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The prognostic significance of the major redox regulator nuclear factor erythroid-2-related factor (NRF2) is recognized in many
cancers, but the role of NRF1 is not generally well understood in cancer. Our aim was to investigate these redox transcription
factors in conjunction with redox-related microRNAs in naevi and melanoma. We characterized the immunohistochemical
expression of NRF1 and NRF2 in 99 naevi, 88 primary skin melanomas, and 67 lymph node metastases. In addition, NRF1 and
NRF2 mRNA and miR-23B, miR-93, miR-144, miR-212, miR-340, miR-383, and miR-510 levels were analysed with real-time
qPCR from 54 paraffin-embedded naevi and melanoma samples. The immunohistochemical expression of nuclear NRF1
decreased from benign to dysplastic naevi (p < 0:001) and to primary melanoma (p < 0:001) and from primary melanoma to
metastatic lesions (p = 0:012). Also, NRF1 mRNA levels decreased from benign naevi to dysplastic naevi (p = 0:034). Similarly,
immunopositivity of NRF2 decreased from benign to dysplastic naevi (p = 0:02) and to primary lesions (p = 0:018). NRF2
mRNA decreased from benign to dysplastic naevi and primary melanomas (p = 0:012). Analysis from the Gene Expression
Omnibus datasets supported the mRNA findings. High nuclear immunohistochemical NRF1 expression in pigment cells
associated with a worse survival (p = 0:048) in patients with N0 disease at the time of diagnosis, and high nuclear NRF2
expression in pigment cells associated with a worse survival (p = 0:033) in patients with M0 disease at the time of diagnosis. In
multivariate analysis, neither of these variables exceeded the prognostic power of Breslow. The levels of miR-144 and miR-212
associated positively with ulceration (p = 0:012 and p = 0:027, respectively) while miR-510 levels associated positively with
lymph node metastases at the time of diagnosis (p = 0:004). Furthermore, the miRNAs correlated negatively with the
immunohistochemical expression of NRF1 and NRF2 but positively with their respective mRNA. Together, this data sheds new
light about NFE2L family factors in pigment tumors and suggests that these factors are worth for further explorations.
1. Introduction

Nuclear factor erythroid-2-related factor 2 (NRF2) is the
most studied member of the Cap ‘n’ collar basic leucine zip-
per (CNC-bZIP) family of transcription factors. It is a main
inductor of genes of antioxidant proteins and phase II detox-
ifying enzymes [1]. In addition, due to activating mutations,
growth signalling and epigenetic dysregulation NRF2 was
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also found be aberrantly activated in several cancers [2, 3].
From the same family of transcription factors, NRF1 is
generally far less studied and its role in carcinogenesis is
insufficiently explored. Similar to NRF2, it is responsive to
oxidative stress and activates antioxidant responsive ele-
ment- (ARE-) driven genes [4]. Both, NRF1 and NRF2 reside
outside of the nucleus under unstressed conditions: NRF1 in
the endoplasmic reticulum (ER) and NRF2 in the cytoplasm
[5]. Several events contribute to NRF1 and NRF2 activation,
among them the proteolytic cleavage of NRF1 from the ER
membrane and the phosphorylation of NRF2. As a conse-
quence, both factors are transported to the nucleus to induce
the expression of their target genes.

MicroRNAs (miRNAs) are small noncoding RNAs that
posttranscriptionally regulate gene expression by imperfect
matching of mRNA [6]. The so-called redoximiRs represent
an additional regulatory mechanism for redox homeostasis.
In particular, miR-23B, miR-93, miR-144, and miR-212 were
found to play a role as NRF2 inhibitors, while miR-340
appears to have a role as an NRF1 and MAPK inhibitor with
miR-383 and miR-510 having a less clear role in the regula-
tion of NRF1 and NRF2 levels [7]. Furthermore, it has been
shown that miRNAs have a substantial role in melanocyte
and melanoma biology [8] and that they affect, for instance,
melanoma cell proliferation, invasion, and migration [9]. A
total of 63 differentially expressed miRNAs have been previ-
ously linked to metastatic melanoma, many of which are
known to be associated with multiple different cancers [10].
Previous studies also show that miRNA expression differs
in healthy patients as compared to patients with melanoma
and that miRNA expression associates with patient survival
rate. All in all, miRNAs could be used as potential diagnostic,
prognostic, and predictive markers in the future [11].

We have previously described the expression and prog-
nostic role of the NRF2 immunohistochemical expression
in primary and metastatic melanoma [12, 13]. Here, we have
extended those studies and investigated the activated state of
both factors in an enlarged sample set of naevi andmelanoma.
To do this, we explored active NRF2 with a phosphorylation-
specific antibody [14] andNRF1 with two different antibodies
targeting its N- and C-terminal domains to reflect its inactive
and active location and activation, respectively [5]. In
addition, NRF1 and NRF2 mRNAs and the redox-related
miRNAs miR-23B, miR-93, miR-144, miR-212, miR-340,
miR-383, and miR-510 were analysed from the same material
and three Gene Expression Omnibus (GEO) datasets, and the
results were correlated to the clinical and histopatholog-
ical factors.

2. Materials and Methods

The study included 172 patients and 255 patient samples
(Table 1) collected from the paraffin block archives stored
in the Department of Pathology at Oulu University Hospital
between 2001 and 2016 and in the Department of Pathology
at Lapland Central Hospital between 2010 and 2016. All sam-
ples were fixed in neutral buffered formalin and embedded in
paraffin. Cases were randomly collected based on the diagno-
sis and the adequacy of the samples for RNA extraction. The
series consisted of 53 benign naevi (25 compositus, 28 intra-
dermal), 46 dysplastic naevi, 48 nodular melanomas, 32
superficially spreading melanomas, and 9 acral melanomas.
Out of all malignant samples, 59 were metastatic melanomas
with, respectively, 67 lymph node metastases available (one
or several per case). All samples were used for immunohisto-
chemical analysis, but for RNA isolation and qPCR analysis,
only selected cases were included based on the estimated suf-
ficiency of the tumorous tissue (n = 54, Table 1). Diagnoses
were according to the current WHO classification. Clinical
data and pathologists’ reports of the cases were collected
retrospectively from the patient records of Oulu University
Hospital and Lapland Central Hospital. We also collected
data on adjuvant therapy or treatment at a possible meta-
static stage, but only a few patients received oncological
treatments, and therefore, no statistical analyses on the pre-
dictive power of the markers were able to be used.
2.1. NRF1 and NRF2 Immunohistochemistry. Sections of
3-4 μm thickness were cut from samples routinely fixed in
formalin and embedded in paraffin. Tissue sections were
deparaffinised in xylene (2min, 4 times) and rehydrated
through graded ethanol. Antigen retrieval was performed
according to Table 2 by boiling with microwaves at 95°C
for either 12 minutes (sodium citrate buffer) or 20 minutes
(TrisEDTA). After boiling, the sections were allowed to cool
at room temperature (RT) and washed using PBS 3 times.
The sections were incubated in 3% hydrogen peroxide for 5
minutes to inactivate endogenous peroxidases. After washing
repeatedly by PBS for 5 minutes, sections were incubated
with the primary antibody (Table 2), then washed repeatedly
by PBS for 5 minutes and incubated with a secondary antigen
retrieval system at RT (Table 2). After washing repeatedly by
PBS, the labelled secondary antibody was visualised according
to the manufacturer’s instructions. Sections were then coun-
terstained with haematoxylin, dehydrated, and mounted. To
evaluate the immunohistochemical data, the staining
intensity was evaluated from the tumorous cells as one
of the following expressions: negative, weak positive, or
strong positive. The quantity of each intensity level was
recorded (0-100%). Subsequently, a modified Histoscore
was used with the following algorithm: 0 × negative
expression percentage + 1 × weak expression percentage + 3 ×
strong expression percentage (range 0-300).
2.2. RNA Isolation and qPCR Analysis. Tumorous tissue was
macrodissected from 2 to 6 sections of 10 μm thickness.
Samples were estimated to represent melanocytic prolifera-
tion for >80% of the volume. Macrodissected samples were
collected into Eppendorf tubes and deparaffinised using
deparaffinisation solution (Qiagen, Hilden, Germany), and
total RNA was extracted from paraffin samples using the
miRNeasy FFPE Kit (Qiagen). cDNA synthesis was done
using the miScript II Reverse Transcription Kit (Qiagen).
The miScript SYBR Green PCR Kit (Qiagen) was used for
cDNA amplification by the Rotor-Gene Q real-time quanti-
tative PCR equipment (Qiagen). Amplicon length was
checked by gel electrophoresis.



Table 1: Patient cohort.

IHC analysis RNA analysis

Total number of patients 172 54

Age median (years) 60 67

Samples per diagnosis Compound naevus 25 5

Intradermal naevus 28 4

Dysplastic naevus 46 4

Nodular melanoma 48 15

Superficially spreading melanoma 32 5

Acral melanoma 9 1

Metastasis 67 20

Number of patients with
malignant melanoma

68 21

Median age (years) 70 71

Males 53 14

Females 15 7

Ulceration 19 11

No ulceration or not defined 49 10

Breslow ≤1mm 11 1

1–1.9mm 20 0

2–3.9mm 13 3

>4mm 24 17

Breslow mean 3.6mm 9.2mm

Breslow median 2.5mm 6.0mm
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For mRNA and miRNA quantification, both specially
designed (Sigma) and commercial miScript Primer Assays
(Qiagen) were used for amplification, respectively (Table 3).
GAPDHmRNA and miScript Primer Assay for RNU6B were
used for normalization of qPCR results. Cycling was carried
out as recommended in the PCR Kit with annealing temper-
atures of 60–68°C or 55°C for mRNA and miRNA,
respectively. Fluorescence signals were measured continu-
ously during repetitive cycles to detect Ct values for target
RNA and reference (GAPDH or RNU6B) in the samples.
Relative expression levels of mRNA or miRNA targets
were calculated using the 2−ΔΔCt method [15], where
ΔΔCt = ðCttarget RNA‐CtGAPDHor RNU6BÞsample‐ðCttarget RNA‐CtGAPDHor

RNU6BÞreference sample. Representative cell culture samples
were run and analysed in parallel with the patient samples
(Figure 1(b)). RNA from melanocytes was used as a refer-
ence sample (with a given value of 1) in relative expres-
sion level calculations.
2.3. GEO Datasets. The three microarray datasets GSE8401,
GSE46517, and GSE53223 first described in original articles
[16–18] were downloaded in .CEL-file format from the Gene
Expression Omnibus (National Center for Biotechnology
Information). Data was analysed using Chipster v3.14 soft-
ware [19]. Datasets were first normalized individually and
then, when combining the datasets, the batch effect was cor-
rected using ComBat. The differential mRNA expression
levels of NFE2L1 and NFE2L2 (NRF1 and NRF2) were deter-
mined and tested with the empirical Bayes T-test between the
diagnostical groups. The combined data contained normal
skin samples (n = 13), benign and dysplastic naevi (n = 21),
primary melanoma lesions (n = 62), and metastatic mela-
noma lesions (n = 104). The respective results were plotted
with GraphPad Prism 7.05.

2.4. Cell Lines. Cell lines representing human primary mela-
noma IPC-298 (ACC 251), metastatic melanoma SK-MEL-
30 (ACC 151), and adult primary epidermal melanocytes
(PCS-200-013) were ordered from Leibniz-Institut, DSMZ
(Braunschweig, Germany) and ATCC (LGC Standards
GmbH, Germany). Melanoma cells were cultured in RPMI-
1640 with 10% foetal bovine serum and 100 IU/ml penicillin
and streptomycin (Pen-Strep solution HyClone laboratories
Inc., UT, USA). Melanocytes were cultured in a Dermal Cell
Basal Medium supplemented with an Adult Melanocyte
Growth Kit (PCS-200-030 and PCS-200-042 from ATCC).
Cells were cultured in 37°C 5% CO2.

2.5. Western Blot Analysis. The fractionated lysates were
prepared by using the Subcellular Protein Fractionation
Kit for Cultured Cells (Thermo Scientific, IL, USA). Protein
concentrations were measured using the Bio-Rad Protein
Assay (Bio-Rad; CA, USA), and the concentration in individ-
ual samples was equalized before adding 4x Laemmli
buffer to a final concentration of 1x. Equal amounts of pro-
tein were run on 7.5% SDS-PAGE gels, transferred to PVDF
membranes, probed with the antibodies (Table 2), and
diluted with 5% bovine serum albumin in tris-buffered saline
with 0.1% Tween 20. Primary antibodies were incubated
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Table 3: Primers used in qPCR.

RNA target
Product
company

Primer sequences
Amplicon length

(base pairs)
Function related to oxidative stress

(references)

mRNA NRF2 Sigma

Forward:
5′-CAATGAGGTTTCTTCGGCTACG-3′

Reverse:
5′-AAGACTGGGCTCTCGATGTG-3′

72 Major redox response regulator [1]

mRNA NRF1 Sigma

Forward:
5′-ATGGAAATGCAGGCCATGGAAG-3′

Reverse:
5′-GAGGGGCACTGTACAGGATTT-3′

61 Redox response regulator [5]

GAPDH Sigma

Forward:
5-TGGAAGGACTCATGACCACA-3′

Reverse:
5-CCATCACGCCACAGTTT-3′

—

miR-23B-3p Qiagen 5′AUCACAUUGCCAGGGAUUACC Predicted NRF2 inhibition [40]

miR-93-5p Qiagen 5′CAAAGUGCUGUUCGUGCAGGUAG Predicted NRF2 inhibition [40]

miR-144-3p Qiagen 5′UACAGUAUAGAUGAUGUACU Predicted NRF2 inhibition [8, 40, 52]

miR-212-3p Qiagen 5′UAACAGUCUCCAGUCACGGCC NRF1 and NRF2 inhibition,
interaction with Mn-SOD

miR-340-3p Qiagen 5′UCCGUCUCAGUUACUUUAUAGC MAPK signalling, predicted NRF1
inhibition [40]

miR-383-5p Qiagen 5′AGAUCAGAAGGUGAUUGUGGCU No predicted inhibition of
NRF1/NRF2

miR-510-5p Qiagen 5′UACUCAGGAGAGUGGCAAUCAC No predicted inhibition of
NRF1/NRF2

RNU-6B Qiagen
(Not reported, product no. 218300 cat.

no. MS00014000)
—
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overnight, and appropriate HRP-conjugated secondary anti-
bodies were incubated at RT for one hour (Table 2). Blots
were detected with the ECL chemiluminescence system
(Pierce ECL Western Blotting Substrate, Thermo Scientific,
IL, USA) on radiographic films, which were then scanned
to an electronic format.

2.6. Statistical Analyses. Statistical analyses were performed
by using IBM SPSS Statistics software, v. 25.0.0.0 (IBM Cor-
poration, Armonk, NY, USA). The significance of associa-
tions was defined by using the Mann–Whitney U test and
Spearman’s rho test with a correlation coefficient. The
Kaplan-Meier curves with the log-rank test were applied in
survival analyses, along with Cox regression to perform mul-
tivariate analysis. In determining a two-classed variable for
survival analysis, a Histoscore cut-off value (32.5) was chosen
using a Receiver Operating Characteristic Curve (ROC) anal-
ysis for NRF1, the highest Histoscore quartal for NRF2, and
the median for mRNA and miRNA levels. Disease-specific
survival (DSS) was calculated from the time of diagnosis to
the time of confirmed melanoma-related death. Values of
p of less than 0.05 were considered significant.

2.7. Ethical Approval. The study was approved by Valvira, the
Finnish National Supervisory Authority for Welfare and
Health, and the Local Ethics Committee of the Northern
Ostrobothnia Hospital District. During data collection and
management, the principles of the Helsinki Declaration were
followed. The authors declare that they have no competing
interests and that funding sources had no involvement in
the study.

3. Results

3.1. Immunohistochemical and mRNA Expression of NRF1
and NRF2 in Naevi, Primary Melanomas, and Melanoma
Metastases and Their Association with Histopathological
and Clinical Parameters. First, we tested whether the anti-
bodies against the N-terminal domain of NRF1 and the C-
terminus of NRF1 as well as against phosphorylated NRF2
detect the respective localization and activity status of the
proteins. To do this, we performed western blot analyses
where we detected the proteins in respective subcellular
fractions of primary melanomas. According to expectations,
the antibody detecting the N-terminal domain of NRF1, i.e.,
the inactive ER localized protein, displayed NRF1 in the
membranous fraction, whereas the antibody against the C-
terminus primarily detecting the active protein showed
positive staining in the nuclear fraction. Active NRF2 (p40-
NRF2) was detected in all fractions, in line with the fact
that its activation by phosphorylation can occur outside
the nucleus (Figure 2). Thus, these data indicate that the
antibodies are suitable to detect NRF1 and NRF2 by immu-
nohistochemistry in patient samples.
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Figure 1: Continued.
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Figure 1: Immunohistochemical and mRNA expression of NRF1 and NRF2. (a) Boxplots representing the Histoscore of the
immunohistochemical expression of NRF1 and p40-NRF2 and relative mRNA levels of NRF1 and NRF2 from paraffin-embedded patient
samples, (b) expression levels of NRF1 and NRF2 mRNA from representative cell culture samples, and (c) Pooled GEO data from three
different cDNA microarray studies including the expression levels of NFE2L1 and NFE2L2 (NRF1 and NRF2). Outliers of the figures
are reported.
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The immunohistochemistry revealed that, in line with
western blots and according to the activity status, the anti-
body against the N-terminal domain of NRF1 detected the
protein in the cytoplasm around the nucleus and never in
the nuclei. The antibody against the C-terminal domain
detected the protein mostly in the nuclei and rarely in the
cytoplasm. The expression of both NRF1 antibodies showed
a significant NRF1 decrease from benign to dysplastic naevi
(p < 0:001 and p = 0:034, Supplementary Table 1, Figures 1(a)
and 3) and from naevi to primary melanoma, as well as to
metastatic lesions (p < 0:001, Figures 1(a) and 3) [20]. Nuclear
NRF1 further decreased from primary to metastatic lesions
(p = 0:012, Figures 1(a) and 3). Similarly, NRF1 mRNA
levels were decreased from benign to dysplastic naevi
(p < 0:001 and p = 0:034, Supplementary Table 1 and
Figure 1(a)) but not from primary to metastatic lesions.

Immunopositivity of p40-NRF2 was detected mainly in
the nuclei, and its expression decreased from benign to dys-
plastic naevi (p = 0:02) and then further to primary lesions
(p = 0:018, Figures 1(a) and 3). The p40-NRF2 expression
had a notable intersample variation in primary melanomas.
The levels of NRF2 mRNA decreased from its highest levels
in benign naevi to intermediate levels in dysplastic naevi,
and its lowest levels occurred in primary melanomas
(p = 0:012). The decrease of p40-NRF2 immunopositivity
and NRF2 mRNA levels from primary to metastatic lesions
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was not considered significant. In addition, the decline in
NRF1 and NRF2 mRNA levels from benign naevi to melano-
mas could be reproduced when comparing the NRF1 and
NRF2 mRNA levels in cell culture lysates in the qPCR, show-
ing a decrease of relative mRNA levels between benign mela-
nocyte and malignant melanoma cells (Figure 1(b)).

The immunohistochemical expressions of NRF1 and
p40-NRF2 did not associate with the melanoma patients’ age,
gender, lesion location, Breslow’s thickness, ulceration, mitotic
activity, or pigmentation. However, NRF1 and NRF2 mRNA
correlated with melanoma patients’ gender (higher mRNA
levels in males, p = 0:037 and p = 0:017, n = 20 and n = 19,
respectively), and NRF1 mRNA also correlated positively with
the presence of ulceration (p = 0:016, n = 18).

3.2. Correlations of Immunohistochemical and mRNA
Expression of NRF1 and NRF2. Nuclear and cytoplasmic
NRF1 correlated positively in the complete series of samples
(p = 4:7 × 10−13, 219 samples, Figure 4). Nuclear and cyto-
plasmic NRF1 and p40-NRF2 had a positive correlation in
the complete series of samples (p = 0:0020 and p = 0:018,
n = 204 and n = 203, respectively). Also, nuclear NRF1
and p40-NRF2 correlated positively in malignant samples
(p = 0:032, n = 103, Figure 4). p40-NRF2 associated posi-
tively with our previously described NRF2 expression in
the melanoma cohort with a different antibody (p = 0:021,
n = 49) [12, 13]. The immunostainings did not correlate with
mRNA expression levels. However, NRF1 and NRF2 mRNA
expression correlated both in the complete cohort and sepa-
rately in malignant samples (p = 0:010 and p = 0:037, n = 49
and n = 36, respectively, Figure 4).

3.3. miRNA Expression in Naevi, Primary Melanomas, and
Melanoma Metastases and Association with Histopathological
and Clinical Parameters. Significant miRNA expression alter-
ations (Supplementary Table 1) were not detected between
benign and dysplastic naevi. However, the levels of miR-93
and miR-340 increased significantly from all naevi to primary
melanomas and to metastases (p = 0:023 and p = 0:045,
respectively, Figure 5). In contrast, the levels of miR-383 and
miR-510 showed a decreasing trend between the three groups
(p = 0:024, p = 0:002, respectively, n = 31, Figure 5).
Moreover, significant changes in miRNA levels could not be
detected between primary and metastatic melanoma lesions.

The miRNA levels did not associate with melanoma
patients’ gender, lesion location, or Breslow’s thickness. The
miR-510 levels associated positively with melanoma patients’
age (p = 0:025, n = 19) and nodal disease at the time of diagno-
sis (p = 0:004, n = 19). In addition, the levels of miR-212 and
miR-340 associated positively with pigmentation (p = 0:024
and p = 0:012, n = 11, respectively). Furthermore, miR-144
and miR-212 levels were found to associate positively with
ulceration (p = 0:012 and p = 0:027, n = 18, respectively).

3.4. Respective Correlations of Immunohistochemical and
mRNA Expression of NRF1 and NRF2 and miRNAs. There
was an ample amount of significant correlation between pro-
tein and mRNA expression with different miRNAs, and this
data is thoroughly presented in Supplementary Table 1 in
all cases and separately in malignant samples including
primary and metastatic melanoma lesions. Significant
correlations between protein expression and miRNAs were
always negative, except for the cytoplasmic NRF1 and miR-
510, whereas correlations between mRNA and miRNAs
were always positive.

3.5. GEO Data. Levels of NRF1 and NRF2 mRNA decreased
from normal skin samples to pooled benign and dysplastic
naevi (p = 0:001). There was no significant difference in levels
between naevi and primary melanomas. Although the level of
NRF1 mRNA decreased nearly significantly between primary
melanomas and metastases (p = 0:053), the difference in
NRF2 mRNA levels was not significant between primary
melanomas and metastases (Figure 1(c)).

3.6. Survival and Cox Regression Analysis. A high nuclear
NRF1 immunohistochemical expression in pigment cells cor-
related with a worse survival (p = 0:048) in patients without
nodal metastases at the time of diagnosis (n = 45,
Figure 6(a)). When N1-3 cases were considered, nuclear
NRF1 had no prognostic significance (p = 0:72, Figure 6(b)).
When analysing the NRF2 expression in patients withM0 dis-
ease at the time of diagnosis (n = 71, Figure 6(c)), we found
that the highest quartile of the nuclear NRF2 expression in
pigment cells correlated with a significantly worse survival rate
(p = 0:033). mRNAs or miRNAs had no prognostic signifi-
cance. In multivariate analysis, neither of these variables
exceeded the prognostic power of Breslow thickness.

4. Discussion

In this work, we studied for the first time the protein level of
the redox-sensitive transcription factor NRF1 together with
NRF2. Very early on in melanoma carcinogenesis, both
NRF1 and NRF2 were found to be downregulated at the pro-
tein level as well as at the mRNA level. The results of the
mRNA expression from our own patient cohort are further
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supported by analyses from three independent melanoma
patient sample sets from the GEO database [16–18]. We also
studied the expression of some redoximiRNAs from the same
sample set and described some new data on their expression
level changes in melanoma carcinogenesis and correlation
with immunohistochemical and mRNA expression levels of
NRF1 and NRF2.
4.1. NRF1 and NRF2 in Melanoma. We carefully examined
the expression of NRF1 with two different antibodies target-
ing the N-terminal and C-terminal sites of the protein. As
NRF1 binds the ER membrane with its N-terminal domain
and is cleaved upon activation [21], it is logical that the anti-
body targeting the N-terminus showed a perinuclear staining
pattern under light microscopy and a strong expression in
the membranous fraction in the immunoblot. By contrast,
the antibody recognizing the C-terminus showed predomi-
nantly a nuclear staining pattern and a strong expression
in the nuclear fraction in the immunoblot resembling active
NRF1. In immunohistochemistry, the protein level of NRF1
had a decreasing trend during melanoma carcinogenesis.
We also observed that the NRF1 mRNA level decreased
from benign naevi to dysplastic naevi and to melanomas
and that their levels associate with ulceration. There is
human sample set data showing that NRF1 mRNA levels
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are also downregulated in prostate carcinoma [22] but they
are upregulated in oesophageal squamous cell carcinoma
[23]. Conditions such as oxidative stress, proteasomal inhibi-
tion, ER stress, and hypoxia activate NRF1 to function as a
transcription factor [4]. An early increase of ER stress in mel-
anomas and adaptation to it as a driver of malignancy was
discussed a decade ago [24]. Therefore, the dysregulated
NRF1might be a mere surrogate marker for more robust bio-
logical processes behind the pigment cell malignancy, but it
can also play a significant role in carcinogenesis, as its defi-
ciency can lead to genomic instability [25]. Indeed, there is
some experimental evidence from a study using keratinocyte
cell culture, mouse model, and patient samples that NRF1
functions as a tumor suppressor in the skin by activating
DNA damage repair after ultraviolet (UV) B irradiation
and is downregulated in human squamous cell carcinoma
compared to normal skin [26]. Nuclear NRF1 expression,
which predicted exceptionally poor melanoma-specific out-
come in those patients without nodal metastases at the time
of diagnosis, might benefit the carcinogenetic process by alle-
viating oxidative and ER stress accumulated in the aggressive
disease [24]. To the best of our knowledge, there is no further
published data on the prognostic role of NRF1 in cancers yet,
except for our recent report pointing out that low nuclear and
high cytoplasmic NRF1 is associated with poor overall sur-
vival in diffuse large B-cell lymphoma [27].

An elevated protein expression level of NRF2 has been
noted in solid cancers as a prognostic feature, as has been
summarized in a previous meta-analysis [28]. Alterations of
NRF2 mRNA in different cancers have been reported, for
example, its decrease in breast and oesophageal squamous
cell carcinoma compared to normal tissue [23, 29]. We have
described the prognostic role of NRF2 in a melanoma sample
set recently [12, 13] and reported that the NRF2 expression
increased from benign to dysplastic naevi to primary and
metastatic melanomas. While those studies were rather ham-
pered by the unspecific antibody against NRF2 (clone C-20),
as also discussed in detail in another study [30], here, we used
an antibody against NRF2 that is phosphorylation-specific.
Phosphorylation of the amino acid serine in position 40 by
protein kinase C in response to oxidative stress dissociates
NRF2 from its inhibitor Keap1, promoting its translocation
into the nucleus [14]. Thus, the signal detected with this
antibody represents an active transcription factor and is
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mainly seen in the nuclei with a decreasing trend of expres-
sion in melanoma compared to nonmalignant lesions. The
differences in the expression trends seen between the previ-
ous and the current report could be explained by the speci-
ficity of these two antibodies. Despite the contradictory
result in the expression trends, current p40-NRF2 results
support our previous observation, namely, that the NRF2
expression favours worse disease-specific survival, and the
role of NRF2 in melanoma carcinogenesis seems to be rather
consistent with NRF1.

4.2. MicroRNAs in Melanoma. We described the expression
of seven different miRNAs in our naevi and melanoma sam-
ple set which was selected based on their NFE2L family and
redox association. Expression levels of miR-93 and miR-340
increased significantly from all naevi to primary melano-
mas and metastases. Apart from NRF2, miR-93 associates
with lung cancer proliferation, migration, and invasion
in vitro and is upregulated in multiple cancers [31, 32]; our
data complements this background. The miR-340 is also
described to regulate the master regulator of melanocyte
development and melanoma progression, microphthalmia-
associated transcription factor (MITF) [33], and MAPK-
signalling by modulating the expression of multiple compo-
nents of this pathway in vitro. Our data is in line with these
findings, since miR-340 expression levels were significantly
elevated in several tested melanoma cell lines compared to
normal human epidermal melanocytes [34].

Based on the available literature, miR-510 may have
either cancer promoting or suppressing properties, depend-
ing on the cancer type. Overexpression of miR-510 can
increase cell growth and migration as well as invasion and
colony formation of breast cancer in vitro [35], while the
effect is just the opposite in renal cell carcinoma [36]. In
ovarian cancer, high miR-510 expression associates with
early stage and predicts prolonged survival [37, 38]. In our
material, miR-510 expression strongly correlated with the
presence of lymph node metastases at the time of diagnosis
and, on the other hand, showed a decreasing expression from
all naevi to primary melanomas and further to metastases.
Similarly, primary gastric cancers were found to have higher
miR-510 expression than lymph node metastases [39].

4.3. Correlation of miRNAs with NRF1 and NRF2. The post-
transcriptional regulation of gene expression by imperfect
matching of miRNA leads to the inhibition of mRNA trans-
lation and eventually to mRNA degradation [6], and there-
fore, the effect of miRNA would be generally negative when
seen typically on a protein level. Thus, it is logical that
miRNA levels correlate negatively with protein levels rather
than mRNA levels. From the studied miRNAs, miR-23b-3p,
miR-93-5p, and miR-144-3p are predicted inhibitors of
NRF2 mRNA, miR-212-3p of both NRF1 and NRF2 mRNA,
and miR-340 of NRF1 mRNA, based on the miRmap data-
base [40]. The miR-383 and miR-510 were not predicted to
bind NRF1 or NRF2 mRNA. In our material, only miR-
23b-3p correlated positively with NRF2 mRNA in the whole
material and significantly with NRF2 immunohistochemical
expression in malignant cases. Interestingly, according to this
database, miR23b-5p, the complementary sequence of the
same miRNA hairpin structure, would be an inhibitor to
NRF1. miR-340 negatively correlated with both nuclear
NRF1 and p40-NRF2 protein expression. Additionally,
miR-510 correlated negatively with the expression of nuclear
NRF1 in malignant samples. Although miR-93-5p, miR-144,
and miR-212 had a predicted relation with NRF1 and NRF2,
apparently, this is not the case in melanoma and the lack of
correlation may reflect the general discoordination within a
cancer cell.

4.4. miRNAs in respect to Clinical Variates. miR-144 and
miR-212 associated positively with melanoma ulceration, a
highly important prognostic and predictive factor of mela-
noma. Previously, let-7b-5p, miR-16, miR-106b, and miR-
137 were described to be associated with melanoma ulcera-
tion that can be linked to anchorage-independent growth,
aggressive disease, and progression [41–44]. Also, miR-212
and miR-340 associated with pigmentation. The association
of miR-340 to pigmentation could be explained by the rela-
tion to melanocyte differentiation regulator MITF [33].
Other pigmentation-related miRNAs reported are miR-16,
miR-125b, miR-155, miR-203, miR-204, and miR-211 [45–
49]. In univariate analysis, mRNAs or miRNAs had no prog-
nostic significance, possibly due to the small amount of tested
primary melanomas (n = 17‐20).

Although the current study addresses for the first time
the association of NRF1 in melanoma, its retrospective
nature causes also some weaknesses. In particular, despite
the material was sufficient to produce the current results,
the size of effect may have been different with the larger sam-
ple size. Moreover, we did not have data on ethnicity, UV
exposure, skin type, or the number of blistering sunburns
available, which is a confounding factor in the study.

5. Conclusions

This data suggests that there is a loss of NRF1 and NRF2
mRNA and protein levels during different stages of mela-
noma carcinogenesis. This early change can be seen between
the groups of benign and dysplastic proliferative naevi that
are known to harbour oncogenic mutations [50]. High
nuclear NRF1 and NRF2 protein expression may also predict
a dismal outcome in patients before nodal or distant metas-
tases occur, respectively. Thus, it is plausible that even if
these redox-regulating and stress-sensing transcription fac-
tors have a protective role against melanoma carcinogenesis,
they can be exploited as tumor-progressing factors in the
malignant phase, as suggested earlier in other tumor types
[51]. Additionally, redoxmiRs miR-144, miR-212, and miR-
510 appear to associate with aggressive melanoma features,
and their possible prognostic value should be evaluated in
larger cohorts.
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