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ABSTRACT: We report a room-temperature protocol for the hydro-
genation of various amides to produce amines and alcohols. Compared
with most previous reports for this transformation, which use high
temperatures (typically, 100−200 °C) and H2 pressures (10−100 bar),
this system proceeds under extremely mild conditions (RT, 5−10 bar of
H2). The hydrogenation is catalyzed by well-defined ruthenium-PNNH
pincer complexes (0.5 mol %) with potential dual modes of metal−ligand
cooperation. An unusual Ru-amidate complex was formed and crystallo-
graphically characterized. Mechanistic investigations indicate that the
room-temperature hydrogenation proceeds predominantly via the Ru−N
amido/amine metal−ligand cooperation.
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Reduction of the amide group has useful applications in
diverse areas of chemical transformations including

synthesis of amines, alcohols, peptide chemistry, total syn-
thesis, CO2 recycling, and others.

1,2 The traditional methods to
reduce amides are noncatalytic and use stoichiometric amounts
of hydride reducing agents, thus producing a stoichiometric
amount of waste.3 In this context, development of efficient
catalytic hydrogenation systems for their reduction is
desirable.4 While hydrogenations of amides have been
reported, they are more challenging than that of most other
carboxylic derivatives because of the low electrophilic character
of the amide carbonyl group.5

Amide hydrogenation can proceed either via C−N bond
cleavage or by C−O bond cleavage (Scheme 1).5a,b We are
particularly interested in the C−N bond cleavage pathway,
which is challenging because of the water losing tendency of
the hemiaminal intermediate to form imine. The first example

of amide hydrogenation with C−N bond cleavage appeared in
20106a followed by reports of several other research groups.6

Hydrogenation and dehydrogenative formation of the amide
bond has also been instrumental in the recent development of
promising liquid organic hydrogen carrier (LOHC) systems
based on alcohols and amines.7 However, the reported
hydrogenation reactions require harsh reaction conditions
(typically 100−150 °C and/or 10−100 bar of H2 pressure). In
this regard, amide hydrogenation protocols to form amines and
alcohols under mild conditions are clearly required. Develop-
ment of such protocols would also facilitate the development
of low-temperature amide-based LOHC systems as well as low-
temperature CO2 recycling to methanol systems.8

Saito and co-workers have reported an example of Ru-
catalyzed dimethylformamide hydrogenation at 60 °C under
high H2 pressure of 80 bar,

6k but higher temperature (120 °C)
was required at lower H2 pressures (20 bar) to obtain similar
yields (60%). Langer and co-workers reported examples of
amide hydrogenation at 70 °C with an iron complex using high
catalyst loading (10 mol %) at 50 bar H2;

6g however, this
interesting system exhibited limited scope and required 100 °C
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Scheme 1. Two Possible Pathways of Amide Hydrogenation
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for completion at lower catalyst loadings (2 mol %). Recently,
Beller and co-workers reported a Mo-pincer catalyzed amide
hydrogenation at 80 °C, but this system employed high H2
pressure (50 bar) and the substrate scope was synthetically
limited to N-methylphenylformamides.6l Bergens reported
asymmetric hydrogenolysis of some specific functionalized α-
phenoxy amides at RT and low pressure, but the system
requires high catalyst loading (10 mol %) and more than
stoichiometric amounts of strong base (120−250 mol % of t-
BuOK/i-PrONa) for effective catalysis.6p

As a part of our ongoing research endeavor, we seek to
develop metal complexes to facilitate (de)hydrogenation
reactions under mild conditions. To this extent, we have
reported a new class of pincer complexes (based on PNNH
ligands) where dual modes of metal ligand cooperation (MLC)
are possible (via ligand dearomatization and metal amido bond
formation) (Figure 1).7e,9 Here, we report a system for room-

temperature amide hydrogenation to amines and alcohols
catalyzed by the Ru-PNNH complexes at low catalyst loading
(0.5 mol %) under low H2 pressures (5−10 bar).
We started our investigation with benzanilide as the model

substrate (Table 1). When benzanilide in THF was subjected
to hydrogenation (10 bar of H2) at 45 °C with complex Ru-
PNNtBuH (Ru-1; 0.5 mol %) as the precatalyst in the presence
of catalytic t-BuOK (2 mol %), 67% of amide conversion was
observed by GC after 20 h (entry 1). We observed the
formation of benzyl alcohol and aniline as the reaction
products by GC-MS, revealing the C−N bond cleavage to be
the favorable pathway under the reaction conditions. Changing
the N-substitution of the catalyst from t-Bu to benzyl group
(Ru-2), the catalytic activity increased even further, and
complete conversion of the amide to the amine and alcohol
was observed after 20 h (entry 2). However, changing the P
substitution of the PNNH ligand from t-Bu to Ph (Ru-3)
resulted in a significant decrease in the catalytic activity (entry
3). The traditional Ru-PNNEt catalyst Ru-4, lacking a N−H
bond, was unable to efficiently catalyze the hydrogenation at
45 °C (entry 4). With Ru-2, the hydrogenation can proceed to
completion within 20 h even at the lower temperature of 35 °C
(entry 5). Furthermore, full conversion of benzanilide to
benzyl alcohol and aniline can be obtained even at RT (19−24
°C), although a longer reaction time (68 h) is required (entries
6−7). Toluene is not as good a solvent as THF for this
hydrogenation, possibly because of the limited solubility of
benzanilide in toluene (entry 8).
Subsequently, we explored the substrate scope of this

catalytic hydrogenation of amides under mild conditions
(Table 2). Several substituted benzanilides were quantitatively
converted to the corresponding alcohol and aniline at RT

(under 10 bar H2) with catalyst Ru-2 (entries 1−6).
Formamides, such as N-(4-chlorophenyl)formamide, N-(4-
methylphenyl)formamide can also be hydrogenated at room
temperature to the corresponding amine and methanol (entry
7−8). Other amides, such as N-acetylmorpholine; N,N-
diphenylbenzamide; N-acetylaniline; N-hexylbenzamide; N-
phenyloctanamide; N-benzylformamide; and N-heptyloctana-
mide were hydrogenated at either RT or at a slightly elevated
temperature of 35−45 °C (entries 9−15), which is still
significantly lower than the hydrogenation temperature
reported previously with other catalysts.
Next, we carried out mechanistic investigations to further

understand the high catalytic activity of the Ru-PNNH
complexes compared to the traditional PNNEt complex Ru-4.
Upon addition of 2 equiv of t-BuOK to a solution of complex
Ru-1 (dissolved in THF), an intensely purple-colored solution
of the anionic ruthenium enamido complex Ru-1A was
formed.9d Upon addition of two equiv of benzanilide to this
solution, the intense purple color disappeared to produce a
light-green solution, and the 31P NMR spectrum exhibited only
a single peak at 108.5 ppm (Figure S13). This is due to the
formation of the ruthenium amidate complex Ru-1B, which
was characterized by 1H, 31P, and 13C NMR spectroscopy
(Scheme 2a, Figures S8−S11) and a single-crystal X-ray
diffraction study (see SI). As exhibited by the crystal structure,
the amidate ligand displays κ1-O binding to the Ru metal
center, which is uncommon for late transition metal complexes
and, to the best of our knowledge, has not been observed
previously in ruthenium amidate complexes.10 The κ1-O
geometry is also characterized by an elongated C−O bond
length (1.279 Å) and a shortened C−N bond length (1.307 Å)
of the amidate ligand as compared to free benzanilide (1.227
and 1.363 Å, respectively, for C−O and C−N bond).11

Furthermore, the coordinated (E) isomer of κ1-O Ru-1B was

Figure 1. Amide hydrogenation reported here as compared with
previous reports.

Table 1. Optimization of Catalytic Hydrogenation of
Benzanilidea

entry cat.
T

(°C) t (h) solvent
conv.
(%)b

2a
(%)b

3a
(%)b

1 Ru-1 45 20 THF 67 63 62
2 Ru-2 45 20 THF 99 94 91
3 Ru-3 45 20 THF 20 14 12
4 Ru-4 45 20 THF 3 3 2
5 Ru-2 35 20 THF 99 95 91
6 Ru-2 RTc 20 THF 52 49 47
7 Ru-2 RT 68 THF 97 91 93
8 Ru-2 RT 68 toluene 79 73 75

aReaction conditions: benzanilide (0.5 mmol), cat. (0.5 mol %), t-
BuOK (2 mol %), THF (3 mL), H2 (10 bar at RT), T (as specified,
bath temperature), t (as specified). bConversions and yields are
determined by GC with mesitylene as an internal standard. cRT =
room temperature (19−24 °C)
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observed in the structure, which is rare in any late transition
metal κ1-O amidate complex due to steric reasons.10

Interestingly, the N-H proton of the PNNH ligand and the
N atom of the amidate ligand are aligned in close spatial
proximity (2.123 Å) with the possibility of a hydrogen bonding
interaction, thus providing additional stability to Ru-1B.
Indeed, in the 1H NMR spectrum of Ru-1B, the chemical
shift of the N-H proton is strongly downfield shifted (∼10.5
ppm), indicating hydrogen bonding in solution (Figure S8).

The hydrogen bonding is crucial to the formation of the κ1-O
(E)-amidate complex as the analogous amidate complex of Ru-
4 lacking an N−H bond, was not observed under similar
conditions (Scheme 2b). Notably, a somewhat similar amidate
complex has been observed by Bernskoetter, Hazari, and co-
workers in a Fe-PNP system, although with κ1-N coordinatio-
n.6i

Formation of the amidate complex, while interesting, is off-
cycle and may also somewhat decrease the catalytic efficiency
in the hydrogenation of the secondary amides. Ru-1B
undergoes rapid dissociation and reassociation of the amide
in solution, as verified by an amide exchange experiment
(Figure S20). Under 5 bar of H2 pressure, complex Ru-1B is in
equilibrium with the dihydride complex Ru-1C (Scheme 2a,
Scheme S1). This equilibrium favors the amidate complex Ru-
1B (Figure S13, panel 4). The equilibrium can also be
indirectly observed in the presence of D2, in which case rapid
suppression of the N-H proton and one of the P−CH2 protons
of Ru-1B was observed due to H/D scrambling (Figure S18−
S19). To probe the resting state of the catalyst during the
reaction, we conducted a control catalytic hydrogenation
experiment in an NMR tube with Ru-1B as catalyst using 5
equiv of benzanilide substrate under 5 bar H2. Monitoring the
reaction progress at 45 °C, only the amidate complex Ru-1B
was observed in the solution while the dihydride complex was
not observed (Figure S14). Thus, complex Ru-1B acts as the
catalytic resting state during the reaction.
Returning to the reactivity of the enamido complex Ru-1A,

upon addition of a substrate lacking a N−H proton, such as N-
acetylmorpholine, the solution of complex Ru-1A remained
purple even after the addition of 4 equiv of amide. No
formation of any new complex was observed by NMR
spectroscopy. After the reaction was pressurized with 5 bar

Table 2. Hydrogenation of Various Amides at or Near RT§

§Reaction conditions: amide (0.5 mmol), Ru-2 (0.5 mol %), t-BuOK
(2 mol %), THF (3 mL), H2 (10 bar at RT), T (as specified), t (68
h). aConversions and yields were determined by GC with mesitylene
as an internal standard. Products were characterized by GC-MS.
bYield determined by 1H NMR. cYields of methanol and ethanol are
lower than that of the corresponding amine due to volatility. dWith
catalyst Ru-1 (0.5 mol %), H2 (5 bar), t (20 h).

Scheme 2. Mechanistic Reactions
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of H2, immediate formation of the dihydride complex was
observed at RT (Scheme 2c; Figure S16). The dihydride peaks
remained the major peak in both 31P and 1H NMR spectra
until completion of the hydrogenation, indicating that the
reaction of the amide with the dihydride complex is the rate-
determining step in the catalytic cycle (vide infra, Scheme 3).

On the basis of these insights and prior investigations
reported, we propose a catalytic cycle as depicted in Scheme
3.6a,k,9a,12 For amides bearing an N-H proton, the catalytic
resting state is the amidate complex Ru-XB. In the presence of
H2, Ru-XB forms the dihydride Ru-XC, which through hydride
attack on the amide carbonyl group and proton abstraction of
the N-H group of the PNNH ligand forms the hemiaminal,
along with the intermediate complex Ru-XD. This step can
also occur via proton abstraction from the CH2 group of the P-
side arm instead of the N−H group (to generate Ru-XD′).
However, this pathway does not significantly contribute to the
overall hydrogenation at lower temperatures (RT to 45 °C)
(compare the hydrogenation activity of Ru-1/Ru-2 with that
of Ru-4). It is likely that the acidic nature of the N-H proton of
PNNH ligand assists in lowering the energy requirement of
this rate-determining step, thus allowing the hydrogenation to
proceed even at RT via the amido pathway. This can also
explain the higher catalytic activity of Ru-2 compared with Ru-
1, where the Bn substitution of the N donor atom makes the
ligand N-H of Ru-2 less basic as compared with Ru-1 with t-Bu
group in the N atom. Alternatively, the lower steric bulk of the
benzyl group can also contribute to the observed increased
hydrogenation rate of Ru-2 compared to Ru-1. Subsequently,
the hemiaminal quickly binds to the ruthenium center to form
the hemiaminoxy complex Ru-XE, which, through a proton
abstraction from the ligand, releases an amine molecule with
concomitant formation of the aldehyde complex Ru-XF (or
Ru-XF′). Dissociation of the weakly coordinating aldehyde
from Ru center, followed by the H2 splitting across the Ru−N
bond generates the dihydride complex Ru-XC. Outer-sphere
hydride transfer from Ru-XC to the aldehyde then forms the

alkoxy complex Ru-XG, which releases an alcohol molecule,
generating the amido complex Ru-XD or the dearomatized
complex Ru-XD′. Ru-XD (or Ru-XD′) then binds another
amide molecule to regenerate the amidate complex Ru-XB. In
case of a tertiary amide, the hydrogenation proceeds through a
similar pathway but without the involvement of Ru-amidate
complex.
In conclusion, selective hydrogenation of amides to alcohols

and amines is reported at RT under mild H2 pressure. The
ruthenium-PNNH complexes display excellent catalytic activity
in this hydrogenation. The high activity of Ru-PNNH
complexes is due to the MLC pathway via Ru−N amido/
amine pathway. Using Ru-2 as the catalyst, a series of amides
were hydrogenated at, or near, RT under 5−10 bar of H2
pressure. We believe that this protocol can facilitate the
development of CO2 recycling (via hydrogenation) as well as
LOHC systems that may operate at considerably lower
temperatures (<50 °C) compared with the existing ones.
Both avenues are currently being explored in our group.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acscatal.0c01406.

General information and experimental details (PDF)
X-ray data for amidate complex (CIF)

■ AUTHOR INFORMATION
Corresponding Author

David Milstein − Department of Organic Chemistry, Weizmann
Institute of Science, Rehovot 76100, Israel; orcid.org/0000-
0002-2320-0262; Email: david.milstein@weizmann.ac.il

Authors
Sayan Kar − Department of Organic Chemistry, Weizmann
Institute of Science, Rehovot 76100, Israel

Michael Rauch − Department of Organic Chemistry, Weizmann
Institute of Science, Rehovot 76100, Israel

Amit Kumar − Department of Organic Chemistry, Weizmann
Institute of Science, Rehovot 76100, Israel

Gregory Leitus − Department of Chemical Research Support,
Weizmann Institute of Science, Rehovot 76100, Israel

Yehoshoa Ben-David − Department of Organic Chemistry,
Weizmann Institute of Science, Rehovot 76100, Israel

Complete contact information is available at:
https://pubs.acs.org/10.1021/acscatal.0c01406

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This research was supported by the European Research
Council (ERC AdG 692775). D.M. holds the Israel Matz
Professorial Chair of Organic Chemistry. S.K. acknowledges
the Sustainability and Energy Research Initiative (SAERI) of
the Weizmann Institute of Science for a research fellowship.
M.R. acknowledges the Zuckerman STEM Leadership
Program for a research fellowship.

■ REFERENCES
(1) Hudlicky, M. Reductions in Organic Chemistry; Ellis Horwood
Ltd.: Chichester, U.K., 1984; pp 164−172.

Scheme 3. Plausible Mechanistic Cycle

ACS Catalysis pubs.acs.org/acscatalysis Letter

https://dx.doi.org/10.1021/acscatal.0c01406
ACS Catal. 2020, 10, 5511−5515

5514

http://pubs.acs.org/doi/suppl/10.1021/acscatal.0c01406/suppl_file/cs0c01406_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c01406?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acscatal.0c01406/suppl_file/cs0c01406_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.0c01406/suppl_file/cs0c01406_si_002.cif
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+Milstein"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-2320-0262
http://orcid.org/0000-0002-2320-0262
mailto:david.milstein@weizmann.ac.il
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sayan+Kar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+Rauch"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Amit+Kumar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gregory+Leitus"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yehoshoa+Ben-David"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c01406?ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c01406?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c01406?fig=sch3&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://dx.doi.org/10.1021/acscatal.0c01406?ref=pdf


(2) Andersson, P. G.; Munslow, I. J. Modern Reduction Methods;
Wiley: New York, 2008; p 423.
(3) Seyden-Penne, J. Reductions by the Alumino- and Borohydrides in
Organic Synthesis, 2nd ed.; Wiley: New York, 1997; pp 1−13.
(4) (a) Gunanathan, C.; Milstein, D. Bond Activation and Catalysis
by Ruthenium Pincer Complexes. Chem. Rev. 2014, 114, 12024−
12087. (b) Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko,
E. A. Catalytic (de)hydrogenation promoted by non-precious metals
− Co, Fe and Mn: recent advances in an emerging field. Chem. Soc.
Rev. 2018, 47, 1459−1483.
(5) (a) Smith, A. M.; Whyman, R. Review of Methods for the
Catalytic Hydrogenation of Carboxamides. Chem. Rev. 2014, 114,
5477−5510. (b) Pritchard, J.; Filonenko, G. A.; van Putten, R.;
Hensen, E. J. M.; Pidko, E. A. Heterogeneous and homogeneous
catalysis for the hydrogenation of carboxylic acid derivatives: history,
advances and future directions. Chem. Soc. Rev. 2015, 44, 3808−3833.
(c) Chardon, A.; Morisset, E.; Rouden, J.; Blanchet, J. Recent
Advances in Amide Reductions. Synthesis 2018, 50, 984−997.
(d) Zhou, Y.; Khan, R.; Fan, B.; Xu, L. Ruthenium-Catalyzed
Selective Reduction of Carboxylic Esters and Carboxamides. Synthesis
2019, 51, 2491−2505.
(6) (a) Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.;
Milstein, D. Direct Hydrogenation of Amides to Alcohols and Amines
under Mild Conditions. J. Am. Chem. Soc. 2010, 132, 16756−16758.
(b) John, J. M.; Bergens, S. H. A Highly Active Catalyst for the
Hydrogenation of Amides to Alcohols and Amines. Angew. Chem., Int.
Ed. 2011, 50, 10377−10380. (c) Ito, M.; Ootsuka, T.; Watari, R.;
Shiibashi, A.; Himizu, A.; Ikariya, T. Catalytic Hydrogenation of
Carboxamides and Esters by Well-Defined Cp*Ru Complexes Bearing
a Protic Amine Ligand. J. Am. Chem. Soc. 2011, 133, 4240−4242.
(d) Miura, T.; Held, I. E.; Oishi, S.; Naruto, M.; Saito, S. Catalytic
hydrogenation of unactivated amides enabled by hydrogenation of
catalyst precursor. Tetrahedron Lett. 2013, 54, 2674−2678.
(e) Cabrero-Antonino, J. R.; Alberico, E.; Drexler, H.-J.; Baumann,
W.; Junge, K.; Junge, H.; Beller, M. Efficient Base-Free Hydro-
genation of Amides to Alcohols and Amines Catalyzed by Well-
Defined Pincer Imidazolyl−Ruthenium Complexes. ACS Catal. 2016,
6, 47−54. (f) Garg, J. A.; Chakraborty, S.; Ben-David, Y.; Milstein, D.
Unprecedented iron-catalyzed selective hydrogenation of activated
amides to amines and alcohols. Chem. Commun. 2016, 52, 5285−
5288. (g) Schneck, F.; Assmann, M.; Balmer, M.; Harms, K.; Langer,
R. Selective Hydrogenation of Amides to Amines and Alcohols
Catalyzed by Improved Iron Pincer Complexes. Organometallics 2016,
35, 1931−1943. (h) Shi, L.; Tan, X.; Long, J.; Xiong, X.; Yang, S.;
Xue, P.; Lv, H.; Zhang, X. Direct Catalytic Hydrogenation of Simple
Amides: A Highly Efficient Approach from Amides to Amines and
Alcohols. Chem. - Eur. J. 2017, 23, 546−548. (i) Jayarathne, U.;
Zhang, Y.; Hazari, N.; Bernskoetter, W. H. Selective Iron-Catalyzed
Deaminative Hydrogenation of Amides. Organometallics 2017, 36,
409−416. (j) Papa, V.; Cabrero-Antonino, J. R.; Alberico, E.;
Spanneberg, A.; Junge, K.; Junge, H.; Beller, M. Efficient and selective
hydrogenation of amides to alcohols and amines using a well-defined
manganese−PNN pincer complex. Chem. Sci. 2017, 8, 3576−3585.
(k) Miura, T.; Naruto, M.; Toda, K.; Shimomura, T.; Saito, S.
Multifaceted catalytic hydrogenation of amides via diverse activation
of a sterically confined bipyridine−ruthenium framework. Sci. Rep.
2017, 7, 1586. (l) Leischner, T.; Artuś Suarez, L.; Spannenberg, A.;
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