL; y-axis: absorbance at 450 nm. Triplicates were conducted and error bars denote standard deviations.

Finally, in order to analyze the intracellular delivery of Dox@IO-MMNs by the different
cells, live confocal microscopy imaging without cell fixation was examined. The acquired
images confirmed that the cytotoxicity of Dox@IO-MMNs is due to the gradual delivery of
Dox inside the cells with time. Following the intracellular IO-MMN uptake, the lower pH
inside endosomes/lysosomes facilitates the release of Dox from IO-MMN vehicles, which
is then translocated to the nucleus with time causing apoptotic cell death. Confocal images
of the three tested cell lines after incubation with Dox@IO-MMNs at same concentrations
showed increased red fluorescence of Dox for both colon and breast cancerous cells with
time in comparison to normal cells (Figure 7). In cancerous cells, the intense red fluorescence
was translocated to the nucleus with typical apoptotic features clearly observed (Figure 7).
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Figure 6. Flow cytometry analysis of FITC-labeled IO-MMNs. Uptake of IO-MMNs by two different
cancer cell lines and normal primary cells as measured by fluorescence-activated cell sorting (FACS)
after incubating the labeled particles with the cells at different time points. The cellular uptake was
slightly higher for MCF-7 compared to KAIMRC-1, with least uptake for normal primary cells. Data
are presented as mean values ± standard deviations.

Figure 7. Live confocal microscopy images of HT-29 colon, KAIMRC-1 breast, and primary normal
cells incubated with Dox@IO-MMNs (35 µg/mL particles; 5 µg/mL Dox). Left to right: Hoechst
nuclei stain (blue), Dox channel (red), overlay of Dox and Hoechst channels, and overlay with
transmitted light (TL). The confocal images show the gradual internalization of IO-MMNs inside the
cell cytoplasm with time and effective delivery of Dox killing both colon and breast cancer cells but
not the primary normal cells. The apoptotic features with irregular membrane blebbings are clearly
seen in the cancerous cells, but not in the primary normal cells.
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Conversely, for the normal cells, the red Dox fluorescence was found to be mainly
located in the cytoplasm, with no noticeable nuclear staining or apoptosis. Notably, when
the different cancerous and primary normal cells were incubated for either 6 or 24 h with
free Dox at exactly the same concentrations, direct diffusal of free drug to the nuclei of
all cells was evident, killing both the cancerous and normal cells concurrently (Figure 8).
These observations confirmed the cytotoxicity assay results obtained. Lastly, primary
normal cells were treated with Calcein (used to detect viable cells) and incubated with free
IO-MMNs, Dox@IO-MMNs, or free Dox at equivalent concentrations. The confocal images
remarkably showed the viability of primary cells (depicted by the green fluorescence)
when incubated with both free IO-MMNs and Dox@IO-MMNs but not with the free Dox
(Figure 9). Collectively, our results strongly suggest the important utilization of IO-MMN as
promising vehicles for enhanced and selective anticancer drug delivery. Furthermore, using
the IO-MMN vehicle is by itself beneficial, as it immensely decreases the unwanted side
effects of free anticancer drugs. This directed payload is promising to enhance the efficacy
of drugs in cancer patients with lower doses administrated, thus potentially opening new
avenues for in vivo selective image-guided cancer theranostics.

Figure 8. Live confocal microscopy images of HT-29 colon, KAIMRC-1 breast, and primary normal cells incubated with free
Dox at equivalent concentration (5 µg/mL Dox). Left to right: Hoechst nuclei stain (blue), Dox channel (red), overlay of
Dox and Hoechst channels, and overlay with transmitted light (TL). The confocal images show the direct diffusal of the free
drug to the nuclei of all cells, killing both the cancerous and normal cells.
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Figure 9. Live confocal microscopy images of primary normal cells after 24 h of incubation with free IO-MMNs, Dox@IO-
MMNs, or free Dox (30 µg/mL particles; 4 µg/mL Dox). Left to right: Hoechst (blue) nuclei stain, Dox (red), Calcein
(green) viable cells, and overlay of channels with transmitted light (TL). The confocal images noticeably show the viability
of primary cells when incubated with both free IO-MMNs and Dox@IO-MMNs, but not with the free drug.

4. Conclusions

In conclusion, we synthesized unique iron oxide mesoporous superparamagnetic
nanovehicles with relatively high surface areas (SBET = 70–120 m2/g), pore volumes (Vpore
= 0.25–0.45 cm3/g), and pore size diameters (dpore = 15–30 nm). Due to their intrinsic
and excellent porosity characteristics, IO-MMN can be loaded with anticancer drugs with
high loading efficiencies, and then sustainably released inside the cancerous cells in a
pH-dependent manner. The drug@IO-MMN formulation described here demonstrated
enhanced and selective cytotoxic effects towards different breast and colon cancer cells, with
noticeably least potency towards normal primary cells. This IO-MMN platform suggests
promising potentials as anticancer nanovehicles for cancer therapeutics and may open
new opportunities in effective delivery of drugs, overcoming limitations of conventional
cancer therapeutics.
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2. Knežević, N.Ž.; Ruiz-Hernández, E.; Hennink, W.E.; Vallet-Regí, M. Magnetic mesoporous silica-based core/shell nanoparticles

for biomedical applications. RSC Adv. 2013, 3, 9584–9593. [CrossRef]
3. Lee, J.E.; Lee, N.; Kim, T.; Kim, J.; Hyeon, T. Multifunctional Mesoporous Silica Nanocomposite Nanoparticles for Theranostic

Applications. Acc. Chem. Res. 2011, 44, 893–902. [CrossRef] [PubMed]
4. Lin, F.-C.; Zink, J.I. Probing the Local Nanoscale Heating Mechanism of a Magnetic Core in Mesoporous Silica Drug-Delivery

Nanoparticles Using Fluorescence Depolarization. J. Am. Chem. Soc. 2020, 142, 5212–5220. [CrossRef]
5. Su, Y.-L.; Fang, J.-H.; Liao, C.-Y.; Lin, C.-T.; Li, Y.-T.; Hu, S.-H. Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated

Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy. Theranostics 2015, 5, 1233–1248. [CrossRef]
[PubMed]

6. Rosenholm, J.M.; Sahlgren, C.; Linden, M. Towards multifunctional, targeted drug delivery systems using mesoporous silica
nanoparticles—Opportunities & challenges. Nanoscale 2010, 2, 1870–1883. [CrossRef] [PubMed]

7. Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S. Drug delivery systems: An updated review.
Int. J. Pharm. Investig. 2012, 2, 2–11. [CrossRef]

8. El-Boubbou, K. Magnetic iron oxide nanoparticles as drug carriers: Clinical relevance. Nanomedicine 2018, 13, 953–971. [CrossRef]
9. Beagan, A.M.; Alghamdi, A.A.; Lahmadi, S.S.; Halwani, M.A.; Almeataq, M.S.; Alhazaa, A.N.; Alotaibi, K.M.; Alswieleh, A.M.

Folic Acid-Terminated Poly(2-Diethyl Amino Ethyl Methacrylate) Brush-Gated Magnetic Mesoporous Nanoparticles as a Smart
Drug Delivery System. Polymers 2020, 13, 59. [CrossRef] [PubMed]

10. Khan, A.; Kumar Sahu, N. Folate encapsulation in PEG-diamine grafted mesoporous Fe3O4 nanoparticles for hyperthermia and
in vitro assessment. IET Nanobiotechnol. 2020, 14, 881–888. [CrossRef]

11. Xue, S.; Wang, Y.; Wu, D.; Shen, J.; Wei, Y.; Wang, C. Core-shell structured magnetic mesoporous carbon nanospheres derived
from metal-polyphenol coordination polymer-coated Fe3O4 and its application in the enrichment of phthalates from water
samples. J. Sep. Sci. 2019, 42, 3512–3520. [CrossRef] [PubMed]

12. Kim, J.; Kim, H.S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I.C.; Moon, W.K.; Hyeon, T. Multifunctional uniform nanoparticles
composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and
for drug delivery. Angew. Chem. Int. Ed. 2008, 47, 8438–8441. [CrossRef] [PubMed]

13. Yang, P.D.; Zhao, D.Y.; Margolese, D.I.; Chmelka, B.F.; Stucky, G.D. Generalized syntheses of large-pore mesoporous metal oxides
with semicrystalline frameworks. Nature 1998, 396, 152–155. [CrossRef]

14. Gu, D.; Schüth, F. Synthesis of non-siliceous mesoporous oxides. Chem. Soc. Rev. 2014, 43, 313–344. [CrossRef]
15. Sanchez, C.; Soler-Illia, G.; Ribot, F.; Lalot, T.; Mayer, C.R.; Cabuil, V. Designed hybrid organic-inorganic nanocomposites from

functional nanobuilding blocks. Chem. Mater. 2001, 13, 3061–3083. [CrossRef]
16. Soler-Illia, G.; Crepaldi, E.L.; Grosso, D.; Sanchez, C. Block copolymer-templated mesoporous oxides. Curr. Opin. Colloid

Interface Sci. 2003, 8, 109–126. [CrossRef]
17. Li, G.; Liu, M.Y.; Kou, H.Z. Mesoporous a-Fe2O3 nanospheres: Structural evolution and investigation of magnetic properties.

Chem. Eur. J. 2011, 17, 4323–4329. [CrossRef]
18. Mitra, A.; Vázquez-Vázquez, C.; López-Quintela, M.A.; Paul, B.K.; Bhaumik, A. Soft-templating approach for the synthesis of

high surface area and superparamagnetic mesoporous iron oxide materials. Micropor. Mesopor. Mat. 2010, 131, 373–377. [CrossRef]
19. Wan, Y.; Zhao. On the Controllable Soft-Templating Approach to Mesoporous Silicates. Chem. Rev. 2007, 107, 2821–2860.

[CrossRef]
20. Delahaye, E.; Escax, V.; El Hassan, N.; Davidson, A.; Aquino, R.; Dupuis, V.; Perzynski, R.; Raikher, Y.L. “Nanocasting”: Using

SBA-15 silicas as hard templates to obtain ultrasmall monodispersed gamma-Fe2O3 nanoparticles. J. Phys. Chem. B 2006,
110, 26001–26011. [CrossRef]

21. Dong, A.G.; Ren, N.; Tang, Y.; Wang, Y.J.; Zhang, Y.H.; Hua, W.M.; Gao, Z. General synthesis of mesoporous spheres of metal
oxides and phosphates. J. Am. Chem. Soc. 2003, 125, 4976–4977. [CrossRef]

22. Lu, A.H.; Nitz, J.J.; Comotti, M.; Weidenthaler, C.; Schlichte, K.; Lehmann, C.W.; Terasaki, O.; Schuth, F. Spatially and Size
Selective Synthesis of Fe-Based Nanoparticles on Ordered Mesoporous Supports as Highly Active and Stable Catalysts for
Ammonia Decomposition. J. Am. Chem. Soc. 2010, 132, 14152–14162. [CrossRef]

23. Deng, X.; Chen, K.; Tüysüz, H. Protocol for the Nanocasting Method: Preparation of Ordered Mesoporous Metal Oxides.
Chem. Mater. 2017, 29, 40–52. [CrossRef]

24. Park, C.; Jung, J.; Lee, C.W.; Cho, J. Synthesis of Mesoporous α-Fe2O3 Nanoparticles by Non-ionic Soft Template and Their
Applications to Heavy Oil Upgrading. Sci. Rep. 2016, 6, 39136. [CrossRef]

http://doi.org/10.1021/cr0200062
http://doi.org/10.1039/c3ra23127e
http://doi.org/10.1021/ar2000259
http://www.ncbi.nlm.nih.gov/pubmed/21848274
http://doi.org/10.1021/jacs.9b13082
http://doi.org/10.7150/thno.12843
http://www.ncbi.nlm.nih.gov/pubmed/26379789
http://doi.org/10.1039/c0nr00156b
http://www.ncbi.nlm.nih.gov/pubmed/20730166
http://doi.org/10.4103/2230-973X.96920
http://doi.org/10.2217/nnm-2017-0336
http://doi.org/10.3390/polym13010059
http://www.ncbi.nlm.nih.gov/pubmed/33375759
http://doi.org/10.1049/iet-nbt.2020.0101
http://doi.org/10.1002/jssc.201900465
http://www.ncbi.nlm.nih.gov/pubmed/31556204
http://doi.org/10.1002/anie.200802469
http://www.ncbi.nlm.nih.gov/pubmed/18726979
http://doi.org/10.1038/24132
http://doi.org/10.1039/C3CS60155B
http://doi.org/10.1021/cm011061e
http://doi.org/10.1016/S1359-0294(03)00002-5
http://doi.org/10.1002/chem.201003068
http://doi.org/10.1016/j.micromeso.2010.01.017
http://doi.org/10.1021/cr068020s
http://doi.org/10.1021/jp0647075
http://doi.org/10.1021/ja029964b
http://doi.org/10.1021/ja105308e
http://doi.org/10.1021/acs.chemmater.6b02645
http://doi.org/10.1038/srep39136


Pharmaceutics 2021, 13, 553 15 of 16

25. Crowley, T.A.; Ziegler, K.J.; Lyons, D.M.; Erts, D.; Olin, H.; Morris, M.A.; Holmes, J.D. Synthesis of metal and metal oxide
nanowire and nanotube arrays within a mesoporous silica template. Chem. Mat. 2003, 15, 3518–3522. [CrossRef]

26. Yang, H.F.; Lu, Q.Y.; Gao, F.; Shi, Q.H.; Yan, Y.; Zhang, F.Q.; Xie, S.H.; Tu, B.; Zhao, D.Y. One-step synthesis of highly ordered
mesoporous silica monoliths with metal oxide nanocrystals in their channels. Adv. Funct. Mater. 2005, 15, 1377–1384. [CrossRef]

27. Shon, J.K.; Kong, S.S.; Kim, S.S.; Kang, M.S.; Kim, J.M.; So, B.G. Synthesis of Mesoporous Iron Oxide Nanoparticles from
Mesoporous Silica Template Via Nano-Replication. Funct. Mater. Lett. 2008, 1, 151–154. [CrossRef]

28. Shon, J.K.; Kong, S.S.; Kim, J.M.; Ko, C.H.; Jin, M.; Lee, Y.Y.; Hwang, S.H.; Yoona, J.A.; Kim, J.N. Facile synthesis of highly
ordered mesoporous silver using cubic mesoporous silica template with controlled surface hydrophobicity. Chem. Commun. 2009,
6, 650–652. [CrossRef] [PubMed]

29. Shon, J.K.; Kong, S.S.; Kim, Y.S.; Lee, J.H.; Park, W.K.; Park, S.C.; Kim, J.M. Solvent-free infiltration method for mesoporous SnO2
using mesoporous silica templates. Micropor. Mesopor. Mat. 2009, 120, 441–446. [CrossRef]

30. Fröba, M.; Köhn, R.; Bouffaud, G.; Richard, O.; van Tendeloo, G. Fe2O3 Nanoparticles within Mesoporous MCM-48 Silica: In Situ
Formation and Characterization. Chem. Mater. 1999, 11, 2858–2865. [CrossRef]

31. Samanta, S.; Giri, S.; Sastry, P.U.; Mal, N.K.; Manna, A.; Bhaumik, A. Synthesis and Characterization of Iron-Rich Highly Ordered
Mesoporous Fe-MCM-41. Ind. Eng. Chem. Res. 2003, 42, 3012–3018. [CrossRef]

32. Jiao, F.; Harrison, A.; Jumas, J.C.; Chadwick, A.V.; Kockelmann, W.; Bruce, P.G. Ordered mesoporous Fe2O3 with crystalline walls.
J. Am. Chem. Soc. 2006, 128, 5468–5474. [CrossRef]

33. Suteewong, T.; Sai, H.; Lee, J.; Bradbury, M.; Hyeon, T.; Gruner, S.M.; Wiesner, U. Ordered mesoporous silica nanoparticles with
and without embedded iron oxide nanoparticles: Structure evolution during synthesis. J. Mater. Chem. 2010, 20, 7807–7814.
[CrossRef]

34. Jiao, F.; Jumas, J.C.; Womes, M.; Chadwick, A.V.; Harrison, A.; Bruce, P.G. Synthesis of ordered mesoporous Fe3O4 and g-Fe2O3
with crystalline walls using post-template reduction/oxidation. J. Am. Chem. Soc. 2006, 128, 12905–12909. [CrossRef] [PubMed]

35. Tsoncheva, T.; Rosenholm, J.; Linden, M.; Kleitz, F.; Tiemann, M.; Ivanova, L.; Dimitrov, M.; Paneva, D.; Mitov, I.; Minchev, C.
Critical evaluation of the state of iron oxide nanoparticles on different mesoporous silicas prepared by an impregnation method.
Micropor. Mesopor. Mat. 2008, 112, 327–337. [CrossRef]

36. Xuan, S.H.; Wang, F.; Lai, J.M.Y.; Sham, K.W.Y.; Wang, Y.X.J.; Lee, S.F.; Yu, J.C.; Cheng, C.H.K.; Leung, K.C.F. Synthesis
of Biocompatible, Mesoporous Fe3O4 Nano/Microspheres with Large Surface Area for Magnetic Resonance Imaging and
Therapeutic Applications. ACS Appl. Mater. Interfaces 2011, 3, 237–244. [CrossRef] [PubMed]

37. Li, D.; Tang, J.; Wei, C.; Guo, J.; Wang, S.; Chaudhary, D.; Wang, C. Doxorubicin-Conjugated Mesoporous Magnetic Colloidal
Nanocrystal Clusters Stabilized by Polysaccharide as a Smart Anticancer Drug Vehicle. Small 2012, 8, 2690–2697. [CrossRef]
[PubMed]

38. Benyettou, F.; Ocadiz Flores, J.A.; Ravaux, F.; Rezgui, R.; Jouiad, M.; Nehme, S.I.; Parsapur, R.K.; Olsen, J.-C.; Selvam, P.;
Trabolsi, A. Mesoporous γ-Iron Oxide Nanoparticles for Magnetically Triggered Release of Doxorubicin and Hyperthermia
Treatment. Chem. Eur. J. 2016, 22, 17020–17028. [CrossRef] [PubMed]

39. El-Boubbou, K.; Ali, R.; Al-Zahrani, H.; Trivilegio, T.; Alanazi, A.H.; Khan, A.L.; Boudjelal, M.; AlKushi, A. Preparation of
iron oxide mesoporous magnetic microparticles as novel multidrug carriers for synergistic anticancer therapy and deep tumor
penetration. Sci. Rep. 2019, 9, 9481. [CrossRef]

40. El-Boubbou, K.; Schofield, D.A.; Landry, C.C. Enhanced Enzymatic Thermal Stability and Activity in Functionalized Mesoporous
Silica Monitored by 31P NMR. Adv. Healthc. Mater. 2012, 1, 183–188. [CrossRef] [PubMed]

41. El-Boubbou, K.; Schofield, D.A.; Landry, C.C. Enhanced Enzymatic Activity of OPH in Ammonium-Functionalized Mesoporous
Silica: Surface Modification and Pore Effects. J. Phys. Chem. C 2012, 116, 17501–17506. [CrossRef]

42. El-Boubbou, K.; Azar, D.; Bekdash, A.; Abi-Habib, R.J. Doxironide Magnetic Nanoparticles for Selective Drug Delivery to Human
Acute Myeloid Leukemia. J. Biomed. Nanotechnol. 2017, 13, 500–512. [CrossRef]

43. El-Boubbou, K.; Ali, R.; Bahhari, H.M.; AlSaad, K.O.; Nehdi, A.; Boudjelal, M.; AlKushi, A. Magnetic Fluorescent Nanoformulation
for Intracellular Drug Delivery to Human Breast Cancer, Primary Tumors, and Tumor Biopsies: Beyond Targeting Expectations.
Bioconjugate Chem. 2016, 27, 1471–1483. [CrossRef] [PubMed]

44. Sayed, F.N.; Polshettiwar, V. Facile and Sustainable Synthesis of Shaped Iron Oxide Nanoparticles: Effect of Iron Precursor Salts
on the Shapes of Iron Oxides. Sci. Rep. 2015, 5, 9733. [CrossRef] [PubMed]

45. Yuan, S.M.; Zhou, Z.; Li, G. Structural evolution from mesoporous α-Fe2O3 to Fe3O4@C and γ-Fe2O3 nanospheres and their
lithium storage performances. CrystEngComm 2011, 13, 4709–4713. [CrossRef]

46. Kong, A.; Wang, H.; Li, J.; Shan, Y. Preparation of super paramagnetic crystalline mesoporous γ-Fe2O3 with high surface.
Mater. Lett. 2008, 62, 943–945. [CrossRef]

47. Cui, H.; Liu, Y.; Ren, W. Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature
sol–gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv. Powder Technol. 2013, 24, 93–97. [CrossRef]

48. Teja, A.S.; Koh, P.-Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater.
2009, 55, 22–45. [CrossRef]

49. Huang, Y.; Mao, K.; Zhang, B.; Zhao, Y. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual
target-specific drug delivery and MRI in cancer theranostics. Mater. Sci. Eng. C 2017, 70, 763–771. [CrossRef] [PubMed]

http://doi.org/10.1021/cm034139v
http://doi.org/10.1002/adfm.200500026
http://doi.org/10.1142/S1793604708000277
http://doi.org/10.1039/B811718G
http://www.ncbi.nlm.nih.gov/pubmed/19322410
http://doi.org/10.1016/j.micromeso.2008.12.022
http://doi.org/10.1021/cm991048i
http://doi.org/10.1021/ie020905g
http://doi.org/10.1021/ja0584774
http://doi.org/10.1039/c0jm01002b
http://doi.org/10.1021/ja063662i
http://www.ncbi.nlm.nih.gov/pubmed/17002386
http://doi.org/10.1016/j.micromeso.2007.10.005
http://doi.org/10.1021/am1012358
http://www.ncbi.nlm.nih.gov/pubmed/21229966
http://doi.org/10.1002/smll.201200272
http://www.ncbi.nlm.nih.gov/pubmed/22674615
http://doi.org/10.1002/chem.201602956
http://www.ncbi.nlm.nih.gov/pubmed/27739116
http://doi.org/10.1038/s41598-019-46007-z
http://doi.org/10.1002/adhm.201100024
http://www.ncbi.nlm.nih.gov/pubmed/23184722
http://doi.org/10.1021/jp3023309
http://doi.org/10.1166/jbn.2017.2365
http://doi.org/10.1021/acs.bioconjchem.6b00257
http://www.ncbi.nlm.nih.gov/pubmed/27269304
http://doi.org/10.1038/srep09733
http://www.ncbi.nlm.nih.gov/pubmed/25939969
http://doi.org/10.1039/c0ce00902d
http://doi.org/10.1016/j.matlet.2007.07.015
http://doi.org/10.1016/j.apt.2012.03.001
http://doi.org/10.1016/j.pcrysgrow.2008.08.003
http://doi.org/10.1016/j.msec.2016.09.052
http://www.ncbi.nlm.nih.gov/pubmed/27770953


Pharmaceutics 2021, 13, 553 16 of 16

50. Peng, M.; Li, H.; Luo, Z.; Kong, J.; Wan, Y.; Zheng, L.; Zhang, Q.; Niu, H.; Vermorken, A.; Van de Ven, W.; et al. Dextran-coated
superparamagnetic nanoparticles as potential cancer drug carriers in vivo. Nanoscale 2015, 7, 11155–11162. [CrossRef] [PubMed]

51. Ali, R.; Samman, N.; Al Zahrani, H.; Nehdi, A.; Rahman, S.; Khan, A.L.; Al Balwi, M.; Alriyees, L.A.; Alzaid, M.; Al Askar, A.; et al.
Isolation and characterization of a new naturally immortalized human breast carcinoma cell line, KAIMRC1. BMC Cancer 2017,
17, 803. [CrossRef] [PubMed]

52. Alghanem, B.; Ali, R.; Nehdi, A.; Al Zahrani, H.; Altolayyan, A.; Shaibah, H.; Baz, O.; Alhallaj, A.; Moresco, J.J.; Diedrich, J.K.; et al.
Proteomics Profiling of KAIMRC1 in Comparison to MDA-MB231 and MCF-7. Int. J. Mol. Sci. 2020, 21, 4328. [CrossRef] [PubMed]

http://doi.org/10.1039/C5NR01382H
http://www.ncbi.nlm.nih.gov/pubmed/26062012
http://doi.org/10.1186/s12885-017-3812-5
http://www.ncbi.nlm.nih.gov/pubmed/29187162
http://doi.org/10.3390/ijms21124328
http://www.ncbi.nlm.nih.gov/pubmed/32570693

	Introduction 
	Materials and Methods 
	Materials 
	Characterization 
	Preparation of IO-MMNs 
	Drug Loading and Release 
	Cell Viability Assay 
	Live Confocal Imaging 
	Fluorescence-Activated Cell Sorting (FACS) 

	Results and Discussion 
	Preparation and Characterization of IO-MMNs 
	Drug Loading and Release 
	Biological Assays 

	Conclusions 
	References

