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Virus-like particles (VLPs) are nanostructures that possess diverse applications
in therapeutics, immunization, and diagnostics. With the recent advancements in
biomedical engineering technologies, commercially available VLP-based vaccines are
being extensively used to combat infectious diseases, whereas many more are
in different stages of development in clinical studies. Because of their desired
characteristics in terms of efficacy, safety, and diversity, VLP-based approaches
might become more recurrent in the years to come. However, some production and
fabrication challenges must be addressed before VLP-based approaches can be widely
used in therapeutics. This review offers insight into the recent VLP-based vaccines
development, with an emphasis on their characteristics, expression systems, and
potential applicability as ideal candidates to combat emerging virulent pathogens.
Finally, the potential of VLP-based vaccine as viable and efficient immunizing agents to
induce immunity against virulent infectious agents, including, SARS-CoV-2 and protein
nanoparticle-based vaccines has been elaborated. Thus, VLP vaccines may serve
as an effective alternative to conventional vaccine strategies in combating emerging
infectious diseases.

Keywords: virus-like particles, emerging infectious diseases, vaccine, vaccine development, expression system,
virus, SARS-CoV2

INTRODUCTION

The majority of currently available vaccines are predominantly based on either inactivated (killed)
or live attenuated approaches. Although these traditional vaccines have been used effectively
against various infectious diseases, some of these have several limitations, which include their
lower potential to induce a stronger immune response and poor efficacy (Yan et al., 2020). Recent
outbreaks of infectious diseases have manifested the need for the development of robust vaccines
to overcome these limitations. The main challenge is to develop new technological approaches that
enhance immunity without jeopardizing safety, efficacy, and tolerability. Recent advancements in
DNA, mRNA, and recombinant viral-vector based vaccines present effective vaccine development
methods for difficult-to-target pathogens and control of infectious disease outbreaks (Francis, 2018;
Aida et al., 2021).

Virus-like particle (VLP) technology presents an alternative platform for developing effective
vaccines to combat infectious diseases of serious concern, and it is moving in parallel with mRNA
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and viral-vector based vaccines (Lampinen et al., 2021). VLPs
are also far more immunogenic as compared to other subunit
vaccines as they present repetitive antigenic epitopes on their
surface in a more authentic confirmation that the immune system
can readily detect. Subunit vaccines, on the other hand, have
poor immunogenicity due to misfolding of targeted antigen or
insufficient presentation to the immunological system (Noad and
Roy, 2003). Moreover, they require adjuvants and repeated doses
of vaccination to evoke a sufficient immune response (Brisse
et al., 2020). Fraenkel-Conrat and Williams (1955) first described
the term virus-like particles by reassembling tobacco mosaic
virus (TMV) particles from their purified RNA and protein
components. The potential of these nanostructures to induce
a potent immune response was then further studied later. The
VLP platform can overcome various problems that are usually
associated with traditional vaccines; specifically, the infectious
nature related to live attenuated vaccines, reversion to a virulent
form, risk of mutation, reduced immunogenicity of inactivated
vaccine, unstable toxicity, low yield, and lengthy formulation
time (Mohsen et al., 2018; Figure 1).

These bioinspired nanostructures have repetitive and highly
dense antigens from different virulent agents that aids in
triggering a strong immune response. Moreover, these highly
immunogenic molecules have the self-assembling property of
viral proteins (Urakami et al., 2017; Pechsrichuang et al., 2021).
They are biocompatible and have the potential of structural
flexibility during their synthesis (Chung et al., 2020). They can
be modified either chemically or genetically and have higher
stability, uniformity, and functionality, which are considered an
effective tool in various biomedical applications (Qian et al., 2020;
Figure 2). They are categorized as enveloped or non-enveloped
VLPs based on the presence or absence of a lipid membrane
(Jeong and Seong, 2017).

However, some of the key challenges associated with VLPs are
lower stability, difficult downstream processing, high production
costs, and sensitivity to environmental conditions (Bryant et al.,
2007; Vicente et al., 2011). Many diverse VLPs have been
synthesized in various expression systems (ESs), such as bacteria,
yeasts, mammalian cells, insect cells, and plants (Nooraei et al.,
2021). The VLP-based vaccines can potentially be used for
the treatment of various infectious diseases, including HIV,
influenza, hepatitis B (Spice et al., 2020), hepatitis E, malaria
(Qian et al., 2020), Ebola virus (Tripathy et al., 2021), SARS-
CoV-2 (Yang et al., 2021), Zika virus, Dengue, and foot
and mouth disease, among others (Balke and Zeltins, 2020).
Several vaccines based on VLPs have already been licensed
and are commercially available in markets including Engerix-B R©

(GlaxoSmithKline) and Recombivax HB R© (Merck & Co) against
HBV, Gardasil R© (Merck & Co) and Cervarix R© (GlaxoSmithKline)
against HPV, Hecolin R© (Xiamen Innovax Biotech Co.) against
HEV (Dai et al., 2018), and MosquirixTM (GlaxoSmithKline Inc.)
against malaria (Mohsen et al., 2017). This review focuses on
the basic and advanced technical aspects of the VLP vaccine
development. Furthermore, the use of different ESs for VLP
production and the development of potential vaccines against
various infectious diseases, most notably SARS-CoV-2, have
also been discussed. Finally, protein nanoparticles as scaffolds

for bearing antigens in the development of vaccines have
been elaborated.

CHARACTERISTICS OF VIRUS-LIKE
PARTICLES

VLPs, in general, are potential candidates as efficient vaccines
because of their distinct characteristics (Figure 2). They are
potent immune-stimulatory molecules displaying a highly dense
viral surface proteins in an appropriate conformation and a
highly repeated way, eliciting strong T and B cell acquired
immune responses. Mostly VLPs are derived from viral coat
or envelope proteins, although core proteins can also be used
(Sarkar et al., 2019). VLPs are naturally biocompatible and not
contagious because they lack viral genetic material and hence
cannot replicate. They are also thought to be safer (cannot revert
to wild type) than conventional live attenuated vaccines (Guo
et al., 2019). Moreover, they are highly versatile molecules that
varies in their size, with most ranging from 20 to 200 nm.
The size range is optimal to drain them freely into lymphatic
nodes and for easier uptake by antigen-presenting cells (APCs),
particularly dendritic cells (DCs), followed by antigen processing
and presentation by major histocompatibility complex (MHC)
class II molecules (Syomin and Ilyin, 2019). They are highly
organized and can be self-assembled into different geometric
symmetry, generally in the form of icosahedral, helical symmetry,
rod shape structure, or globular in shape, depending on the virus’s
source (Comas-Garcia et al., 2020).

VLPs have been synthesized in a wide range of ESs, including
prokaryotic (bacteria) and eukaryotic (insect cells, mammalian
cell lines, plant cells, or yeast). The functionality of VLPs can be
increased through modifying their exterior or interior surface by
displaying the heterologous epitopes of interest using different
methods like peptide conjugation, genetic fusion, and chemical
crosslinking (Mohsen et al., 2017). The VLP technology offers a
significant advantage since it is a faster method of synthesizing
vaccines. A new VLP vaccine against a specific strain can be
prepared within 12–14 weeks after the strain is sequenced,
whereas conventional vaccines usually require 24–32 weeks for
the manufacturing processes. These vaccines are free of egg
protein, which will give huge relief to individuals who are prone
to allergies, as well as stronger protection against diseases than
conventional vaccines (López-Macías, 2012).

TYPES OF VIRUS-LIKE PARTICLES
BASED ON STRUCTURE

Based on their structural complexity VLPs can be classified into
two groups: enveloped and non-enveloped VLPs. Both groups
display foreign antigens (Figure 2).

Non-enveloped Virus-Like Particles
These VLPs are often made up of single or many self-assembled
components of the targeted pathogen or viral protein structures.
There is no host cell membrane (lipid envelope) in these newly
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FIGURE 1 | A comparison between VLP-based vaccines and the risks associated with conventional vaccines.

FIGURE 2 | Production of different types of VLPs and their applications, characteristics, and challenges. (A) Different human pathogenic viruses and parasites, (B)
identification of genes that form the structural features of pathogens and can result in the formation of VLPs, (C) incorporation of identified genes in expression
vectors such as plasmids, (D) vectors are allowed to express in various expression systems, (E) formation of different VLP types, such as enveloped,
non-enveloped, and chimeric VLPs. The non-enveloped VLPs can be of two types: single protein or multiprotein. In multiprotein VLPs, there may be a single layer,
multiple layers, and some are mosaic as well. The chimeric VLPs can be modified internally, externally, or can be modified by chemical conjugation.
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formed VLPs. The expression of the major viral nucleocapsid
proteins is primarily responsible for the formation of these
VLPs. Non-enveloped VLPs are still being investigated as
preferable candidates for developing subunit vaccines against
several pathogenic diseases as they are easier to produce and
purify (Naskalska and Pyrć, 2015). Furthermore, these VLPs
are smaller in size that allows them to easily cross the tissue
barrier and drain to lymph nodes (Keikha et al., 2021). The
major structural component of the virion is formed by the single,
virally encoded protein and is derived from pathogens, such
as caliciviruses, papillomaviruses, and parvoviruses (Mohsen
et al., 2017), whereas multi-protein non-enveloped VLPs are
much more complex containing multiple interacting capsid
proteins. They show several striking structural characteristics,
such as many complicated concentric layers of different capsid
proteins. They are more difficult to make than those that are
made up of only one main capsid protein (CP) and derived
from infectious bursal disease virus, poliovirus, and retroviruses
(Lua et al., 2014).

Enveloped Virus-Like Particles
In comparison to non-enveloped VLPs, enveloped VLPs (eVLPs)
have a far more complicated composition. These nano-structures
consist of a cell membrane acquired from the host cell called
an envelope, with viral proteins present on the outer surface
(Dai et al., 2018). One or more than one glycoprotein spikes are
embedded in their lipid bilayers and act as a target antigen for
producing neutralizing antibodies. These eVLPs show a higher
degree of flexibility as they target antigenic epitopes from the
same or heterologous viruses. For example, the eVLPs have
been developed that contain Gag protein from SIV and Env
protein from HIV (Kushnir et al., 2012). Although it may affect
downstream applications because of the presence of the host
protein. The eVLPs have been used to develop vaccines against
viral diseases, such as the hantaan virus, hepatitis C virus (HCV),
influenza A, and retroviruses (Wetzel et al., 2019a). These large
eVLPs have a size greater than 100 nm, so there is a chance
that they might aggregate at the site of injection and will not
reach the lymph nodes that limit their application (Keikha
et al., 2021). In comparison, lipid nanoparticles carrying mRNA
vaccines have a size range of 100 nm or less and show high
efficacy in delivering vaccines to the targeted site (Editorial., 2021;
Żak and Zangi, 2021).

Chimeric Virus-Like Particles
Chimeric virus-like particles (cVLPs) are considered an effective
tool for developing vaccines that provide broader, more powerful,
and comprehensive protection against emerging infectious
diseases (Wetzel et al., 2019a). The complex, multi-protein
macrostructures contain epitopes of different viruses (Latham
and Galarza, 2001). cVLPs can be created by constructing
recombinant DNA molecules that encode both the relevant
viral protein and a foreign peptide or protein. These genetically
engineered cVLPs display a high number of repetitive sequences
on their surface that can be loaded with exogenous antigens from
other viruses via chemical conjugation or genetic fusion (Caldeira
et al., 2020). Different chimeric vaccines have undergone clinical

trials, including the VLP-based vaccine (M2–HBcAg) against
hepatitis, an antimalarial vaccine (MalariVax) (Nooraei et al.,
2021), anti-influenza A, anti-HIV (Rutgers et al., 1988), and
the nicotine-Qb VLP vaccine to reduced nicotine level in
the blood of smokers (Maurer et al., 2005). These chimeric
particles are advantageous as they substantially increase immune
response and antibody titer in response to foreign antigens.
Following administration of cVLPs, they induce strong cytolytic
T lymphocyte immune responses (Qian et al., 2020). These
vaccines are also targeted against non-infectious diseases, such
as hypertension, Alzheimer’s, nicotine addiction, allergies, and
diabetes (Huang et al., 2017). The upstream and downstream
processing yield of cVLPs is usually low, and their in vivo stability
is also quite uncertain (Buonaguro and Buonaguro, 2014).

VIRUS-LIKE PARTICLES AS
IMMUNOGENS

It has already been demonstrated that VLPs potentially confer
high immunogenicity and antigenicity than subunit vaccines. The
potency of these particles has the potential to significantly induce
cellular and humoral immunity (Mohsen et al., 2017; Figure 3).
In response to the VLPs, various maturation markers like CD40,
CD80, and CD86, are expressed on the surface of the DCs, which
are responsible for the activation of DCs (Quan et al., 2016). In
the first step, DCs are activated by binding VLPs to the specific
pattern present on the DCs surface called pattern recognition
receptors (PRRs) i.e., Toll-like receptors (TLR2) (Sartorius et al.,
2021). Following this, internalization of VLPs takes place in
the cytosol of DCs and are presented to cytotoxic T cells and
helper T cells by MHC class I and class II molecules, respectively
(Zepeda-Cervantes et al., 2020; Keikha et al., 2021). VLPs can
stimulate not only B cells to mediate antibody response, but they
can also stimulate CD4+ and CD8+ cells proliferation (Roy and
Noad, 2008). Some studies show that exogenous antigen can also
reach to MHC class 1 pathway through a process called cross
penetration (Storni and Bachmann, 2004).

Moreover, activation of B cells can induce Th cell expansion
and differentiation via toll-like receptor (TLR) signals or
homologous interactions, which control the production of
cytokines. In order to enhance the efficacy of VLPs, different
molecules like Toll-like receptor ligands, biologically active
mediators, or other cell receptors can also be attached to VLPs
(Keikha et al., 2021).

COMMERCIALLY APPROVED VACCINES
BASED ON VIRUS-LIKE PARTICLES

The first recombinant VLPs were synthesized from viral coat
protein, two genes from the hepatitis B virus (HBV) (HBsAg
and HBcAg), and the tobacco mosaic virus (TMV) (Zeltins,
2013). The first commercial VLP-based vaccine produced by
recombinant DNA method was approved by the US Food
and Drug Administration (FDA) in 1986s. These are the yeast
produced HBsAg vaccines that were named as Recombivax HB R©
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FIGURE 3 | Induction of innate and adaptive immunological responses (A) humoral immunity; (B) cell-mediated immunity) by VLPs, (1) enhanced absorption and
presentation of antigens based on VLP by APCs such as dendritic cells, which inform T cells about potential risks, (2) efficient VLP trafficking to lymph nodes, a
crucial site for adaptive immunological responses, (3) improved cellular communication between B cells, T cells, and APCs, and (4) the ability of VLP-based antigen
to effectively cross-link and activate B cells receptors, which develop into memory cells and long and short lived plasma cells after antigen exposure.

(Lagoutte et al., 2016). Later, in 2006, the second VLP based
vaccine Gardasil R© against human papillomavirus (HPV) vaccine
was licensed by the FDA (Koutsky, 2009). Following this, several
VLP vaccines against HPV and HBV have been approved, with
some demonstrating efficacy in clinical and preclinical trials.
The analysis of studies showed that at least 110 VLPs have
been produced from viruses of 35 distinct families (Qian et al.,
2020). Several VLP based vaccines targeting different viruses
including Norwalk Virus, HIV, Ebola Virus, SARS-CoV-2 Virus,
Respiratory Syncytial Virus (RSV), Influenza Virus are still under
different clinical trial stages (Nooraei et al., 2021). However, just
a few VLP vaccines have made it to the market, showing their
commercial feasibility, and majority of them are effective against
non-enveloped viruses (Guo et al., 2019).

CHALLENGES SPECIFIC TO VIRUS-LIKE
PARTICLE-BASED VACCINE
PLATFORMS

At Present, VLPs are as effective as conventional vaccines,
with the additional benefit of being safer. Nevertheless, several
obstacles in the successful development of VLP-based vaccines

need to be addressed. The main challenge is to identify issues
related to downstream processing in the production of clinically
viable VLPs (Charlton Hume et al., 2019) for their timely
management and economic feasibility.

Stability of Enveloped Virus-Like
Particles
VLPs are generally considered more stable than subunit vaccines
(Dai et al., 2018). However, when the environmental conditions
change, especially during downstream processing, VLPs can
become very unstable as they lack the genetic material of the
virus. Despite the fact that multiple VLP vaccines are already
available in the marketplace, some of the candidates’ vaccines
have stability issues (Mohsen et al., 2018). Generally, eVLPs are
often more susceptible to external environmental conditions as
compared to non-enveloped VLPs (Dai et al., 2018). Variations
in conditions such as a change in temperature, shear stress,
dissolved oxygen, fluid dynamics, agitation rate, and chemical
treatment may all have an impact on the particle’s integrity
and stability (Roldao et al., 2011). Moreover, this structural
breakdown significantly reduces the immunogenicity of eVLPs. It
also interferes with cell growth and the production of metabolic
proteins, which has an impact the VLP production. It has been
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one of the key obstacles to using them as an alternative for a
live virus in vaccine manufacture. However, several modifications
have been made to increase their thermostability. One typical
procedure is the insertion of stabilizing mutations (Dai et al.,
2018). A study conducted by Marsian et al. (2017) showed
that when stabilizing mutation was induced within the coat
proteins of poliovirus type 3 VLP, it become more stable than
wild type VLPs. It modified capsid precursor and the viral
protease without disturbing its antigenic epitopes and structural
confirmation. In another study stability of chimeric (HBcAg-
VLP) was increased by the addition of C-terminal linker-
hexahistidine-peptide (Schumacher et al., 2018).

High Production Cost
Some VLP-based vaccines are much more complex and, as a
result, have a higher cost of production. The numerous impurities
associated with eVLPs pose a daunting challenge. During
downstream processing (DSP) various impurities like host cell
debris (HCD), host cell protein (HCP), and host cell DNA
(HCD) are co-purified as in the case of enveloped baculovirus
particles. These contaminations can cause undesirable side
effects in vaccines if not removed properly during DSP (van
Oers, 2011). Large scale production and purification of VLPs
require different processes like density gradients or even
chromatography to make the final formulated product. These
complex processes are very costly and time-consuming (Wetzel
et al., 2019a). This also leads to difficulty in industrial scale
production and requires several quality control efforts as various
downstream processing steps may worsen the VLPs quality
(Diamos et al., 2019). A more robust and better analytical
methods are required to ensure the quality and quantity of
the product that can facilitate their clinical and pharmaceutical
utilization (Moleirinho et al., 2020). Different strategies such
as clone screening, high-throughput screening, bioreactor
engineering, material/matrix screening, filtration, flow-through
or size-exclusion chromatography, and polishing have been
implemented during upstream and downstream processing for
scalable and cost-effective industrial manufacturing of VLPs
(Vicente et al., 2011; Lagoutte et al., 2016).

Difficulty in Assembly
The genetic fusion of the sequences of epitope into VLPs
can sometimes be challenging, as VLPs may lose their self-
assembly property or cause particle misfolding (Guo et al.,
2019). Genetically fusion of antigen to capsid protein of virus
often hinders either antigen assembly or VLP, making the
technique laborious. Therefore, time-intensive planning and
optimization are required for individually testing every single
antigen (Lampinen et al., 2021).

EXPRESSION HOST SYSTEMS FOR
VIRUS-LIKE PARTICLE PRODUCTION

Different expression systems (ESs) were utilized to make
VLP vaccines, including plant, mammalian, insect, yeast, and
bacteria (Figure 4).

Bacteria
Most of the bacterial systems are focused on well-studied
industrial strains and expression vectors of Escherichia coli
(Zeltins, 2013). Bacterial cell cultures were investigated as a
platform for VLP development, with benefits in terms of cost
and scalability (Kim et al., 2014). The other beneficial features
of using bacterial systems for VLP production include (a)
easy manipulation, (b) high-level expression, (c) fast growth
rate, (d) genetic stability, and (e) simplicity of expression
(Masavuli et al., 2017).

Huo et al. (2018) used pCold expression vector to express
and purify norovirus (NoV) VLPs in E. coli strain (BL21) and
demonstrated the similar binding pattern for VLPs assembled in
E. coli as for Sf9 cells assembled VLPs. Similarly, in a recent study,
the full-length CP of type 2 porcine circovirus and VP2 protein
of porcine parvovirus were expressed in E. coli, which were self-
assembled into VLPs. The study suggested that the expression of
the CP and VP2 in E. coli is possible for the mass development of
VLP vaccines (Liu et al., 2020). Yazdani et al. (2019) investigated
the possibility of utilizing VLPs of grapevine fanleaf virus (GFLV)
as a potential vector for presenting the L2 epitope of HPV. The
antigenic determinant sequence was incorporated genetically into
the GFLV capsid protein’s “αB-αB” domain C, which was then
overexpressed in E. coli and Pichia pastoris. In E. coli, the highest
expression yield was observed. For Hepatitis E virus (HEV),
the ORF2 protein region 368–606 aa was purified in vitro from
the insoluble E. coli fraction that is assembled into VLPs. This
HEV VLP promises 100% effectiveness in clinical trials against
symptomatic HEV and is approved as a vaccine for commercial
use in China (Gupta et al., 2020). In another study, infectious
hypodermal and hematopoietic necrosis virus (IHHNV) VLPs
from CP of recombinant IHHNV were reconstructed in E. coli
and showed excellent physical stability (Kiatmetha et al., 2018).

Bacterial systems are not always the optimal VLP development
strategy because of several factors, including (a) poor
immunogenicity, (b) inability to develop recombinant proteins
with mammalian−like post-translational modifications (PTMs),
(c) issues of protein solubility, (d) inability to create the correct
disulfide bonds, and (e) presence of bacterial endotoxins/ or
lipopolysaccharides in preparation of recombinant proteins
(Shirbaghaee and Bolhassani, 2016; Masavuli et al., 2017).

Brito and Singh (2011) have highlighted the acceptable
level of endotoxins for various types of vaccines. There
are various methods by which endotoxins are removed
during the purification step, such as immobilized sepharose,
surfactants, activated carbon, ultrafiltration, and anion exchange
chromatography. However, the use of these techniques often
leads to a considerable reduction in yield, an increase in cost, or
a lack in the biological activity of the target protein. Therefore,
ClearColiTM, a genetically engineered E. coli strain with a
genetically modified LPS which does not elicit an endotoxic
reaction in humans, has been developed (Mamat et al., 2013).

Yeast
Eukaryotic ESs are a compelling alternative to prokaryotic
ones, particularly when it comes to addressing the issue
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FIGURE 4 | Advantages and limitations of different expression systems for the development of virus-like particles.

of bacterial endotoxins in vaccine production (Shirbaghaee
and Bolhassani, 2016). VLPs can be produced more cost-
effectively by recombinant expression of proteins in yeast cells.
Manipulation of genes in yeasts is comparatively straightforward,
and the transformed cells can grow to extremely high densities
until the expression of recombinant proteins is induced.
This allows commercial-scale fermenters to produce VLPs
in large volumes (Stephen et al., 2018). Some mammalian
viruses’ structural genes expressed in yeast can form the VLPs
(Shirbaghaee and Bolhassani, 2016).

The FDA has approved some yeast-derived VLP vaccines,
including Gardasil R© and Gardasil9 R© against HPV and
MosquirixTM against P. falciparum (Nooraei et al., 2021).
Some studies have investigated VLP production using yeast as
an ES. Wetzel et al. (2018) established a robust and cost-effective
yeast model for the production of cVLPs. The duck HBV
membrane integral small surface protein (dS) was selected as the
scaffold for VLP, and the safe and industrially applied Hansenula
polymorpha yeast as the heterologous expression host. 8 distinct
antigens of high molecular weight were derived from four viruses
that infect animals and are genetically linked to a protein dS,
and then the recombinant isolates were identified and purified.
The fusion proteins were highly expressed in all cases, and it
was possible to generate chimeric VLP comprising both proteins
after co-production with protein dS. The production system
based on yeast allows for a low-cost product that is not restricted
to small-scale basic research. In another study, Alireza et al.
(2018) produced chimeric protein L1/L2 VLPs in the P. Pastoris
system by first inserting a cross-neutralizing epitope from the

gene HPV-16 L2 into the gene L1 HPV-16. Following that, the
chimeric L1/L2 HPV-16 had been introduced into the plasmid
(pPICZA) and expressed in P. pastoris. The ELISA results for
L1-HPV-16 Ab as well as L2-HPV-16 Ab detection indicated a
positive reaction with sensitivity comparable to the commercial
testing kit. Similarly, in the P. pastoris ES, Gupta et al. (2020)
produced a recombinant VLP against HEV that included 112–
608 aa region of the protein ORF2. The results showed that for
the development of 112–608 aa VLP, the P. pastoris ES seems to
be a superior and safer alternative to the baculovirus (Bv) ES.

During viral infection, enteroviruses like poliovirus, generate
empty capsids that are antigenically indistinguishable from that
of mature virions. The recombinant synthesis of such capsids
with the help of heterologous systems like yeast has enormous
potential as candidates for the VLP vaccine. Sherry et al. (2020)
showed VLP production in P. pastoris through co-expression of
the viral protease 3CD and the structural precursor protein P1.

Construction of yeast ESs is much more challenging than
bacterial ESs, especially the Pichia and Hansenula strains.
Furthermore, the VLP yield is lower than that of E. coli.
Another disadvantage of the yeast ES is its lack of resemblance
to mammalian ESs in protein PTMs, particularly glycosylation
(Shirbaghaee and Bolhassani, 2016). Their glycoforms are mostly
of the high type of mannose, which is undesirable for most
pharmaceutical glycoproteins (GPs) (Kim et al., 2014).

Insect Cells
Baculovirus-based protein expression in insect cell lines has
appeared as an effective tool for developing complicated
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protein-based biologics for a variety of purposes, extending
from multiprotein complexes to the development of proteins
for therapeutic use, such as VLPs (Sari-Ak et al., 2019). Bv is
unusual among widely used viral vectors in its ability to tolerate
heterologous DNA in large amounts and deliver it faithfully to
the desired host cell (Gupta et al., 2019). Gopal and Schneemann
(2018) described detailed procedures for producing recombinant
baculoviruses (rBVs), screening for VLP expression in insect cell
lines, and purifying VLPs.

The Bv-insect cell system is a two-step procedure in which
insect cells are originally grown to the required cell concentration
before being infected with rBVs for protein expression (Roldão
et al., 2010). Recombinant protein and VLP production using
Bv expression vector systems (EVSs) is fast, versatile, and
provide substantial yields (Strobl et al., 2020). This system
can produce exceptionally high protein production levels,
combined with complex eukaryotic protein PTMs, which may
be crucial for the proper self-assembly and release of some VLPs
(Chaves et al., 2018).

MultiBac is an innovative Bv EVS that comprises of
a viral genome that has been engineered to suit specific
purposes. Recently, a team of scientists described the
development of a MultiBac-based VLP-factory, dependent
on the CP (M1) of influenza virus and its utilization in
generating an arsenal of influenza-derived VLPs with functional
modifications in influenza virus hemagglutinin (HA), which are
expected to regulate the VLP-derived immunological response
(Sari-Ak et al., 2019).

The insect cell-Bv EVSs have proven to be as effective as
conventional egg- and cell-based approaches in influenza virus
vaccine production with additional features like high production
yields, and short production times. Moreover, rBVs construction
has become faster, easier, and more flexible, allowing for the
fusion of genes from different types and/or subtypes of influenza
viruses inside the same expression vector. Sequeira et al. (2018)
successfully created a robust High Five cell-based insect platform
that combines stable expression with Bv-mediated expression
to generate multivalent influenza VLPs. The capability of this
modular approach has been proven by infecting the High-Five
cell line with 2 distinct HA proteins of subtype H3 (called
HA2 and HA1) with a Bv expressing M1 and 3 additional HA
proteins of subtype H3 (called HA5, HA4, and HA3), to generate
pentavalent VLPs (H3).

The Zaire Ebola virus serotype (ZEBOV) is the most virulent
and has the highest mortality rates among other serotypes.
ZEBOV-VLPs development have been achieved in insect and
mammalian cell lines via co-expression of 3 viral structural
proteins, the nucleocapsid protein (NP), the matrix structural
protein (VP40), and the glycoprotein (GP). A technique for
generating ZEBOV-VLPs in insect cell line was reported by
Pastor et al. (2019), which basically consists of employing
a high multiplicity of infection (MOI) of bac-GP and bac-
VP40, and limiting the NP expression, either via preventing
infection or by lowering the bac-NP MOI, was the most suitable
for developing VLP.

The main limitations of the insect cell ES are (a) protein
contamination by enveloped baculoviruses, (b) difficult to

scale-up, and (c) simpler N-glycosylation than mammalian cells
(Shirbaghaee and Bolhassani, 2016; Masavuli et al., 2017).

Mammalian Cells
For more than two decades, various mammalian cell lines such as
murine myeloma (Sp2/0, NS0), Chinese hamster ovary (CHO),
murine C127, baby hamster kidney (BHK21), HT-1080, and
HEK293 were established as a possible source of commercialized
protein therapeutics for medical purposes, due to their capability
to properly fold, assemble, and post-translational modification to
proteins (Dumont et al., 2016; Shirbaghaee and Bolhassani, 2016).
Systems based on mammalian cell culture offer many benefits,
including consistency and flexibility during the development
process. It also helps glycosylated proteins to be recovered with
compositions of lipid membrane similar to the virus’s host. It
has been reported that the stable transfection of viral genes into
mammalian cell lines, including 293 or Vero cells, results in VLP
production (Buffin et al., 2019).

Several studies reported the efficient production of VLPs
from mammalian cell cultures. Hsin et al. (2018) developed
a MERS VLP system using Huh7 cells as an expression
system for understanding virus infection and morphogenesis. In
another study, influenza VLPs encoding neuraminidase (NA),
hemagglutinin (HA), and matrix M1 proteins had been expressed
in Vero, 293 T, or CHO-K1 cell lines, using transient transfection.
Preclinical studies in BALB/c mice revealed that influenza VLPs,
when given intramuscularly, were significantly immunogenic
at low dosages, inducing functional Abs against NA and HA
(Buffin et al., 2019). Wu et al. (2010) designed a scalable
method for the effective production of various subtypes of
influenza VLPs expressed in mammalian cell line. The study
demonstrated that these mammalian influenza VLPs were very
similar to the original viruses in particle size, structure, host
factor composition, and viral antigen glycosylation. Similarly, in
another work, an inducible cell line of human embryonic kidney
HEK-293 expressing NA and HA was developed and utilized to
generate VLPs following transient transfection with a plasmid
encoding HIV-1 Gag (Venereo-Sanchez et al., 2017). A protocol
developed for the synthesis of HIV-1 Gag VLP in mammalian
cell suspension cultures via transient gene expression showed that
the large proportion of Gag-GFPs present in the supernatants
of cell culture was fully assembled into VLPs of the predicted
morphology and size consistent with immature particles of HIV-1
(Cervera et al., 2013).

Expression systems based on mammalian cells require large-
scale production facilities, like fermentation bioreactors, which
are prohibitively expensive to construct. As a result, the high cost
of production is a challenging part of the cell-based mammalian
ES (Kim et al., 2014). The other limitations include lengthy-
expression time, low yield, and vulnerability to infections with
mammalian pathogens (Masavuli et al., 2017).

Plants
“Molecular farming” is a term used to describe the utilization of
plants or plant cells to produce recombinant proteins or other
biologic drugs for use as cosmeceuticals, biopharmaceuticals,
therapeutics, vaccines, and other reagents (Rybicki, 2020). Plants
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provide an enticing alternative system for the manufacture of
VLP vaccines due to their potential to generate significant
amounts of recombinant proteins at a minimal cost, their
eukaryotic production machinery for the PTM and correct
protein folding and assembly, and their low risk to introduce
adventitious human pathogens. Plants do not demand the
installation of costly fermentation facilities for the production of
biomass, nor do they necessitate the establishment of duplicate
facilities for scale-up production. Unlike microbial fermentation,
plants have the ability to carry out N-glycosylation as a
glycoprotein PTM (Chen and Lai, 2013). Engineered VLP-
forming human or animal virus capsid proteins expressed in
plant cells include human norovirus CP, HPV L1 protein,
hepatitis B core and surface antigens, HIV Gag polyprotein, and
HA protein of influenza virus (Rybicki, 2020).

Several studies have extensively discussed the concepts for
constructing VLPs in various plant ESs, efficient growth of
VLPs in plant hosts, and the self-assembly of multiple structural
proteins of viruses in plants. Santi et al. (2008) produced
properly assembled recombinant Norwalk virus VLPs in leaves
of Nicotiana benthamiana utilizing a TMV-derived transient
ES. Young et al. (2015) generated trackable hemagglutinin
based VLPs that allowed them to examine particle assembly
in plants and the interaction of VLPs inside the mammalian
immunological system. van Zyl et al. (2016) investigated the
production of bluetongue virus VLPs in N. benthamiana
through Agrobacterium-mediated transient expression, which
is an inexpensive system. Similarly, Veerapen et al. (2018)
transiently expressed VLPs of the foot-and-mouth disease virus in
N. benthamiana. Diamos and Mason (2018) produced norovirus
VLPs in a plant-based system using modified geminiviral
vectors. Recently, Rosales-Mendoza et al. (2020) presented
a perspective in developing VLP vaccines based on plants
against SARS-CoV-2, which is responsible for the COVID-
19 pandemic.

Plants for the production of the VLP platform are not entirely
acceptable due to comparatively lower production levels of
VLP than mammalian ESs and plant-specific N-glycosylation
of glycoproteins (Kim et al., 2014). Nonetheless, the recent
creation of novel plant ESs, as well as advancements in plant
glycoengineering, have both resolved these challenges (Chen
and Lai, 2013). Recent advancements in plant glycoengineering
permit human-like modification of glycol and optimization of
desirable glycan structures to improve the functionality and safety
of recombinant pharmaceutical glycoproteins (Kim et al., 2014).

DEVELOPMENT OF VIRUS-LIKE
PARTICLE VACCINES AGAINST
EMERGING INFECTIOUS DISEASES

Several VLP vaccines have been produced and are being used
against different viral and parasitic infections in recent years
(Table 1). The development of VLP vaccines against zika virus,
chikungunya virus, influenza virus, and human papillomavirus
have been discussed below.

Zika Virus
Zika virus (ZIKV) is a small-enveloped mosquito-borne
neurotropic positive-strand RNA virus of the family Flaviviridae
(Lin et al., 2018; Shanmugam et al., 2019). ZIKV infections were
associated with acute prenatal abnormalities like microcephaly
in neonates born to infected mothers, and also Guillain-Barré
syndrome (GBS) in adult people (Alvim et al., 2019). Currently,
no cure or vaccine is commercially available for effective therapy
or treatment, so vaccine development against ZIKV is of great
importance (Boigard et al., 2017).

ZIKV has an RNA genome with only one open reading
frame, and a solitary polyprotein is formed. This protein-strand
is cut into 7 non-structural proteins (NS5, NS4B, NS4A, NS3,
NS2B, NS2A, and NS1) and 3 structural proteins (C, prM, and
E) by cellular and viral proteases. E-protein is engaged in the
binding of viral particles as well as its fusion (Boigard et al.,
2017). E-protein has three domains structure, like enveloped-
domain-I also known as ED-I, then ED-II, and ED-III. Humoral
response mainly targets the fusion-loop belonging to ED-II.
Antibodies against fusion-loop epitopes enhance the uptake of
DENV by Fcγ-receptors (Shanmugam et al., 2019). So, this
protein may serve as a possible target for vaccine development
(Shanmugam et al., 2019).

Many VLPs for ZIKV have been developed (Boigard et al.,
2017). Garg et al. (2019) compared different VLPs-vaccine
for ZIKV in mice and showed that CprME-VLPs (Capsid-
preMembrane-Envelope) gave better results than prME-VLPs
(preMembrane-Envelope). Cell lines could not be generated
using CprME- because co-expression of protease NS2B-3 is
needed. In order to get rid of this barrier, a bicistronic vector
was generated that uses IRES-sequence to produce both NS2B-
3 and CprME-VLPs. Alvim et al. (2019) demonstrated the
continuous expression of ZIKV-VLPs by HEK293-cells. In short,
the cell lines constitutively producing Zika-VLPs are ideal for
developing a vaccine.

Chikungunya Virus
It’s a severe and periodic infectious disease caused by CHIKV
(chikungunya-virus) transmitted by a carrier mosquito.
Symptoms are high fever, skin rash, etc. No vaccine is available
at present, but many VLP-vaccine candidates are under
development in different stages (Zhang et al., 2019). Protection
from multiple strains of this virus can be conferred by self-
assembled VLPs produced as a result of selective expression of
CHIKV envelope and capsid proteins (Kramer et al., 2013).

Arévalo et al. (2019) reported 100% protection in adult
mice against CHIKV infection when unadjuvanted CHIKV-
VLPs were used. Similarly, Metz et al. (2013) compared three
different vaccines in mice that were produced in insects by
recombinant baculoviruses produced sE1, sE2 CHIKV, and
CHIKV (VLPs). One-half of E1 and E2 immunized mice survived
to show incomplete protection when compared with VLP-
immunized mice.

Akahata and Nabel (2012) uncovered that variable CHIKV
structural proteins expression results in VLPs, which mimic
replication-competent alphaviruses. This vaccine caused the
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TABLE 1 | VLP vaccines against different viruses and parasites.

VLP vaccine Antigens displayed by
VLP vaccine

Expression system Targeting pathogen Mechanism of action References

M-HBsAgS-N4,
M-HBsAgS-N9 VLPs

NANP repeats from
circumsporozoite protein
(CSP) and small HBV
envelope protein (HBsAgS)

HEK 293F cells Plasmodium falciparum Induced anti-NANP Abs with the potential to initiate the complement
system, which led to the inactivation of invading parasitic sporozoites.

Kingston
et al., 2019

STh and STh-A14T
VLPs

Human heat-stable toxins
(STh) and STh-A14T toxoid

E. coli Enterotoxigenic
Escherichia coli (ETEC)

Both VLPs showed immunogenicity in mice and neutralized the native
STh’s toxic activities completely.

Govasli et al.,
2019

CV-B4 VLPs VP1 Insect cells Coxsackievirus B4
(CV-B4)

Showed antigenic reactivity with specific antibodies. Hassine
et al., 2020

RVFV VLPs Gn, Gc, and N proteins Sf9 insect cells Rift Valley fever virus
(RVFV)

Produced RVFV neutralizing antibodies in mice and stimulated spleen
cells in the mouse to produce high cytokines levels (IL-4 and IFN-γ).

Li et al., 2020

Genogroup II,
genotype 17 (GII.17)
VLPs

Major capsid protein (VP1) sf9 insect cells Noroviruses (NoVs) Mice immunized with purified and sterile VLPs developed specific GII.17
sera and effectively blocked GII.17 VLPs bound to antigen of the saliva
histo-blood group.

Chen et al.,
2020

JEV genotype III (GIII)
VLPs

Envelope (E) protein and
Precursor membrane
protein (prM)

Mosquito cell lines Japanese encephalitis
virus (JEV)

A specific immune response has been developed against a stable
IgG2a/IgG1 ratio. This response essentially nullified both Japanese
encephalitis virus GIII and GI and triggered a hybrid response of
Th1/Th2 in a mice model.

Chang et al.,
2020

SAG1-VLPs Surface antigen 1 (SAG1) Sf9 insect cells Toxoplasma gondii After immunization, IgG, IgG1, IgG2a, and IgA were significantly
enhanced, and T. gondii endurance rates were severely constrained by
the immunized sera.

Choi and
Park, 2020

VLP-gG and VLP-gB ILTV glycoproteins B (gB) or
G (gG)

LMH cells Infectious
laryngotracheitis virus
(ILTV)

VLPs displayed no noticeable adverse effects in vivo and appeared to
induce an antibody-based immune response.

Schädler
et al., 2019

Chimeric VLP (Pfs230
and Pfs25),
genetically fused to
dS of the duck HBV

Pfs25 and Pfs230 Auxotrophic Hansenula
polymorpha strain
ALU3

Plasmodium falciparum Exhibited reactivity with transmission-blocking antibodies and
established the malaria antigens exhibition on the native VLP surface.

Wetzel et al.,
2019b

Triple chimeric
AHSV-6 VLPs

VP2, VP3, VP5, and VP7 Nicotiana benthamiana
dXT/FT plants

African horse sickness
virus (AHSV)

Able to stimulate a poor neutralizing humoral immune response against
homologous AHSV virus in target animals.

Rutkowska
et al., 2019

Codon-optimized
AMA-1 VLP

Apical membrane antigen 1
(AMA-1)

Sf9 insect cells Plasmodium berghei Vaccination with codon-optimized AMA-1 VLPs, mediated elevated
levels of B cells, CD8+ T cells, germinal center cells, and CD4+ T cell
responses relative to non-codon optimized VLPs.

Lee et al.,
2019
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TABLE 1 | (Continued)

VLP vaccine Antigens displayed by
VLP vaccine

Expression system Targeting pathogen Mechanism of action References

HBc1R82, HBc1H301,
HBc1H82, and
HBc1R301

VLPs

CD4+ cell epitope (AS15),
B cell epitope
(SAG1301−320 or
SAG182−102), and a
CD8+ cell epitope (ROP7
or HF10)

Escherichia coli Toxoplasma gondii High titers of IgG Ab and production of interferon (IFN)-p, resulted in
reduced brain parasite load.

Guo et al.,
2019

PPRV VLPs Hemagglutinin (H), PPRV
matrix (M), nucleocapsid
(N), and fusion (F) proteins

Baculovirus-insect cell Peste des petits
ruminants virus (PPRV)

Induced antibodies production specific for F and H proteins and
provoked a cellular immunological response in goats.

Yan et al.,
2019

EV71-VLPs VP0, VP1, and VP3 Pichia pastoris Enterovirus 71 (EV71) Both maternally transferred Ab and passive transfer protection mouse
models stimulated a robust neutralizing Ab response and offered
effective protection against lethal challenge.

Yang et al.,
2019

CJaYZ vaccine CprME-IRES-NS2B-3,
(C-E3-E2-6K-E1)

293?T stable cell lines ZIKV, CHIKV, JEV, and
yellow fever virus (YFV)

The tetravalent VLPs supplied highly neutralizing Ab titers against the
viral strains tested.

Garg et al.,
2020

Chimeric BTV-4 and
BTV-3 VLPs

VP3, VP7, VP2, and VP5 N. benthamiana Bluetongue virus (BTV) Induced long-lasting serotype-specific neutralizing Abs in sheep like the
monovalent live attenuated vaccine controls.

Mokoena
et al., 2019

AP205 capsid-based
VLPs

The VAR2CSA PM antigen
and HPV RG1 epitope

E. coli Human Papillomavirus
and placental malaria

Reduced in vivo HPV infection and induced IgG antibodies against
VAR2CSA.

Janitzek
et al., 2019

CVB1-VLPs CVB1 capsid proteins (VP0,
VP1, and VP3)

Baculovirus-insect cell Type B
Coxsackieviruses
(CVBs)

CVB1-VLP vaccines were extremely immunogenic, and their
immunogenicity and stability improved with formalin treatment.

Hankaniemi
et al., 2019

HCV VLPs E1 and E2 glycoproteins Huh7 cells Hepatitis C virus (HCV) Produced robust HCV multi-genotypic neutralizing Ab (NAb), as well as
cell mediated immunity responses in pigs.

Earnest-
Silveira et al.,
2016;
Christiansen
et al., 2019

Hepatitis B core
(HBc) VLPs and
Recombinant
immune complexes
(RIC)

Minor CP (L2 or L2 fused
with an immunoglobulin)

N. benthamiana Human Papillomavirus
(HPV)

Both candidates for the vaccine showed potent immunogenicity in a
mice model but were particularly so when delivered together, producing
very high and consistent HPV L2-directed antibody titers, which
associated with the neutralization of viruses.

Diamos et al.,
2019
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induction of neutralizing antibodies in large amounts against
multiple strains of this virus and conferring complete protection.
VLPs were easily produced from CHIKV 37997-strains compared
to CHIKV-OPY-1 strain- VLPs despite high amino-acid-
sequence similarity. Knowledge of mechanisms involved in
CHIKV VLP production will help in other vaccine development
also enhancing their range of application for other pathogens.
Furthermore, VLP-production was affected by amino acid 234
of E2 in an acid-sensitive region. Mutations in the acid-sensitive
region and pH changes also enhance the yield of VLPs.

Influenza Virus
Influenza virus (Iv) infections are the leading cause of chronic
human respiratory symptoms, leading to severe public health
outcomes about endemic and seasonal infections and even result
in unpredictable pandemic outbreaks (Lai et al., 2019). Iv is an
enveloped, segmented, negative-sense RNA virus, which belongs
to the family Orthomyxoviridae. To date, four types of Ivs have
been identified, classified according to the presence of their
core proteins: A, B, C, and D. Three Iv types, A, B, and C are
pathogenic to human cells and cause severe infections, with Iv
type A and B being the most prevalent circulating types. The main
surface glycoproteins of influenza viruses are neuraminidase
(NA) and hemagglutinin (HA) (To and Torres, 2019).

HA, the key antigen involved in infection, attaches to the
residues of sialic acid on the cell membrane surface, facilitating
the Iv to enter the host cell. NA appears to be less frequent
on the viral surface as compared to HA, with a generally
observed NA:HA ratio of 1:4. Its enzymatic function is critical
in the cleavage of sialic acid, thereby facilitating viral release
from the infected host cell surface. NA activation also enables
the successful penetration by influenza to mucus through a
mechanism involving cleavage of sialic (Buffin et al., 2019).
Kim et al. (2019) investigated the cross-protective efficiency
and immunogenicity of VLP containing NA (N1 VLP) derived
from the 2009 H1N1 influenza viral pandemic and compared
it to inactivated split influenza vaccine. Mouse immunized
with the N1 VLPs was able to induce virus-specific Ab
responses as well as cross-reactive NA inhibition activity, while
strain-specific hemagglutination inhibition test was induced by
inactivated split vaccination. Mice vaccinated with N1 VLPs led
to the development of cross-protective immunity to antigenically
various Ivs, as measured by changes in bodyweight, pulmonary
viral titers, infiltration of innate leukocytes, cytokines and Ab
secretory cells, and germinal center B-cells. Furthermore, in
naïve mice, the immune sera of N1 VLPs conferred cross-
protection. Immunity induced by N1 VLPs was neither impaired
nor diminished in mice lacking the Fc receptor γ-chain. These
findings indicate that NA representing VLPs, along with the
current vaccination of influenza, may be further improved and
exploited as an important candidate for cross-protective vaccines.

Recently, Kirsteina et al. (2020) studied and examined the
efficacy and immunogenicity of an array of widely protective
prototypes of Iv vaccine focused on both influenza triple
matrix protein 2 ion channel (3M2e) and tri-stalk antigens
incorporated into phage AP205 VLPs. VLPs that contained the
3M2e antigen alone stimulated protection in mice toward both

standard homologous as well as heterologous virus challenge. The
combination of both conserved antigens of the influenza virus
into an individual VLP resulted in complete protection against
a high dose of homologous influenza H1N1 infection in mice.

Human Papillomaviruses
Human papillomaviruses (HPVs) are members of the
Papillomaviridae family of tiny, circular, double-stranded
DNA viruses that cause cervical cancer, the world’s second
most fatal disease in women after breast cancer (Uddin et al.,
2019; Burley et al., 2020). Currently, two VLP-based vaccines
are commercially available for inhibiting warts and treating
cervical cancers caused by HPV. These include Cervarix by
GlaxoSmithKline (GSK) Pharmaceuticals and Gardasil by Merck
Pharmaceuticals. Both vaccines consist of the immunogenic
major CP (L1) VLPs of HPV 16 and 18, with Gardasil also having
6 and 11 VLPs (Uddin et al., 2019).

The drawback of using L1 protein as an antigen for the VLP
vaccine is that it is not conserved among various HPV serotypes.
Conversely, the minor CP (L2) is highly conserved across all
HPV serotypes and has long been considered a major potential
target antigen for developing an HPV vaccination with broad
protection. In contrast to CP (L1), the CP (L2) cannot be used for
VLP production and is, therefore, less immunogenic (Yadav et al.,
2020). The reasons for the low immunogenicity of L2 proteins are
due to their slight representation relative to L1, as well as the fact
that L2 is mainly buried beneath the surface of the capsid, where it
contacts the surface of the cell in vitro or the basement membrane
in vivo and induces a conformational shift (Huber et al., 2017).

Several methods have been applied to improve and enhance
the L2 peptides low immunogenicities, such as concatemeric
fusion peptides consisting of L2 epitopes of various types
of HPV, combined with immune activating TLR agonists
or using repeated surface arrays of epitopes of L2 on
particulate immunostimulatory platforms, such as VLP of
TMV, bacteriophages MS2 or PP7, Adeno-associated virus,
Lactobacillus casei, or bacterial thioredoxin (Huber et al., 2017).

Another promising strategy to improve L2 low
immunogenicity is the presentation of L2 epitopes on the
surface via VLPs assembled from HPV L1-L2 chimeric proteins.
It was achieved through the genetic insertion of highly conserved
B cell epitope RG1 of HPV16 L2 into the surface loop (DE) of the
protein HPV16 L1 leading to its multivalent (360x) immunogenic
display on the surface of VLP, whereas the conformational
neutralization antigenic determinants of the HPV16 L1 scaffold
remained mostly preserved. Immunizations with this chimeric
RG1-VLP caused high type-specific HPV16 titers and extensive
cross-neutralization of heterologous mucosal and distantly
associated cutaneous HPVs (Schellenbacher et al., 2009, 2013).

Pouyanfard et al. (2018) described the thermostable
thioredoxin vaccine development based on a single-peptide
capable of carrying L2 polytopes from up to 11 various types
of HPV. The antigens of the L2 polytope exhibit exceptional
capabilities regarding the robustness and protection of the
elicited immunological responses. To further boost and enhance
immunogenicity, the polytope antigen L2 of thioredoxin was
fused with a heptamerization domain. Protective responses to all
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14 oncogenic types of HPV, as well as the lower risk HPV types
(6 and 11), and a range of cutaneous HPVs were achieved in the
final design of the vaccine.

VIRUS-LIKE PARTICLES AGAINST
SEVERE ACUTE RESPIRATORY
SYNDROME-CORONAVIRUS-2

With worldwide causalities crossing 2 million people and
more than 20 million individuals affected in more than 200
countries this past year, the severe acute respiratory syndrome-
coronavirus-2 (SARS-CoV-2) has emerged as a nuisance across
the globe. The COVID-19 global pandemic resulting from
SARS-CoV-2 has impacted billions of individuals and emerged
as the first major global catastrophe after the 2009 H1N1-
pandemic (Alvi et al., 2020). Currently, some commercially
available antiviral drugs including Remdesivir R© (Gilead Sciences),
Paxlovid R© (Pfizer), Molnupiravir R© (Merck and Co.) have been
approved by the FDA and WHO for treatment of patients
infected with SARS-CoV-2. Due to the limitations including
development, cost, and distribution of targeted drug therapies
against the virus, researchers are aiming their focus and efforts on
developing vaccines for the long-term fight against COVID-19.

VLPs against SARS-CoV-2 can help combat the widespread
pandemic. VLPs can act as therapeutic agents and viable vaccines
against this viral disease, with the addition of serving as a
feasible diagnostic tool (Fuenmayor et al., 2017). SARS-CoV-
2 has a slow mechanism of action as after entering host it
takes between 5 and 15 days for a person to display symptoms
because the virus enters host cells via endosomal pathway and
is not efficient in evading the immune system whereas, vaccines
against other coronaviruses (CoVs) strains that cause SARS
and Middle East Respiratory Syndrome (MERS) were shown
to be effective and active in animal models against SARS-CoV-
2 (Cohen, 2020). Like other CoVs, SARS-CoV-2 consists of
four proteins that are structurally conserved among different
viral serotypes: Spike (S), Nucleoprotein (N), Envelope (E), and
Membrane (M) proteins. The precise contribution of the above
proteins and their relevant interaction patterns are crucial for
the production and assembly of VLPs. M, N, and E are vital
for the production VLPs for SARS-CoV-2 (Boson et al., 2020;
Figure 5). The S-protein is one such protein that is common
among different coronavirus strains and may serve as a potential
vaccine development target. VLPs for MERS-CoV have been
produced by displaying the S-protein in the insect host cells ES
(Kato et al., 2019; Samrat et al., 2020).

Before developing SARS-CoV-2 VLP-based vaccines, previous
work on VLPs against the preceding and closely related
strains must first be considered. VLPs have previously been
demonstrated to be effective in eliciting specific humoral
and cellular immune defenses against SARS-CoV in mice by
production in rBV ES (Lu et al., 2010). Ho et al. (2004)
reported the synthesis of VLPs for SARS-CoV. These VLPS
were assembled in the insect ES by the co-infection with rBV.
VLPs prepared via the use of protein corona formation have
shown effective vaccination and have led to the development

of significant immune responses in the avian model of CoV
infection (Chen et al., 2016). Similarly, plasmids containing 4
structural viral proteins (S, N, E, and M) of SARS-CoV were
transferred into Vero E6 cells to produce VLPs. These VLPs may
serve as an effective tool for studying the pathogenesis of SARS-
CoV with the host cell (Hsieh et al., 2005). Recently, a COVID-19
mRNA vaccine expressing SARS-CoV-2 VLPs has shown the
induction of a robust antiviral immunological response in the
mouse model (Lu et al., 2020).

Currently, the NVX-CoV2372 is the only commercially
available VLPs based vaccine against SARS-CoV-2. This vaccine
is manufactured by the display of SARS-CoV-2 S-protein in rBV,
which are then used for mass production by infecting moth
cell expression system. This vaccine has shown various levels of
effectiveness in different trials across separate countries (Heath
et al., 2021; Shinde et al., 2021). Currently, five teams are also
working separately on VLP based vaccines against COVID-19
(Bogani et al., 2020; Callaway, 2020), and clinical trials are
underway with efforts being made in developing viable VLPs
based vaccines. Biometric VLPs have been developed which can
aid in accurate diagnosis of SARS-CoV-2 by acting as positive
controls during RT-PCR procedure (Chan et al., 2020). Ghorbani
et al. (2020) evaluated the immunogenic properties of various
SARS-CoV-2 spike derived epitopes which had already been
reported to induce a specific immunogenic response, by using
immunoinformatic analysis. Finally, a set of screened epitopes
were suggested for which a VLPs-based vaccines against SARS-
CoV-2 could be synthesized in different plant species by using
molecular farming approaches.

Different mammalian ESs were utilized for the synthesis of
SARS-CoV-2 VLPs. Results indicate that SARS-CoV-2 VLPs
produced from Vero E6 cell line are more durable and
integrated than those derived from HEK-293T cells (Xu et al.,
2020). Recently, a VLP vaccine based on plant ES against
SARS-CoV-2 has been reported. Findings of clinical phase
I trials of VLP vaccine (CoVLP) against SARS-CoV-2 have
indicated significant development of IL-4 and IFN-γ immune
responses in individuals. The CoVLP vaccine is manufactured
by transient expression of S protein of SARS-CoV-2 in the
plant ES (N. benthamiana). The trimeric S GPs are exhibited
on the surface of self-assembling VLPs that imitate the size
and shape of the SARS-CoV-2 (Ward et al., 2020, 2021).
Similarly, a combination minispike VLP vaccine for SARS-CoV-
2 has also demonstrated high level of immunization in mice
after a single dosage. The vaccine elicited the development
of neutralizing Abs and protected the K18-hACE2 mice from
COVID-19 similar to the patients suffering from COVID-19
(Hennrich et al., 2021).

A capsid VLP centered SARS-CoV-2 vaccine (ABNCoV2)
has shown efficient neutralization of SARS-CoV-2 in mice
models. The ABNCoV2 vaccine is made by displaying the
receptor-binding domain of the SARS-CoV-2 S-protein in insect
(Drosophila) cells (Fougeoux et al., 2020). Researchers are also
aiming toward developing a DNA-based vaccine that can be
delivered through the nasal cavity to the targeted tissue, which
will cause the production of SARS-CoV-2 VLPs resulting in a
strong immune response in individuals (Samrat et al., 2020).
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FIGURE 5 | Proposed production system and mechanism of action of SARS-CoV2 virus-like particle vaccine. Plasmids encoding the structural proteins (S, N, M,
and E) of the SARS-CoV2 can be transfected into an appropriate mammalian cell line. The assembled VLPs are then collected, purified, and administered to
humans. The administration of VLPs stimulates both innate and adaptive immunological responses. If the original SARS-CoV2 enters the human body in the future,
memory B cells activate and release antibodies against it. Similarly, the activated CD8+ T cells recognize and kill virus-infected cells.

PROTEIN NANOPARTICLES FOR
VACCINE DEVELOPMENT

Protein nanoparticles (NPs) can help in the development of
vaccines for immuno-evasive pathogens such as HIV, influenza,
malaria, and can aid in the fight against emerging virulent
strains by either acting alone or acting as carriers for targeted
drug delivery (Hong et al., 2020; Roth et al., 2021). The
engineering of protein molecules for antigen representation
with the aid of NPs to be used in vaccine development
for generating immune response is an increasingly popular
and rapid field in therapeutic and drug development (Jain
et al., 2018). Protein-based VLPs act as natural NPs that can
be extensively used in vaccine development due to ease in
design, self-assembly, and high stability (Nguyen and Tolia,
2021). Three different methods are used to attach antigens for
presentation on NPs, (1) tag coupling (van Oosten et al., 2021),
(2) chemical conjugation (Lu et al., 2021), and (3) genetic
fusion (Antanasijevic et al., 2020). These techniques enable the
platform to be decorated with a variety of antigens, leading

to increased size and presentation (Nguyen and Tolia, 2021).
Most antigens often do not self-assemble into NPs, like those
utilized in influenza subunit vaccinations. Self-assembly can
be achieved in such circumstances by attaching these antigens
to an oligomeric protein platform (Nguyen and Tolia, 2021).
There are many naturally occurring oligomeric proteins such
as lumazine synthase (LS) (Ladenstein and Morgunova, 2020),
ferritin (Rodrigues et al., 2021), dihydrolipoyl acetyltransferase
(E2p) (He et al., 2016), non-structural protein 10 (nsp10) (Carter
et al., 2020), encapsulin (Lagoutte et al., 2018), and heat shock
proteins (HSPs) (Richert et al., 2012) that have been developed for
platform design for designing targeted therapeutics. The display
of viral glycoproteins using NPs is effective in developing antigen-
specific antibodies (Ueda et al., 2020). Antigen-displaying protein
NPs are highly effective for generating an immune response to
specific antigens and can be used separately or in combination
with vaccines (López-Sagaseta et al., 2016).

Among the wide array of platforms available for the display
of antigens, ferritin has emerged as a major protein complex
that can be combined with NPs for vaccine development
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(Diaz-Arévalo and Zeng, 2020). Due to its high pH and thermal
stability, it allows for easy annealability with surface molecules
(Rodrigues et al., 2021). In recent years, ferritin has been
studied in preclinical studies as a viable vaccine platform
for numerous viral infectious diseases, including HIV, H1N1,
HCV, HBV, HFMD, Epstein–Barr, rotavirus, and respiratory
diseases caused by coronaviruses (Butkovich et al., 2021).
Kelly et al. (2020) compared the immunogenicity between
ferritin NPs displaying influenza HA and soluble protein (HA)
in vivo. HA-ferritin NPs showed higher immunogenicity and
greater protection against a viral challenge as compared to
soluble protein (HA).

Recently, a structure-based design of self-assembling
protein NP immunogen that produces protective and potent
antibody responses against SARS-CoV-2 has demonstrated the
development of innate immunity in in vivo studies in mice (Walls
et al., 2020). Similarly, a ferritin NP-based SARS-CoV-2 vaccine
induced an effective antibody response in mice that reportedly
lasted for at least 7 months post-immunization contributing
toward sufficient development of immunity (Wang et al., 2021).

Though protein-NPs can serve as viable candidates for
vaccine development, in vivo applications of NPs are often
restricted by several challenges due to their organic nature
(Poon and Patel, 2020), including cellular toxicity, inflammatory
responses, and insufficient delivery to the target site (Kianfar,
2021). The term “protein corona” formation has been coined
to summarize this unfavorable interaction between protein
and NPs in in vivo conditions. The surface protein attached
to NPs affects their biological behavior and changes their
functionality, which occasionally results in gain or loss-of-
function (Karch et al., 2018). The protein corona formation
is a complex process that involves complex dynamics and
kinetics between two interacting entities (Kapadia et al., 2019).
Some cases have been reported where structural changes have
occurred after interaction with NP surface evidently altering the
NPs native function. Thus, to overcome such challenges it is
critical to understand protein conformational changes and the
unfolding process to accelerate the biomedical applications of
NPs (Park, 2020).

CONCLUSION

Over the past two decades, resistance in some pathogens
against commercially available antimicrobial drugs has increased
drastically, mainly due to unregulated over-the-counter sales,
misuse and overuse of drugs, and genetic adaptations. The
process of drug development is a rigorous task and requires
ample time, funding, and repeated trials to commercialize a viable
product that could aid in the fight against numerous emerging
pathogens. Due to the time-consuming limitation, especially
access of patients to appropriate drugs is hindered, whereas
the resistance in pathogens is consistently increasing. Therefore,
preventive measures are of significant importance to address the
emergence of infectious diseases. In the efforts to combat such
diseases, VLPs have come to light in the healthcare industry,
with multiple applications ranging from vaccine development,
drug delivery systems, and molecular diagnostics. VLP based
approaches provide an alternative to the available conventional
methods for vaccine developments. Currently, some VLP-based
vaccines are commercially available against perilous pathogens
like ZIKV, HCV, HBV, and HPV. Meanwhile, efforts are underway
in the production and designing of efficient VLP vaccines against
various emerging virulent pathogens, including SARS-CoV-2.
However, there are still some major hurdles that need to be
addressed before VLP-based therapeutics can compete with
conventional drug therapies in terms of cost and effectiveness.
Nonetheless, VLP-based medicinal strategies may be used
extensively in the future along with pharmaceutics to aid in the
fight against numerous infectious diseases.
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