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OBJECTIVE To develop an artificial intelligence (AI)–enabled elec-
trocardiogram (ECG) algorithm capable of comprehensive, human-
like ECG interpretation and compare its diagnostic performance
against conventional ECG interpretation methods.

METHODS We developed a novel AI-enabled ECG (AI-ECG) algo-
rithm capable of complete 12-lead ECG interpretation. It was
trained on nearly 2.5 million standard 12-lead ECGs from over
720,000 adult patients obtained at the Mayo Clinic ECG laboratory
between 2007 and 2017. We then compared the need for human
over-reading edits of the reports generated by the Marquette 12SL
automated computer program, AI-ECG algorithm, and final clinical
interpretations on 500 randomly selected ECGs from 500 patients.
In a blinded fashion, 3 cardiac electrophysiologists adjudicated
each interpretation as (1) ideal (ie, no changes needed), (2) accept-
able (ie, minor edits needed), or (3) unacceptable (ie, major edits
needed).

RESULTS Cardiologists determined that on average 202 (13.5%),
123 (8.2%), and 90 (6.0%) of the interpretations required major
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edits from the computer program, AI-ECG algorithm, and final clin-
ical interpretations, respectively. They considered 958 (63.9%),
1058 (70.5%), and 1118 (74.5%) interpretations as ideal from
the computer program, AI-ECG algorithm, and final clinical interpre-
tations, respectively. They considered 340 (22.7%), 319 (21.3%),
and 292 (19.5%) interpretations as acceptable from the computer
program, AI-ECG algorithm, and final clinical interpretations,
respectively.

CONCLUSION An AI-ECG algorithm outperforms an existing stan-
dard automated computer program and better approximates expert
over-read for comprehensive 12-lead ECG interpretation.
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(Cardiovascular Digital Health Journal 2021;2:164–170) © 2021
Heart Rhythm Society. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).
Introduction
Nearly 1 century afterWillem Einthoven was awarded the No-
bel Prize for demonstrating the electrocardiogram (ECG)
could record cardiac biosignals, the ECG continues to serve
as an accessible, inexpensive, and noninvasivemeans to assess
cardiac activity and function. Since the 1950s, the develop-
ment of an analog-to-digital converter that enabled processing
of digital information1 has allowed computerized ECG inter-
pretation algorithms to automatically extract, analyze, and
interpret ECGs2,3 in order to minimize interpretation error,
expedite clinical decision making, and optimize workflow.4

These programs have since become a routine part of ECG
interpretation in clinical practice. However, these technologies
remain inherently prone to error.4–8 Furthermore, their
influence on the over-reading provider’s final interpretation
is also profound,9–12 which carries the risk of perpetuating
incorrect interpretations and consequent patient harm.8

Simultaneous advances in computing power and digitized
data availability has catalyzed the application of artificial in-
telligence (AI) to the ECG. While AI-enabled ECG
(AI-ECG) algorithms have demonstrated the ability to recog-
nize individual ECG patterns and diagnoses, they have been
limited to single-lead ECGs or in their diagnostic scope.13–15

There still remains no model capable of generating a
comprehensive but parsimonious human-like 12-lead ECG
interpretation.

In this study, we developed a novel AI-ECG algorithm
that uses a convolutional neural network (CNN) for feature
extraction and a transformer network to translate the ECG
features into a text sequence that follows the typical language
used by human ECG interpretations, thereby creating an
ECG interpretation that mirrors natural language. We then
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compared the need for human over-read edits in the interpre-
tations generated by the Marquette 12SL automated com-
puter program, a novel AI-ECG algorithm, and clinical
interpretation processes from 500 randomly selected
12-lead ECGs.
Methods
Data from the Mayo Clinic digital vault was only used from
individuals who provided consent to use of their anonymized
records for research. The authors are unable to make the data
publicly available, as it originates from Mayo Clinic’s ECG
database, which has patient identifying information. Howev-
er, the authors have made the methods available to the reader.
AI-ECG algorithm development, training,
validation, and testing
Details of the model development, training, validation, and
testing were previously described.16 Briefly, we developed
an AI-ECG algorithm capable of complete 12-lead ECG
interpretation. Model development was inspired by the in-
verse cooking system described by Salvador and col-
leagues.17 This ECG transformer model uses a CNN for
ECG feature extraction and a transformer network for trans-
lating ECG features into ECG codes. The model was trained
to identify 66 discrete ECG diagnostic codes, including pri-
mary and secondary rhythms, axis deviation, chamber
enlargement, atrioventricular and intraventricular conduction
delay, myocardial ischemia, waveform abnormalities, clin-
ical disorders, and pacemakers. Since each ECG can have
multiple codes, this was considered a multilabel task. For
each ECG, the model created a binary evaluation of whether
the code was present. The network architecture contained 11
bottleneck ResNet blocks, which were made up of 33 convo-
lutional layers. It had 3 dimensions, and the convolutional
kernels were either 3 ! 3 or 1 ! 1 in size (ie, the bottle-
necks) with a stride of 2 for each block. The final block
had a channel output of 2048. The CNN condensed the 10-
second 12-lead ECG at 500 Hz, with a size of 5000 ! 12,
into a 2048 ! 3 matrix of relevant features. The matrix
was then reshaped into 12 ! 512. The 512 represents the
embedding size in order for each ECG to be used as a
sequence of 12 embedding for the transformer. In order to
encourage generalization of features, an additional set of
1000 embeddings (ECG concepts; selected after trialing
different numbers of ECG concepts) were used for the trans-
former encoder. The embeddings chosen were enough tomap
the complexities of the features, while not being too large
such that there would be too many similar concepts. Given
that each of the 12 embeddings for every ECG is likely
unique, this creates a large, information-sparse corpus. Map-
ping each embedding to these reusable abstract concepts
forces the model to learn the relationship of the unique em-
beddings, as the model must optimize the generalizability
of the concept embedding being mapped to. The result is
then concatenated with the original 12-embedding sequence
of the ECG to form a 24-embedding sequence (24 ! 512)
that is the input for the transformer decoder. This matrix re-
shaping from 3! 2048 to 12! 512 allowed for a substantial
amount of embeddings (1 ! 512) in a sequence (12) for the
transformer model to learn the association.

The transformer decoder is used to translate the combina-
tion of ECG and ECG concepts into a string of ECG codes
that approximates the text of a human ECG interpretation.
Given that ECG code tokens such as “possible” or “cannot
rule out” cannot be derived from the ECG signal, the self-
attention mechanism18 of the transformer model plays a sig-
nificant role in learning the context where these tokens might
appear in the ECG sequence. For sequence generation, we
simply used the ECG codes with the maximum probability
of appearing given the sequence to select the next token.
The training process used teacher forcing for the first 2
epochs, then all predicted sequences were as is. We used
AdamW as the training optimizer and Cross Entropy as the
loss function. The model was created using the PyTorch
deep learning library.19

The network was developed on nearly 2.5 million standard
12-lead ECGs from over 720,000 adult patients at the Mayo
Clinic. All data used for initial AI-ECG algorithm develop-
ment were obtained electronically without manual ECG re-
view. The CNN was pretrained on identifying the visible
features in the ECG codes via multilabel classification. The
CNN uses the raw ECG data tracings as input and outputs
discrete diagnostic ECG labels. Each of the 66 discrete, struc-
tured labels was represented by one-hot encoding to account,
since there can be multiple visible features in each ECG.

Pretraining the CNN model reduced the amount of time
required to train the entire CNN-transformer model owing
to its large network size. The last fully connected layer for
classification was then discarded, leaving only the convolu-
tional layers for extracting ECG features. The transformer it-
self encoded the extracted ECG feature embeddings and was
then decoded back into ECG code embeddings. The word to-
kens in the ECG codes were used along with the codes for the
visible features, which usually forms a short sentence-like
sequence for each ECG to train the transformer in a super-
vised manner.

The data sets for model derivation included the following:
(1) a training set of 1,749,654 ECGs, (2) a validation set
composed of 249,951 ECGs, and (3) a testing set composed
of 499,917 ECGs. For training, the learning rate was started
at 0.0001. The learning rate was then manually decreased
over time. The model was trained for as long as necessary
to clear overfitting of the training set. Validation loss was
monitored, and the training process was halted if the vali-
dated loss stopped decreasing for 10 epochs. Using this
approach, we were able to select the best-performing model
checkpoint on the validation set and apply this to the final
testing set. We selected the optimal network by convoluting
between the leads rather than treating the 12 leads indepen-
dently. This mimicked human interpreters’ approach by eval-
uating the composite ECG based on the relative relationships
of the raw voltage values. Final performances for each ECG
are presented in Tables 2–6 of previously published work.16



Figure 1 Study design. AI-ECG 5 artificial intelligence–enabled electrocardiogram; ECG 5 electrocardiogram.
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Table 1 Diagnostic performance and comparisons of each
interpretation method

Interpretation Interpreter 1 Interpreter 2 Interpreter 3 Average

Computer-generated
Ideal 62.0% 65.0% 64.6% 63.9%
Acceptable 23.6% 18.4% 26.0% 22.7%
Unacceptable 14.4% 16.6% 9.4% 13.5%
AI-ECG
Ideal 70.2% 66.6% 74.8% 70.5%
Acceptable 22.8% 21.2% 19.8% 21.3%
Unacceptable 7.0% 12.2% 5.4% 8.2%
Final clinical
Ideal 76.8% 65.2% 81.4% 74.5%
Acceptable 18.6% 24.2% 15.8% 19.5%
Unacceptable 4.6% 10.6% 2.8% 6.0%

The performance of the computer-generated, AI-ECG, and final clinical
interpretations from each participating cardiologist and their average scores
are displayed. Interpretation scoring system: ideal indicates no changes
needed to the interpretation; acceptable indicates minor or clinically insig-
nificant changes needed to the interpretation; and unacceptable indicates
that the interpretation contains errors requiring revision.

AI-ECG 5 artificial intelligence–enabled electrocardiogram.

Table 2 Interpreter agreement for each interpretation method
assessed individually (k) and collectively (a).
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ECG selection and interpretation collection for
comparison
We randomly selected 500 standard 10-second, 12-lead
ECGs from 500 patients �18 years of age obtained at the
Mayo Clinic ECG laboratory between 2007 and 2017 that
were not used in the model development stage. ECGs were
recorded at a sampling rate of 500 Hz using the GE-
Marquette 12SL ECG analysis program (GEHealthcare, Mil-
waukee, WI) and the raw data were stored using the MUSE
data management system (GE Healthcare). While ECGs
were not reviewed for artifact or lead misplacement prior to
incorporation into the study, they were all previously re-
viewed at the time of ECG recording and considered clini-
cally acceptable. No patient or ECG was excluded from the
study. The Marquette 12SL automated computer program
and final clinical interpretations were retrieved. Every final
clinical interpretation obtained was completed by a board-
certified, practicing cardiologist with access to the patient’s
clinical information at the time of the ECG recording. The
digital data were fed into the developed AI-ECG algorithm,
which yielded an independent and comprehensive interpreta-
tion that was collected and used for comparison. None of the
ECGs included in the head-to-head diagnostic analysis were
used in training the AI-ECG algorithm. In the end, all ECGs
used for final assessment had a Marquette 12SL automated
computer–generated, final clinical, and AI-ECG algorithm–

generated interpretation.
Interpretation I1 vs I2 I1 vs I3 I2 vs I3
All
interpreters

Computer-
generated

k 5 0.550 k 5 0.497 k 5 0.441 a 5 0.497

AI-ECG k 5 0.377 k 5 0.382 k 5 0.356 a 5 0.367
Final clinical k 5 0.188 k 5 0.244 k 5 0.271 a 5 0.224

a 5 Krippendorff’s alpha coefficient; AI-ECG 5 artificial intelligence–
enabled electrocardiogram; I 5 interpreter; k 5 kappa coefficient.
Cardiac electrophysiologist evaluation
All ECGs and corresponding interpretations (ie, Marquette
12SL automated computer–generated, final clinical, and AI-
ECG algorithm–generated) were compiled. Of the randomly
selected 500 ECGs, 205 ECGs did not require cardiac electro-
physiologist review because all methods generated identical
interpretations (Figure 1). The remaining 295 ECGs with non-
matching (discordant) interpretations were used for cardiac
electrophysiologist review and analysis. Interpretations were
presented to the readers in a randomized and unlabeled format
without any corresponding clinical information.

Three blinded board-certified, practicing, and experienced
cardiac electrophysiologists (expert over-reading cardiolo-
gists) independently analyzed the 295 ECGs and their corre-
sponding interpretations (ie, Marquette 12SL automated
computer–generated, final clinical, and AI-ECG algorithm–

generated interpretations for each ECG). None of the expert
over-reading cardiologists were involved with compiling the
ECGs and interpretations, and therefore they remained
blinded throughout the entire process. The expert over-
reading cardiologists were not provided any clinical data
(eg, age, sex, medical history, previous ECG, etc) or any
identifying patient information when presented with each
ECG. Expert over-reading cardiologists only had access to
a document with the 295 standard 10-second, 12-lead
ECGs and the corresponding unlabeled, randomized, non-
matching computer-generated, final clinical, and AI-ECG
algorithm–generated interpretations.

Expert over-reading cardiologists were asked to examine
each ECG and its corresponding interpretations, and to give
an accuracy score for each interpretation:

� 35 unacceptable interpretation (ie, the interpretation con-
tains errors requiring revision)
o Example: ECG demonstrating right bundle branch

block, but is interpreted as “bundle branch block.”
This would be considered not specific enough and
receive a score of 3.

� 2 5 acceptable interpretation (ie, only minor or clinically
insignificant changes to the interpretation would be
needed)
o Example: ECG demonstrating clear left atrial enlarge-

ment, but is interpreted as “borderline left atrial enlarge-
ment.” This would be considered clinically acceptable
with only minor changes and receive a score of 2.

� 1 5 ideal interpretation (ie, no additional changes to the
interpretation would be needed)
Statistical analysis
The primary outcome was the diagnostic accuracy of each
ECG interpretation method. Diagnostic accuracy was based
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off the accuracy scores provided by the expert over-reading
cardiologists. The diagnostic performance and mean and me-
dian interpreter composite scores for each interpretation
method were compared using unadjusted and Bonferroni-
adjusted P values. The secondary outcome was the percent-
age of interpretations considered clinically acceptable by
each method. Interpretations considered acceptable to clin-
ical standards were those that received a score of 1 or 2.
Inter-interpreter variability was also assessed between indi-
vidual interpreters using the kappa coefficient and collec-
tively using Krippendorff’s alpha coefficient.20,21
Results
Of the 500 unselected ECGs, 205 ECGs were perfect inter-
pretation matches and were excluded from interpreter evalu-
ation. These 205 matching ECG interpretations were
considered ideal interpretations (score of 1) and were incor-
porated in the final results as such. The remaining 295
ECGs and their corresponding interpretations were used to
assess the need for additional edits by the interpreters.
Interpretation accuracy
Cardiac electrophysiologist assessment of interpretations ob-
tained from each interpretation method and their summative
averages are displayed in Table 1. Expert over-reading cardi-
ologists determined that 202 (13.5%), 123 (8.2%), and 90
(6.0%) of the interpretations required edits (unacceptable)
in the Marquette 12SL automated computer program, AI-
ECG algorithm, and final clinical interpretations, respec-
tively. The expert over-reading cardiologists considered
958 (63.9%), 1058 (70.5%), and 1118 (74.5%) interpreta-
tions as ideal in the Marquette 12SL automated computer
program, AI-ECG algorithm, and final clinical interpreta-
tions, respectively. They considered 340 (22.7%), 319
(21.3%), and 292 (19.5%) interpretations as acceptable the
Marquette 12SL automated computer program, AI-ECG al-
gorithm, and final clinical interpretations, respectively.

Mean (standard deviation) and median (quartile 1, quartile
3) interpreter composite scores for the Marquette 12SL auto-
mated computer, AI-ECG algorithm, and final clinical inter-
pretations were 1.497 (0.631) and 1.167 (1.000, 2.000),
1.377 (0.441) and 1.000 (1.000, 1.667), and 1.315 (0.527)
and 1.000 (1.000, 1.667), respectively. Unadjusted and
Bonferroni-adjusted P values for interpreter composite
scores of the Marquette 12SL automated computer and AI-
ECG algorithm interpretations were ,.0001 and .0001,
respectively. Unadjusted and Bonferroni-adjusted P values
for interpreter composite scores of the AI-ECG algorithm
and final clinical interpretations were .0250 and .0740,
respectively. Unadjusted and Bonferroni-adjusted P values
for interpreter composite scores of the Marquette 12SL auto-
mated computer and final clinical interpretations were both
,.0001.

Among the 3 interpretation methods, the expert over-
reading cardiologists considered 86.6%, 91.8%, and 94.0%
of the Marquette 12SL automated computer, AI-ECG
algorithm, and final clinical interpretations as ideal (score
of 1) or clinically acceptable (score of 2), respectively.
When combining ideal (score of 1) and acceptable (score of
2) interpretations (ie, clinically acceptable interpretations),
Krippendorff’s alpha coefficients of agreement among all
were 0.497, 0.367, and 0.224 for the Marquette 12SL auto-
mated computer, AI-ECG algorithm, and final clinical inter-
pretations, respectively. Kappa coefficients for inter-rater
agreement are reported in Table 2.
Discussion
This is the first study to assess and directly compare the need
for additional human over-reading edits for the Marquette
12SL automated computer–generated, AI-ECG algorithm–

generated, and final clinical interpretations. Our analysis
demonstrates that an AI-ECG algorithm outperforms an ex-
isting standard automated computer program and better ap-
proximates expert cardiologist over-read for comprehensive
standard 12-lead ECG interpretation. These data suggest
that an AI-ECG algorithm may serve as an alternative, and
perhaps more accurate, means to provide an initial interpreta-
tion for clinicians compared to conventional computer algo-
rithms.
Clinical value
Standard computer-generated ECG interpretations provide
several benefits to clinical practice. They can improve interpre-
tation efficiency and expedite patient care.4 They can also alert
providers to abnormalities that may otherwise go overlooked.
Furthermore, medical providers lacking confidence in their
ECG interpretation skills may rely on their interpretation to
direct patient care. Multiple studies have shown that correct
computer-generated interpretations can improve physician
over-read accuracy; however, incorrect automated annotations
can lead physicians astray.9–12 These findings suggest that
automated computer-generated interpretation influences final
ECG interpretation. Unfortunately, routinely implemented
interpretation algorithms are notoriously flawed and thus
pose the risk of patient harm.4–8 Hence, improving
automated interpretation accuracy is an important step
toward delivering safe patient care.

Recent studies demonstrate the potential value of deep
neural networks for ECG analysis. However, these findings
have been limited to single-lead ECGs12 or fall short in
providing complete 12-lead ECG interpretation.13,14 Our
AI-ECG algorithm is capable of comprehensive 12-lead
ECG interpretation consistent with those provided by
board-certified cardiologists on nearly 2.5 million standard
12-lead ECGs from over 720,000 adult patients. In recent
work, we demonstrated that an AI-ECG algorithm could
generate 66 structured diagnostic codes from a spectrum of
uncommon and complex to normal ECG features (eg, pri-
mary and secondary rhythms, axis deviation, chamber
enlargement/hypertrophy, atrioventricular and intraventric-
ular conduction delay, myocardial ischemia, waveform ab-
normalities, clinical disorders, and pacemaker activity).16
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In this work, we developed a novel AI-ECG algorithm
capable of comprehensive but parsimonious, human-like
12-lead ECG interpretation and demonstrated its promising
diagnostic performance against currently implemented
ECG interpretation methods.

This comparison trial demonstrates that AI-ECG algo-
rithms hold tremendous clinical potential in replacing con-
ventional automated models. Similar to computer-generated
interpretations, AI-ECG predictions provide unbiased, repro-
ducible results. However, unlike conventional computer-
generated programs, an AI-ECG algorithm can continue to
learn and improve its recognition of various patterns in an
automatic manner by being fed expert, human-revised inter-
pretations. Therefore, ongoing training of an AI-ECG algo-
rithm on high-quality raw ECG signals could further refine
and enhance prediction accuracy to the level that is nearly al-
ways considered clinically acceptable. Additional training of
existing and development of new algorithms on various re-
gions, populations, and diseases may help improve its predic-
tion accuracy and ensure generalizability.

In current clinical practice, ECG interpretation workflow
is highly resource intensive and difficult to scale. An AI-
ECG algorithm capable of 12-lead ECG interpretation could
help scale the scope of our practice as well as improve con-
sistency and overall accuracy of results. Given the known
limitations and notorious inconsistent performance of con-
ventional automated algorithms, AI-ECG has the potential
to cause a paradigm shift in preliminary ECG interpretation
methods. Although AI-ECG algorithms are unlikely to
replace final expert annotation, an AI-ECG algorithm
capable of accurate and consistent 12-lead ECG interpreta-
tion predictions could optimize clinical workflow by triag-
ing and providing warning of urgent cases, as well as
prioritizing and structuring ECG review by clinicians.
Ideally, an AI-ECG algorithm would serve as an adjunct
to improve interpretation accuracy. Additionally, advances
in technology may provide a role for its use in telemedicine,
especially in regions where experienced interpreters and re-
sources are limited.
Limitations
The AI-ECG algorithmwas derived on randomly selected pa-
tients and ECGs from the Mayo Clinic ECG laboratory data-
base and thus, the representativeness of this sample may vary
in comparison to other populations. As such, the AI-ECG al-
gorithm may not reflect all ethnic and racial groups, thereby
affecting predictions. Further study is needed to evaluate the
AI-ECG algorithm’s performance in real time and in diverse,
population-specific datasets. While no ECGs were included
in the initial training and testing datasets of the AI-ECG algo-
rithm, some patients contributed ECGs to each group, which
may have made some features more easily recognized and
potentially falsely improved the algorithm’s performance.
This does not eliminate the potential for bias, although the
use of 720,978 patients in the initial work likely mitigated
this risk. An additional limitation of the AI-ECG algorithm
is the use of error-prone over-reading cardiologist interpreta-
tion as the “gold standard” for algorithm development.

Multiple studies have demonstrated that erroneous codes
generated by the computer may be propagated and end up
as the final clinical interpretation.9–11 Whether this is
owing to the over-reading providers’ large work burden
and fatigue, it may be the cause for the average of 6.0% of
final clinical interpretations reported as inaccurate (score of
3). We did not assess who were the original over-reading car-
diologists of all the ECGs used in the study. We believe that
there would be at least 20 different over-reading practicing
cardiologists that made final interpretations during the time
frame of the ECGs selected, and given the large volume of
ECGs included, we do not believe that this or their experience
would have a significant impact on the study results.

Our study was limited by the number of cardiologists who
volunteered to participate. However, we felt that 3 expert car-
diac electrophysiology interpreters as well as the inclusion of
a large number of ECGs with a wide variety of ECG interpre-
tations would suffice. We believe that future comparison tri-
als should strive for a larger number of ECGs and expert
interpreters to examine if this would alter results.

A final and notable limitation of our study was the use of a
single computerized ECG interpretation system. We chose
this system because it is the one implemented at our institu-
tion and the one used to provide the initial interpretation
for the over-reading cardiologists upon which the AI-ECG al-
gorithm was developed. It also makes up the majority of the
market in ECG acquisition, analysis, and storage. Future
study assessing the accuracy of the AI-ECG algorithm
against multiple conventional algorithms would help to vali-
date our findings. However, comparison may prove difficult
given the lack of consistency of labels across all computer al-
gorithms.

A next step would be to test the AI-ECG algorithm in a
controlled true clinical scenario to demonstrate that accurate
predictions could be made in real time for subsequent final
cardiologist over-read (ie, essentially acting as a substitute
to the computer model). This prospective implementation
and analysis would allow for instant expert feedback that
could be incorporated to improve the algorithm’s predictions.
Additionally, testing our AI-ECG algorithm on established
ECG databases could help assess and affirm its performance
in various populations and against other developed models. If
an AI-ECG algorithm could be refined so well to perform at
the level of a trained cardiologist, it may allow for more com-
plex or urgent cases to require expert review. This would pro-
vide tremendous value to low- and middle-income regions
where resources are scarce.
Conclusion
We demonstrate that an AI-ECG algorithm outperforms a
clinically implemented computer program and better approx-
imates expert cardiologist over-read for comprehensive stan-
dard 12-lead ECG interpretation. These results suggest an
AI-ECG algorithm may serve as a nonbiased means to
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improve interpretation accuracy, optimize workflow, and
expand access in resource-limited regions. Further study is
warranted to assess the AI-ECG algorithm’s accuracy across
different populations as well as its application in real-time
clinical practice.
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