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Sim-to-Real for High-Resolution Optical Tactile Sensing:
From Images to Three-Dimensional Contact
Force Distributions

Carmelo Sferrazza and Raffaello D’Andrea

Abstract

The images captured by vision-based tactile sensors carry information about high-resolution tactile fields, such
as the distribution of the contact forces applied to their soft sensing surface. However, extracting the infor-
mation encoded in the images is challenging and often addressed with learning-based approaches, which
generally require a large amount of training data. This article proposes a strategy to generate tactile images in
simulation for a vision-based tactile sensor based on an internal camera that tracks the motion of spherical
particles within a soft material. The deformation of the material is simulated in a finite element environment
under a diverse set of contact conditions, and spherical particles are projected to a simulated image. Features
extracted from the images are mapped to the three-dimensional contact force distribution, with the ground truth
also obtained using finite-element simulations, with an artificial neural network that is therefore entirely trained
on synthetic data avoiding the need for real-world data collection. The resulting model exhibits high accuracy
when evaluated on real-world tactile images, is transferable across multiple tactile sensors without further
training, and is suitable for efficient real-time inference.

Keywords: tactile sensing, sim-to-real, machine learning, computer vision

Introduction

Research on vision-based (or optical) tactile sensors
aims to provide robots with high-resolution information

about contact with external objects. However, while the im-
ages stemming from the various optical tactile sensing prin-
ciples are intuitive and to some extent interpretable by human
observations, the extraction of accurate physical quantities is
challenging. In this regard, the complexity of mapping the
information extracted from the images to the corresponding

contact conditions mainly results from the fact that accurate
modeling techniques for soft materials are generally not
suitable for real-time applications. In addition, previous re-
search has predominantly focused on the estimation of low-
dimensional quantities (e.g., total contact force, center of
contact), which may be sufficient for a limited range of tasks,
but not for generic applications, as is the case for tasks that
involve arbitrary points of contact.

The work discussed in this article targets both these
topics, proposing a data-driven approach to reconstruct the
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three-dimensional (3D) distribution of the contact forces
applied to the soft surface of a vision-based tactile sensor.
The sensing strategy was presented in the authors’ previous
work1 and is based on the tracking of particles randomly
spread within a soft gel. The use of data bypasses the need
for modeling techniques with real-time guarantees, but as
opposed to classical data-driven strategies, here the data
necessary for training the learning architecture at the core
of the method are entirely generated in simulation. Fur-
thermore, the estimation of the contact force distribution
directly yields both the total contact force (i.e., the
component-wise integral of the force distribution) and the
contact locations (i.e., the surface patches where the con-
tact pressure is nonzero) and is additionally suitable to
represent generic contact conditions with arbitrary points
of contact, therefore providing high versatility across sev-
eral tasks.

The main contributions of this work are the following:

� It details a method to simulate the images captured by a
vision-based tactile sensor,1 starting from simulations
based on the finite element method2 (FEM).

� It outlines two strategies to generate simulated data-
sets comprising tactile image features and labels.
These strategies differ from the one presented in the
authors’ previous work,3 as they relax a small de-

formation assumption and simplify the transfer from
simulation to reality. The datasets collected for this
work comprise a variety of contact conditions, pro-
ducing high shear and pressure forces with indenters
of different shapes and sizes.

� It describes a tailored learning architecture, based on
u-net,4 which can be trained entirely with simulated
data obtained offline through high-fidelity FEM-based
simulations. When evaluated on real-world tactile
sensors, the architecture yields high accuracy in the
reconstruction of the force distribution, achieving real-
time inference up to a speed of 120 Hz (Fig. 1).

Related work

In recent years, a number of tactile sensing principles5 have
been developed to address the needs of the robotics community.
Among these, vision-based tactile sensors6 use standard cam-
eras7 or optical devices8,9 to infer the deformation of a soft
membrane and obtain information about the contact with ex-
ternal objects that causes the deformation. This category of
tactile sensors generally benefits from high resolution and ease
of wiring, and its straightforward manufacture enables fast
prototyping for robotic systems. Although the bulkiness of their
sensing unit is the main limitation of such approaches, recent

FIG. 1. This work builds upon the
generation of training images in
simulation for a data-driven, vision-
based tactile sensor based on the
tracking of a spread of particles. (c)
and (d) show two tactile images
from simulation and reality, respec-
tively, generated through the corre-
sponding contact conditions shown
in (a) and (b). Color images are
available online.
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works have proposed compact solutions that exploit embedded
cameras10–14 or mirrors.15

The sensory feedback provided by tactile sensors typi-
cally requires further processing, as it does not directly
translate to the physical quantities of interest for robotic
tasks. In this regard, model-based methods16,17 often rely
on strong modeling assumptions (e.g., linear elasticity of
the materials) to solve the processing task in an approxi-
mate manner, while data-driven methods18–20 aim to
compute offline a mapping from raw data to the quantities
of interest, to preserve accuracy while ensuring real-time
inference.

While most of the literature has primarily focused on the
estimation of low-dimensional physical quantities (e.g.,
total forces), recently several works have shifted the focus
toward the estimation of distributed quantities, which
aim to provide high-resolution tactile fields for a wide
range of tasks. In the context of vision-based sensors, the
estimation of the contact patches17 has been proposed, and
the reconstruction of the contact force distribution has been
discussed, both in a model-based16 and a data-driven18

manner. In addition, various approaches have been pro-
posed outside the vision-based domain, with regard to
the estimation of the deformation field21 and the pressure
distribution.22

As a result of the possibility of collecting and generating
accurate data offline, data-driven approaches generally ex-
hibit smaller estimation errors than model-based methods.8

However, their bottleneck often lies in the fact that they re-
quire large amounts of training data, and they do not often
generalize well when used in unseen contact conditions. To
address the issue of data efficiency, a number of works have
focused on generating training data in simulation to extract a
model that retains its accuracy when used in the real world.
Examples of such sim-to-real (or sim2real) transfers can be
found in the literature for edge prediction23 and the estima-
tion of the contact pressure22 and the deformation field.24,25

In previous work, a sim-to-real approach was presented to
estimate the 3D force distribution3 for a limited range of
scenarios.

This article presents two different methods to generate a
dataset to train a data-driven approach entirely using FEM
simulations, with the aim to reconstruct the 3D contact force
distribution applied to a vision-based tactile sensor. Image
features were extracted from the tactile images generated in
simulation and mapped to three matrices representing the
components of the force vectors applied over the soft sensing
surface. The mapping was obtained using a tailored neural
network architecture, which is able to capture various contact
conditions as high shear and pressure forces, as well as in-
dentations with flat or round objects. In addition, high ac-
curacy was retained on real-world data, and the real-time
speed could be more than doubled compared to previous
work.3

Outline

The sensing strategy and the hardware are described in the
Hardware section, while the method to generate tactile im-
ages and extract the related features is presented in the
Dataset Generation section. Starting from the generated
dataset, the Learning Architecture section and the Results

section describe the learning pipeline and the evaluation on
simulated and real-world data, respectively. Final remarks
and an outlook are included in the Conclusion section.

Materials and Methods

Hardware

The tactile sensor used in this work is based on a camera
that tracks particles randomly distributed within a deform-
able material. The fabrication follows previous work1 and is
detailed in Section 1 of the Supplementary Data. The sensing
surface amounts to a rectangular prism of 32 · 32 · 6 mm.
The soft materials have been characterized previously18 as
hyperelastic materials following uniaxial, pure shear, and
equibiaxial tension tests. The resulting second-order Ogden
models26 were used for the FEM simulations discussed in the
following sections.

Dataset generation

Supervised learning is a natural data-driven way of pro-
cessing sensory feedback and mapping raw data to the quan-
tities of interest. In the context of vision-based tactile sensing,
formulating the task in a supervised learning manner involves
two crucial preliminary steps: (1) the choice of appropriate
features to condense the information contained in the images;
and (2) the formalization of finite-dimensional labels re-
presenting the quantities of interest. In addition, the avail-
ability of data necessary to train suitable learning architectures
needs to be considered when addressing the formulation of the
problem. In this work, training data were generated entirely in
a finite element simulation environment with the objective of
avoiding real-world data collection and maximizing the vari-
ability of the contact conditions without the need for complex
hardware setups. A further advantage of collecting contact data
in simulation is the possibility of extracting high-resolution
tactile fields,18 which are otherwise not possible to measure
with the commercially available commodity sensors. This
work aimed to estimate the 3D force distribution, which is a
condensed representation of several contact quantities. In fact,
the force distribution encodes both the contact locations, which
can be obtained by thresholding the normal component, and
the total contact forces, which can be obtained by integrating
the distribution over the sensing surface. As opposed to the
deformation field, the contact patches are exactly encoded in
the force distribution, while the deformation field can, for
example, show deformation also where no contact is applied,
as a result of the elasticity of the soft material. In addition, from
the force distribution it is possible to compute the torques
acting on the contact object, and all these properties remain
valid for contact with multiple or arbitrary objects.

An FEM simulation environment was created in Abaqus/
Standard,27 details of this are provided in Section 2 of the Sup-
plementary Data and in a previous work.18 Two training datasets
were built by performing indentations in such an FEM envi-
ronment with the 21 different indenters shown in Figure 2. The
indentation trajectories were performed by either moving the
indenter vertically and then purely horizontally or by prescribing
indenter motions from different angles followed by random
perturbations in the vicinity of the first indentation. A total of
3300 indentation trajectories (each comprising 50 indentation
steps) were executed in simulation, with total forces up to 16 N in
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the vertical direction and up to 5 N in each of the horizontal
directions. For each step of these trajectories, the contact force
distribution and the displacement field were extracted at the
nodes of a mesh refined around the contact between the indenter
and the soft material. These quantities were further processed to
compose two sets of features and labels, as described in the
Training Features section for the displacement field and
the Training Labels section for the force distribution. Since the
training dataset was entirely generated in simulation, two test
datasets were collected in reality as described in the Test Dataset
section to verify the sim-to-real transfer and the real-world
performance.

Training features. In this article, two different methods to
extract image features are compared. The resulting types of
features are denoted in the following as optical flow features
and raw features, respectively. The starting points of both
methods are the images captured by the internal camera, and
for training purposes, these images were entirely generated in
simulation. The soft materials were modeled in the FEM
simulations as described in the Hardware section of this article
and in Section 2 of the Supplementary Data. Highly accurate
models were obtained for the same materials using state-of-
the-art characterization experiments in previous work,18 where
these models were also validated against a force-torque sensor.
The Ogden model parameters used there were also employed
in this work. A static friction coefficient of 0.9 was used, as it
proved accurate for the indenters employed (see the experi-
ments performed in Section 2 of the Supplementary Data).

A gel coordinate system (Fig. 3a) was defined by placing the
origin at one of the bottom corners of the layer containing the
particles, the z axis pointing toward the upper surface and the x
and y axes aligned with two of the horizontal edges. For each
indentation step performed in simulation, the FEM provides
the displacement field of the soft layer that comprises the
particles. This displacement field is provided at the discrete
nodes of the FEM mesh. For such nodes, also the initial po-

sition (at rest, before deformation) is known. To generate the
dataset, a random distribution of particles was sampled for each
indentation step, and an inverse distance weighted scheme28

was used to interpolate the displacement field at the corre-
sponding particle location sG

j , for j = 0, ., Np - 1, where Np is
the number of particles and the superscript G indicates the gel
coordinate system. The 3D displacement of the j-th particle is
denoted in the following asDsG

j . The strategy followed was to
project the particles to the image plane using an ideal pinhole
camera model29 and only account for the camera’s non-
idealities at a later stage,3 as described in the Test Dataset
section. Therefore, as depicted in Figure 3, the position sG

j

and the respective displacement DsG
j were first transformed

from the gel coordinate system to the 3D pinhole camera
coordinate system (indicated by the superscript P) as

sP
j ¼RGPsG

j þ tGP (1)

DsP
j ¼RGPDsG

j (2)

where the rotation matrix RGP and the translation vector
tGP :¼ tGP

x , tGP
y , tGP

z

� �
are the pinhole camera’s extrinsic

parameters. These parameters could be chosen arbitrarily, but
they were actually chosen to be close to the real-world camera’s
extrinsic parameters, as discussed in the Test Dataset section.
The pinhole image resolution was arbitrarily set to be 440 · 440
pixels, and although the focal length could also be chosen arbi-
trarily in this step, to exactly capture the region where the particle
layer (which has a square horizontal section of 30 · 30 mm) is
visible, this was set for both the image coordinates as

f :¼ 440

30
tGP
z : (3)

The projection of the spherical particle centered at sP
p using

the pinhole camera model results in an ellipse on the image

FIG. 2. The figure shows the in-
denters used to collect the training
data in the FEM simulations. Real-
world realizations of the black in-
denters were used to collect the test
data in reality. Note that the in-
dentation surfaces correspond to
the top surfaces in the figure. The
sharp corners of the indenters were
smoothed out to avoid a known
singularity in the flat-punch inden-
tation experiment.36 FEM, finite
element method. Color images are
available online.
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plane.30 The derivation of the center, the axis lengths, and the
orientation of each ellipse can be found in Section 3 of the
Supplementary Data. The ellipses can then be drawn using
the drawing functionality of OpenCV.*

For each indentation step, one image at rest (projecting all
the particles, i.e., by setting sP

p ¼ sP
j for the j-th particle) and

one image after deformation (setting sP
p ¼ sP

j þDsP
j for the

j-th particle) were generated. The images were initialized
with black pixels, and each ellipse was drawn with a random
RGB color to perturb the data with additional variability. The
images were then converted to grayscale in a second step. An
example of a simulated image is shown in Figure 1c. To
further increase the training robustness, the number of the

particles within the gel was slightly perturbed at each in-
dentation step. Training features were then extracted from the
images using two different methods:

1. Optical flow features: For each indentation step, the
dense optical flow between the image at rest and the
image after deformation was computed using an al-
gorithm based on Dense Inverse Search.31 The per-
pixel flow was then subsampled performing an average
pooling in a grid of 88 · 88 bins. The two Cartesian
components of the optical flow resulted in two matri-
ces, which were concatenated into a two-channel
matrix. This method differs from previous work,3

where optical flow features were directly computed
from the FEM displacement field, assuming that the
density of the particles remained constant during an
indentation. In reality, this is not the case for large
indentations, as the particles tend to spread radially
under pressure and the method presented here can cope
with such conditions.

2. Raw features: The two images for each indentation
step were subsampled to 88 · 88 pixels and concate-
nated into a two-channel image, which was directly
fed to the training algorithm.

Training labels. The same set of labels described in the
following was assigned to each set of features to compose
two separate training datasets. For each indentation step, the
FEM simulations provide the 3D contact force distribution at
the surface nodes of the FEM mesh. Dividing the surface into
a grid of 20 · 20 bins,18 the force components at the nodes
falling inside a bin were summed to obtain a 20 · 20 three-
channel matrix, representing the training label for the cor-
responding indentation step datapoint. Examples of ground
truth labels are shown in Figure 8. In this work, a node was
assigned to a certain bin depending on its initial position
before deformation, to simplify the binning at the boundaries
of the gel, which can vary with deformation. As an alterna-
tive, it would also be possible to assign the nodes to the bins
according to the position after deformation, by introducing an
adaptive binning strategy at the boundaries of the grid.

Test dataset. To evaluate the real-world performance of
the models described in the Learning Architecture section,
1100 test datapoints were collected in an experimental setup,
using a programmable milling machine (Fehlmann PICO-
MAX 56 TOP) to make vertical and shear-dominant inden-
tations with the six black indenters shown in Figure 2, as well
as multicontact indentations with two spherically-ended in-
denters placed at different heights. The resulting test dataset
induced total forces up to 4.5 N in the vertical direction and
up to 3.8 N in each of the horizontal directions. These ranges
differ from the training data ranges, which also included data
inducing larger strains and where the material model fit was
less accurate. Such higher strain data showed improved
generalization in the learning and for this reason were in-
cluded in the training dataset.

During the test data collection procedure, the images taken
by the real-world camera were recorded. Since the models
were trained with features obtained from images generated
using a pinhole camera projection, a further procedure was

FIG. 3. The drawings show the definition of the three
coordinate systems used throughout the article: the gel co-
ordinate system (superscript G), the pinhole camera coor-
dinate system (superscript P), and the real-world camera
coordinate system (superscript C). In (a), an example of
three-dimensional displacement of a particle originally
placed at sj is depicted. In (b), a pixel in the pinhole camera
is mapped to the corresponding pixel in the real-world
camera. Color images are available online.

*https://opencv.org/
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needed to account for the camera’s nonidealities on real-
world images.3 This procedure is denoted as remapping, and
it essentially maps the pixels from a real-world image (con-
verted to grayscale) to the pixels of an image of the same
scene as if it was taken from the ideal pinhole camera used for
the training dataset. The remapping procedure requires two
main steps:

1. Calibration step: during fabrication, seven images of a
grid pattern were shot through a silicone medium
(Fig. 4). In this way, it is possible to account for the
refractive index of the soft materials. Using a fisheye
camera calibration toolbox,32 the images were used to
obtain both the extrinsic parameters RGC and tGC of the
real-world camera, as well as a transformation func-
tion from the actual camera 3D coordinate system to
the real-world image. The extraction of the extrinsic
parameters was achieved by providing the calibration
toolbox with a calibration image where the origin of
the grid pattern coincided with the origin of the gel
coordinate system.

2. Interpolation step: for each pixel in the fictitious pin-
hole image, the corresponding pixel in the real-world
image was obtained, using a procedure sketched in
Figure 3b. For this step, the pixels were assumed to be
placed approximately at a fixed z coordinate in the
pinhole camera coordinate system, set here with the
bottom of the gel layer. The details of the interpolation
procedure are further detailed in Section 4 of the
Supplementary Data.

As shown in Figure 3b, the approximation introduced
above has a smaller effect when the pinhole extrinsic pa-
rameters RGP and tGP are close to the real-world camera ex-
trinsic parameters RGC and tGC, respectively. As mentioned in
the Training Features section, since the pinhole extrinsic
parameters can be set arbitrarily, these were indeed chosen to
be close to the expected real-world extrinsic parameters to
limit the impact of the approximation. While the calibration
parameters are fixed across images of the same camera and
can be computed offline, the interpolation step needs to be
performed for each image.

The extrinsic parameters obtained during calibration are
very sensitive to the exact placement of the grid pattern for
the corresponding calibration image. This requires pressing
the grid pattern against the silicone medium just enough to
remove the air in the middle without penetrating the soft
material, which is challenging to achieve in reality. There-
fore, a grid search (in the submillimeter range) was per-
formed in the vicinity of the translation vector tGC, to make
the particles in a sample remapped image taken at rest match
the entire image frame. For this, after a series of dilation and
erosion steps, a bounding box around the pixels can be easily
computed using OpenCV and compared to the frame
boundaries. A refined remapped image is shown in Figure 5,
where lens distortion effects and misalignments were suc-
cessfully compensated for.

After remapping, the same image features described in the
Training Features section were extracted from the images.
Since no real-world sensor can provide ground truth contact
force distributions, these were extracted in simulation as
described in the Training Labels section and in previous
work18 and assigned to the corresponding features to com-
pose two test datasets. Note that since the real-world camera
nonidealities can be compensated in the remapping step,
which does not affect training, this enables the transfer of
models trained on the pinhole data across multiple instances
of fabricated sensors, provided that the camera calibration is
performed as described above. The remapping procedure
described here aims to compensate only for the camera
mismatches and does not serve as a calibration for the FEM
model, which was independently characterized in previous
work,18 as further detailed in the Supplementary Data.

Learning architecture

The same learning architecture was used for both training
datasets, that is, on those containing optical flow features and
raw features, respectively. The architecture consists of a
convolutional neural network, designed as a lightweight
version of u-net,4 and tailored to the estimation of the force
distribution from tactile features. In fact, this estimation
problem can be formulated as an image-to-image

FIG. 4. The calibration im-
ages, examples of which are
shown in (b), were shot
through a silicone medium
during fabrication, to account
for the refraction index of the
soft materials. As shown in
(a), this was done straight af-
ter casting the first layer (see
Section 1 of the Supplemen-
tary Data), by placing addi-
tional silicone parts between
the first layer and a grid pat-
tern attached to an aluminum
surface. Color images are
available online.
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FIG. 5. The original image
taken from the real-world
camera, shown in (a), was
converted to grayscale and
remapped as if it was taken
from the ideal pinhole cam-
era. A refinement procedure
was applied to account for
inaccuracies introduced dur-
ing calibration. The resulting
image in (b) shows the par-
ticle layer in its actual
squared geometry, covering
the entire image frame. Color
images are available online.

FIG. 6. In (a), a diagram of the learning architecture is shown. The encoder and decoder blocks are summarized in (b, c),
respectively. All the blocks in green serve as placeholders. ‘‘3 · 3 conv, c’’ indicates a convolutional layer with a 3 · 3 filter
size and c output channels, while ‘‘3 · 3 upconv, c’’ indicates an upconvolution that doubles the input size. The dotted lines
[omitted in (b) and (c)] indicate the concatenation of an earlier layer output with upsampled information. After each
convolutional layer, with the exception of the white one before the final output, batch normalization and rectified linear units
were used. ‘‘0p’’ indicates no padding. Where not indicated, all convolutional filters have unit zero padding and unit stride.
Color images are available online.
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translation33 (known also as pixel-wise regression). A sketch
of the architecture is shown in Figure 6. The neural network
exhibits an encoder-decoder structure, where feature infor-
mation is first increased in the contraction step by doubling
the channels between each pooling operation. In the decoding
step, the force distribution is then computed through upcon-
volutions and concatenations of high-resolution features
extracted during the contraction step. As a result, the archi-
tecture has the effect of both capturing context and enabling
precise localization.

Results

The learning architecture was trained twice from scratch
using (1) the training dataset comprising averaged optical
flow features and discretized force distribution labels and (2)
the training dataset comprising raw image features and dis-
cretized force distribution labels. Both datasets were gener-
ated entirely in simulation, and both sets of training features
contained two-channel 88 · 88 matrices (or images), as de-
scribed in the Training Features section. The architecture was
trained with the AdamW optimizer34 by minimizing a mean-
squared loss (normalized by the maximum value per channel)
with a learning rate of 1e-3 and a batch size of 256. During
training, the datasets were randomly augmented by appro-
priately flipping the features and labels, exploiting the sym-
metry of the gel geometry and the pinhole camera projection.
For the raw-feature dataset, the images were additionally
augmented by perturbing the image brightness and adding
salt-and-pepper noise.

After training in PyTorch,{ the models were converted to
the ONNX format and used in real-time through the ONNX
Runtime framework.{ This generally led to a 4 · inference
speedup on the CPU of a standard laptop (dual-core, 2.80
GHz), compared to the inference in PyTorch.

The performance of both trained models was evaluated on
the corresponding synthetic validation datasets, picked ran-
domly as the 20% of the indentation trajectories in the ap-
propriate training dataset. In addition, the models were
evaluated on the corresponding real-world test dataset de-
scribed in the Test Dataset section. Table 1 summarizes the
results based on two different error metrics for each force
component: (1) RMSE, that is, the root-mean-squared error

on the respective component of the force distribution, and (2)
RMSET, that is, the root-mean-squared error on the respective
component of the total force, which was obtained by sum-
ming the force distribution over all the bins. The range of
total forces in the corresponding dataset is also shown in the
table. In addition, Table 2 reports the mean and the standard
deviation of the absolute errors, for the bin-wise and total
force predictions on the real-world test data.

As the numerical results indicate, there is a slight differ-
ence in accuracy between the horizontal and vertical com-
ponents of the predictions. This may be explained by the fact
that during the vertical indentations, the shear forces were
rather small or close to zero. More importantly, the raw-
feature model outperformed the optical-flow model in most
of the metrics on the corresponding real-world test dataset. In
fact, while in practice the location accuracy for both models
was similar, the optical-flow features tend to mitigate the
differences across indenters under real-world noise, therefore
resulting in inaccurate force predictions. In contrast, overall
the raw-feature model showed a better transfer from simu-
lation to reality, especially retaining a considerably higher
accuracy in the vertical component. In addition to the dif-
ference in accuracy, the model trained on the raw image
features does not require the extraction of the optical flow,
which was the bottleneck for the model trained on optical
flow features. As a result, since the model inference only
takes about two milliseconds, the whole raw-feature pipeline
(including the image acquisition and remapping) runs in real-
time at 120 Hz on CPU, compared to the 50 Hz of the optical-
flow pipeline.

Table 1. The Table Shows the Error Metrics of the Trained Models on the Validation Datasets

Extracted in Simulation and the Test Datasets Collected in Reality, for Both the Cases

Where Optical Flow Features and Raw Features Were Used as Inputs

RMSE [N] RMSET [N] Range of total forces [N]

x y z x y z x y z

Optical-flow (sim) 0.006 0.006 0.013 0.187 0.164 0.577 -5.0–5.0 -5.0–5.0 -16.0–0
Raw-feature (sim) 0.006 0.005 0.012 0.120 0.132 0.314 -5.0–5.0 -5.0–5.0 -16.0–0
Optical-flow (real) 0.006 0.007 0.018 0.190 0.230 0.914 -3.2–3.2 -3.8–3.8 -4.5–0
Raw-feature (real) 0.005 0.007 0.014 0.267 0.296 0.362 -3.2–3.2 -3.8–3.8 -4.5–0

RMSE, root-mean-squared error on the respective component of the force distribution; RMSET, root-mean-squared error on the respective
component of the total force.

Table 2. The Table Shows Additional Error

Metrics on the Real-World Test Sets in Terms

of the Absolute Errors for Bin-Wise and Total

Force Predictions, Namely the Mean Absolute

Error and the Standard Deviation

of the Absolute Errors

MAE [N] SDAE [N]

x y z x y z

Optical-flow (bin) 0.001 0.001 0.004 0.006 0.007 0.018
Raw-feature (bin) 0.001 0.001 0.003 0.005 0.007 0.014
Optical-flow (total) 0.103 0.110 0.645 0.159 0.202 0.648
Raw-feature (total) 0.099 0.107 0.238 0.248 0.275 0.273

MAE, mean absolute error; SDAE, standard deviation of the
absolute errors.

{https://pytorch.org/
{https://www.onnxruntime.ai/
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The real-time performance of the raw-feature pipeline is
shown in the Supplementary Video S1, where contact con-
ditions with arbitrary objects were explored (Fig. 7). The
estimation of the force distributions on samples in the test set
with the model trained on raw features is shown in Figure 8.
Additional results and comparisons are available in Section 5
of the Supplementary Data.

Conclusion

This work has discussed strategies to simulate the images
captured by a vision-based tactile sensor. Starting from FEM
simulations, the displacement field was processed to generate
training features for a supervised learning architecture that
mapped these features to contact force distribution labels.

FIG. 7. The figures show sensible predictions for the different contact conditions that are shown in the first row. The x, y,
and z components of the predicted force distributions are shown in the second, third, and fourth rows, respectively. In the
first column, the tape dispenser was initially pressed against the gel and then translated to induce higher shear forces in the
negative y direction. In the second column, the contact with an object that differs significantly from those in the training set
is shown, while the third column shows the contact with multiple bodies (not included in the training data), the lower of
which is laterally translated as shown by the asymmetrical shear component in the y direction. Color images are available
online.
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FIG. 8. The figures show the ground truth (first, third, and fifth rows) and predicted (second, fourth, and sixth rows)
force distribution components (x in the first column, y in the second column, and z in the third column) for different samples and
indenters in the real-world test dataset. Predictions were made with the raw-feature model. The first two rows show vertical
indentation; the third and fourth rows show a shear-dominant indentation, and the last two rows a multicontact indentation. Color
images are available online.
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The resulting models are directly transferable across multiple
instances of real-world sensors, since the training procedure
does not make use of real-world images. Two different
strategies were compared, with the model obtained from raw
features outperforming a model based on optical flow fea-
tures for both real-world accuracy and inference speed. In
addition to providing a physical quantity directly interpret-
able across robotic tasks, the extraction of accurate force
distributions also provides an abstraction from the image
pixels that bypasses the remaining mismatch between real
and simulated images.

Since this work aimed to provide a comparison between the
two approaches, the same input and output sizes were used for
both strategies. However, given the gain in prediction speed,
the raw-feature approach may be extended to use higher res-
olution features or to predict the force distribution on a finer
grid by trading off the sensing frequency. As shown in Table 1,
a gap still remains between simulation and reality, which could
be addressed by explicitly addressing the domain transfer
problem. This issue will be the subject of future work.

The simulator described in this work provides highly ac-
curate force distribution labels to train learning-based models
suitable for real-time inference. However, the simulator itself
is not running in real time, due to the computational com-
plexity of the FEM. While this was not in the scope of this
work, different simulation techniques can trade off accuracy
to achieve real-time capabilities and become suitable to
warm-start the training of tactile policies in simulation, as
detailed in a related work.35
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