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ABSTRACT

Background/Purpose: Type 2 diabetes and obesity increase the risk of developing colorectal cancer. Metformin may reduce colorectal cancer
but the mechanisms mediating this effect remain unclear. In mice and humans, a high-fat diet (HFD), obesity and metformin are known to alter
the gut microbiome but whether this is important for influencing tumor growth is not known.
Methods: Mice with syngeneic MC38 colon adenocarcinomas were treated with metformin or feces obtained from control or metformin treated
mice.
Results: We find that compared to chow-fed controls, tumor growth is increased when mice are fed a HFD and that this acceleration of tumor
growth can be partially recapitulated through transfer of the fecal microbiome or in vitro treatment of cells with fecal filtrates from HFD-fed
animals. Treatment of HFD-fed mice with orally ingested, but not intraperitoneally injected, metformin suppresses tumor growth and increases
the expression of short-chain fatty acid (SCFA)-producing microbes Alistipes, Lachnospiraceae and Ruminococcaceae. The transfer of the gut
microbiome from mice treated orally with metformin to drug naïve, conventionalized HFD-fed mice increases circulating propionate and butyrate,
reduces tumor proliferation, and suppresses the expression of sterol response element binding protein (SREBP) gene targets in the tumor.
Conclusion: These data indicate that in obese mice fed a HFD, metformin reduces tumor burden through changes in the gut microbiome.

� 2022 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Obesity and type 2 diabetes are important risk factors for many
cancers including colorectal cancer [1,2]. Type 2 diabetes increases
the risk of developing CRC by 27% [3], and this elevated risk has
been found to be independent of type 2 diabetes duration [4]. While
type 2 diabetes and CRC share a number of risk factors, including
age, obesity, smoking, and alcohol consumption, a definitive bio-
logical link between the development of these two diseases has not
been identified. Rather, numerous biological mechanisms have been
proposed, including elevations in circulating glucose and insulin,
adipokines and chemokines, and immune function [5]. With the
overlapping risk factors that can lead to either disease, and
increased CRC risk with type 2 diabetes, understanding how
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therapies traditionally used for type 2 diabetes treatment present an
opportunity for CRC prevention.
Metformin is a first-line therapy for type 2 diabetes and may have
preventative effects against some cancers including CRC; a concept
being tested in several clinical trials [6,7]. Mechanisms for the anti-
tumor effects of metformin have been widely studied but can be
summarized to broadly involve either direct or indirect effects
(reviewed in [8,9]). Direct effects include metformin entering the tumor
and altering tumor metabolism and associated signaling cascades
while indirect, effects may involve reductions in circulating metabolic
substrates and growth factors such as glucose and insulin which
support and sustain tumor cell proliferation (reviewed in [8,9]). In
support of an indirect mechanism of action for metformin, clinical
concentrations of metformin appear to have little effect on tumor
portant for suppressing the growth of syngeneic colorectal cancer cells in obese,
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Abbreviations:

AUC area under the curve
CRC colorectal cancer
FMT fecal microbiome transfer
GMB gut microbiome
HFD high-fat diet
HMGCR HMG-CoA reductase
OTU operational taxonomic unit
SCFA short-chain fatty acid
SPF specific pathogen free
SREBP sterol response element binding protein
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growth in vitro and in pre-clinical mouse models where metformin
suppresses CRC growth most notably in obese insulin resistant mice
that are fed a high-fat diet (HFD) [10e12]. These data suggest that
metformin-suppresses tumor growth through indirect mechanisms,
however, the mechanisms mediating these effects remain undefined.
The development of both CRC and type 2 diabetes have been linked to
changes in the diversity of the gut microbiome (GMB) [13e16] and
subsequent production of short-chain fatty acids (SCFA) [17e19].
Specifically, a diet high in fiber has been shown to increase butyrate
production and reduce CRC while a HFD reduces butyrate and may
increase CRC proliferation (reviewed in [20]). Changes in the GMB and
increases in SCFAs have also been linked to the glucose lowering
effects of metformin in rodent models and humans [21e24]. However,
whether metformin-induced changes in the GMB and SCFA are
important for suppressing CRC is not currently known. In the current
study we have examined whether metformin-modulation of the GMB is
important for eliciting changes in CRC growth and what potential
mechanisms may be involved. We find, using a variety of in vitro and
in vivo approaches, that metformin induced increases in butyrate-
producing gut microbes are important for reducing tumor growth in
mice fed a HFD.

2. RESULTS

2.1. High-fat diet feeding induced changes in the gut microbiome
promote tumor growth
In order to investigate the interactions between diet and tumor growth
we conducted experiments in obesity and insulin resistance prone
male C57BL/6J mice grafted with carcinogen-induced syngeneic
murine colon cancer cells (MC38) established from the C57BL/6
mouse line. MC38 cells were subcutaneously injected after a 12-week
long feeding protocol on standard chow diet (17% kcal fat) or high-fat
diet (HFD, 45% kcal fat). Consistent with previous findings using this
model system [10e12], HFD-fed mice had increased body mass,
adiposity, fasting blood glucose, fasting serum insulin (Figs. S1AeD),
and accelerated tumor growth compared to chow-fed controls
(Figure 1A). To evaluate the role of the GMB in these effects, chow-fed
recipient animals received fecal microbiome transfers (FMT) from
control chow-fed donors (generating ChoweChow FMT recipients) or
HFD-fed donors (generating HFD-Chow FMT recipients) for 4 weeks
prior to injection of MC38 cells. The FMT protocol continued throughout
tumor growth (Figure 1B). Sequencing the v3 region of bacterial 16S
rRNA of feces confirmed that b-diversity was distinct between chow
and HFD donors. Further, the Chow-Chow-FMT recipients had over-
lapping b-diversity with their chow donors while the HFD-Chow-FMT
had a distinctly different b-diversity (Figure 1C). Overall, diet
accounted for 18.6% of all variation in b-diversity (p < 0.001). Direct
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exposure to HFD (HFD donors) altered the relative abundance of
bacteria at the phylum level, with a decreased Bacteroidetes and
increased Tenericutes abundances (Figure 1D). In HFD-Chow FMT
recipients, Verrumicrobia, Actinobacter, and Tenericutes were followed
a similar trend, with elevated levels of these phylum detected when
compared to HFD donor mice (Figure 1C, Table S1). In HFD-Chow-FMT
mice, the relative abundances at the phylum level were more similar to
Chow-fed donors than the HFD-fed donors. Remarkably, there was a
strong trend for accelerated tumor growth rates in the HFD-chow FMT
mice (Figure 1E,F, AUC for tumor growth rate p¼ 0.0549). Importantly,
this tendency for an increase in tumor growth rate with the HFD-fecal
transplants was independent of any change in body mass, adiposity or
circulating glucose, suggesting a potential direct effect of the GMB or
its by-products (Figs. S1EeG). In order to directly examine the role of
the GMB, we collected fecal pellets from chow and HFD-fed animals,
homogenized the fecal pellets in growth medium, sterile filtered the
homogenate, and used the extracted fecal filtrate to test its effects on
MC38 proliferation. Interestingly, and consistent with our in vivo ob-
servations, we detected a small (w10%) but significant increase in
MC38 cell proliferation when cultured in fecal filtrate (0.1%) from HFD-
fed animals compared to chow-fed controls (Figure 1G). Together,
these in vitro and in vivo data suggest that the HFD alters the pro-
duction of bacterial derived metabolites that promote tumor growth, or
that the chow diet produces metabolites that hinder tumor growth.

2.2. Oral but not intraperitoneal delivery of metformin to mice fed a
HFD alters the GMB and suppresses tumor growth
Metformin changes the GMB [21,24,25], but whether this is important
for inhibiting cancer growth is not known. To examine the importance
of the GMB in metformin action, we first compared the effects of
metformin method of delivery, testing for changes in tumor growth and
GMB diversity and composition in mice treated with metformin through
daily intraperitoneal (IP) injections compared to oral metformin delivery
(via drinking water) in HFD-fed mice. We utilized distinct doses of
metformin (100 mg/kg IP or 250 mg/kg drinking water) to elicit similar
tumor concentrations of metformin [26,27] and hypothesized that oral
but not intraperitoneal metformin delivery would elicit significant
changes in GMB diversity and reductions in tumor growth rates.
Intraperitoneal delivery of metformin had no effect on tumor growth
(Figure 2A), while oral delivery of metformin in drinking water reduced
tumor growth by w40% (Figure 2B). Consistent with no change in
tumor growth, intraperitoneal delivery of metformin had minimal ef-
fects on b-diversity, relative phyla abundance, body mass, fasting
blood glucose, or serum insulin (Figs. S2AeE). In contrast, oral met-
formin delivery altered b-diversity (Figure 2C, causing 22.5% of
variation, p < 0.0001), and we found it reduced the abundance of
Tenericutes while increasing Bacteroidetes, Verrucomicrobia, and
Proteobacteria (Figure 2D). Oral metformin delivery was also associ-
ated with reductions in body mass, and trends for reduced fasting
blood glucose and serum insulin (Figure 2EeG). These data suggest a
potentially important role of the GMB in mediating the effects on
metformin on suppressing tumor growth, however, it should be noted
these findings could also be due to multiple other mechanisms; such
as differential exposure of the tumor to metformin [26,27], reductions
in body weight or alterations in glucose, insulin or other hormonal
factors.

2.3. Metformin-induced reductions in tumor growth can be
recapitulated through fecal transplants of the microbiome
In order to more directly evaluate whether the GMB was mediating the
effects of metformin on tumor growth, HFD-fed mice received a fecal
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1: Feeding a high-fat diet (HFD) alters the gut microbiome and stimulates MC38 allograft growth. A) MC38 tumor volume in mice fed a standard chow (n ¼ 5) or
HFD (n ¼ 13). B) Fecal microbiome transfer (FMT) protocol schematic. Donor and recipient mice were housed separately. 200 mL of fecal homogenate from donor mice were orally
delivered to recipient mice 3 times weekly. C) Principle coordinates of analysis of BrayeCurtis distances of 16S rRNA sequencing of fecal samples from chow (n ¼ 5) and HFD-fed
(n ¼ 6) donors, and chow-fed chow (chowechow FMT, n ¼ 10) and HFD (HFD-Chow FMT, n ¼ 10) FMT recipients. D) Average relative abundances of fecal GMB phylum in fecal
donor (chow donor n ¼ 5, HFD donor n ¼ 5) and FMT recipient (ChoweChow FMT n ¼ 10, HFD-Chow FMT n ¼ 10) animals. E) MC38 tumor allograft growth in ChoweChow FMT
(n ¼ 16) and HFD-Chow FMT (n ¼ 16) recipient animals. F) Tumor growth rate as calculated by the area under the curve (AUC) of the tumor growth curve (n ¼ 16 per group). G)
72-hour MC38 in vitro cell proliferation with chow or HFD fecal filtrate (FF; n ¼ 4 independent experiments per condition). **** indicates differences between 0% and 0.1% FF,
#### indicates differences between chow FF and HFD FF. Statistics: Unpaired two-sided t-testing (F), nonrepeated measures (G) and repeated measures (A, E) 2-way ANOVA were
used to test for differences between diet groups and FMT treatments with Fisher LSD post-hoc testing. *p < 0.05, ***p < 0.001, ****p < 0.0001, ####p < 0.0001.
microbiome transfer (FMT) from either HFD-control mice (generating
HFD FMT mice) or HFD-metformin treated mice (generating HFD-Met
FMT mice) (Figure 3A). The transfer of metformin-treated feces did
not alter body mass, adiposity, fasting blood glucose or serum insulin
(Figure 3BeE). However, despite similar metabolic parameters the
mice receiving feces from metformin-treated donors still had a dra-
matic reduction in tumor volume and tumor growth rate (Figure 3F,G)
MOLECULAR METABOLISM 61 (2022) 101498 � 2022 The Author(s). Published by Elsevier GmbH. This is an open
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comparable to the mice receiving metformin in the drinking water
(Figure 2B). These data indicate that transplantation of the feces of HFD
mice treated with metformin into metformin naïve mice fed a HFD,
reduces tumor growth independently of differences in body mass,
fasting blood glucose or insulin.
To interrogate whether the metformin-FMT reduced tumor growth
through a mechanism involving changes in the gut microbiome we
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 3
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Figure 2: Oral metformin treatment changes the GMB, improves metabolic parameters and decreases MC38 tumor growth in HFD-fed mice. A) MC38 tumor allograft
growth in HFD-fed mice treated with saline vehicle (i.p. vehicle, n ¼ 18) or 100 mg/kg metformin (i.p. metformin, n ¼ 18) by daily i.p. injection. B) MC38 tumor allograft growth in
HFD-fed mice treated with control (H2O Con, n ¼ 12) or 250 mg/kg metformindelivered via drinking water (H2O Met, n ¼ 18). C) Principle coordinates of analysis of BrayeCurtis
distances of 16S rRNA sequencing of fecal samples from mice treated with control (H2O Con,n ¼ 10) or 250 mg/kg metformin delivered via drinking water (H2O Met, n ¼ 9)
supplemented water. D) Average relative abundances of fecal GMB phylum in mice drinking control (H2O Con, n ¼ 10) or 250 mg/kg metformin delivered via drinking water(H2O
Met, n ¼ 9) supplemented water. E) Mouse body weight after 12-weeks of HFD-feeding and control (H2O Con, n ¼ 12) or 250 mg/kg metformin delivered via drinking water (H2O
Met, n ¼ 13) treatment (starting on week 12 of HFD-feeding). F) 12-hour fasting blood glucose measurements in control (H2O Con,n ¼ 12) and 250 mg/kg metformindelivered via
drinking water (H2O Met, n ¼ 13) mice. G) 12-hour fasting serum insulin levels in mice treated with control (H2O Con, n ¼ 12) or 250 mg/kg metformin delivered via drinking water
(H2O Met, n ¼ 13) mice. Statistics: Unpaired two-sided t-testing (F, G), and repeated measures 2-way ANOVA (A, B, E) were used to test for differences between treatment groups
with Sidak post-hoc testing. **p < 0.01, ****p < 0.0001.
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removed live bacterial populations by sterile filtering feces before
transplantation into donor mice. This process completely blocked
metformin-FMT-mediated reductions in tumor growth, without altering
body mass, fasting blood glucose or glucose tolerance (Figs. S3AeF).
These data indicate that that the inhibitory effect of metformin-treated
feces on tumor growth was not due to residual metformin in the feces
and requires live bacteria.
Given these findings we next sequenced the fecal microbiome and
found that surprisingly, there were no major differences in b-diversity
between HFD FMT and HFD-Met FMT mice (Figure 3H). However,
linear discriminate analysis (LDA) identified 8 operational taxonomic
units (OTUs) that with an increased abundance could distinguish
between the treatment groups; one of which, Alistipes 72, was
elevated in both metformin donor and HFD-Met FMT recipients
(Figure 3I, Fig. S4). Five of the eight differential OTUs in the FMT mice
belonged to the Lachnospiraceae or Ruminococcaceae families,
which contain numerous SCFA-producing bacteria, which in addition
to Alistipes may encode genes necessary for metabolizing lysine in
butyrate synthesis [28,29]. Similarly, 10 of 27 enriched OTUs in the
metformin-treated donor mice belonged to one of these two families.
Otherwise, we did not detect differences in common CRC-associated
bacteria, such as Fusobacterium, Peptostreptococcus, or Porphyr-
omonas, in our differential abundance testing. These data indicate
that the effects of orally delivered metformin on suppressing tumor
growth can be in part recapitulated through transfer of the fecal
microbiome and may involve increased abundance of SCFA-
producing bacteria.
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2.4. GMB-mediated anti-cancer effects of metformin act
independent from GDF15 and tumor-infiltrating lymphocytes
We subsequently examined the potential mechanisms by which met-
formin induced modulation of the GMB might reduce tumor burden.
Metformin increases serum concentrations of growth differentiating
factor 15 (GDF15) [57] which has been linked to the suppression of
appetite and improvements in glycemic control [58,59]. Increases in
GDF15 have also been linked to reduced tumor growth [60] however,
there was no difference in serum GDF15 between HFD-FMT and HFD-
FMT-Met treated mice (58.42 þ/� 3.12 pg/ml, n ¼ 13 and 61.79 þ/
� 4.54 pg/ml, n ¼ 15, respectively) suggesting this was unlikely the
primary mechanism for the reduced tumor burden. Given the highly
immunogenic nature of MC38 tumors [30] and the known connections
between the GMB, immune function and T-cells in colorectal cancer
[31] we hypothesized that metformin may be suppressing tumor
growth by enhancing adaptive immunity as previously proposed [32].
Using flow cytometry (Fig. S5), we found that within the tumors of both
HFD FMT and HFD-Met FMT mice there were no changes in markers of
total T-cells, CD4þ T-cells, CD8þ T-cells, CD4þ T-cell proliferation
(Ki67þ) or T-cell activation (CD69þ) (Figs. S6AeC). However, the use
of cluster identification, characterization, and regression (Citrus)
analysis (Figs. S6D and E), identified subtle differences between HFD
FMT and HFD-Met FMT tumor immune cell infiltration. Specifically,
HFD-Met FMT mice had a diminished population of highly activated
cells expressing NK1.1 and Ki67 (Figs. S6F and G). This population
displayed mixed expression of CD3 and CD8, suggesting a T cell
population that has been recently exposed to antigen leading to down
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 3: Fecal microbiome transfer from metformin-treated mice inhibits MC38 growth without changing metabolic parameters. A) Schemiatic depicting fecal
microbiome transfer (FMT) from donor HFD-fed control mice or HFD-donor mice treated with 250 mg/kg metformindelivered via drinking water to HFD-fed FMT recipient animals.
Donor and recipient mice were housed separately. 200 mL of fecal homogenate from donor mice were orally delivered to recipient mice 3 times weekly. B) Body weight in HFD
(n ¼ 16) and HFD-Met (n ¼ 16) FMT recipient animals for the duration of their FMT protocol. C) Percent adiposity of HFD (n ¼ 9) and HFD-Met (n ¼ 9) FMT recipient animals,
normalized to individual total body weight. D) 12-hour fasted blood glucose measurements in HFD (n ¼ 16) and HFD-Met (n ¼ 16) FMT recipient animals. E) 12-hour fasted serum
insulin measurements in HFD (n ¼ 16) and HFD-Met (n ¼ 16) FMT recipient animals. F) MC38 tumor allograft growth in HFD (n ¼ 16) and HFD-Met (n ¼ 16) FMT recipient
animals. G) Tumor growth rate in HFD (n ¼ 16) and HFD-Met (n ¼ 16) FMT recipient animals as calculated by the area under the curve of the MC38 tumor volume curve. H)
Principle coordinates of analysis of BrayeCurtis distances of 16S rRNA sequencing of fecal samples from HFD-fed mice (n ¼ 16) receiving FMT from control or metformin-treated
HFD-fed (n ¼ 16) donor mice. I) Linear discriminate analysis (LDA) of 16S rRNA sequencing of fecal material from HFD (n ¼ 16) and HFD-Met (n ¼ 16) FMT recipients, showing
operational taxonomic units (OTU) associated with FMT from control (blue) or metformin (red) treated donor animals. Statistics: Repeated-measures 2-way ANOVA with Sidak post-
hoc testing (B, F) and unpaired two-sided t-testing (C, D, E, G) was used to test for differences. *p < 0.05, **p < 0.01, and ##p < 0.01 for overall treatment effect in 2-way
ANOVA testing. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
regulation of CD3 and CD8. Alternatively, these cells could reflect a
mixed population of CD8þ T cells and NK cells. Curiously, these highly
activated T-cells (NK1.1þ, Ki67, cluster 79274) were correlated with
tumor mass in HFD-FMT mice, suggesting a relationship between the
presence of the cells and reduced tumor mass. However, this effect
was not detected in HFD-Met FMT mice, suggesting that this popu-
lation is not responsible for the growth suppression mediated by FMT
from metformin-treated donors (Figs. S6H and I). Citrus analysis of a
second independent panel of markers identified 4 clusters in which
PD-1þ cells were significantly elevated in HFD-Met FMT tumors,
which suggests, if anything, that T cell exhaustion may be elevated in
tumors from mice treated by FMT from metformin-treated donors
MOLECULAR METABOLISM 61 (2022) 101498 � 2022 The Author(s). Published by Elsevier GmbH. This is an open
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(Fig. S6J). These data suggested that metformin fecal transfers were
not inhibiting tumor growth by enhancing T cell activity within the
tumor or disrupting the ratio of effector T cells to regulatory T cells.

2.5. SCFA production and tumor cholesterol metabolism gene
expression are altered with GMB transfer from metformin-treated
mice
This lack of significant changes in tumor infiltrating lymphocytes led us
to hypothesize that metformin may be altering the production of
bacterial-derived metabolites that might directly inhibit or stimulate
tumor growth. To examine this possibility, we conducted serum
metabolomics in mice receiving fecal transfers. HFD-fecal transfers
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 5
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Figure 4: Fecal microbiome transfer affects short-chain fatty acid levels and changes the metabolic transcriptome of MC38 tumors in FMT recipient mice. A)
Circulating propionic acid in serum in ChoweChow (n ¼ 9), HFD-Chow (n ¼ 10), HFD (n ¼ 7) and HFD-Met (n ¼ 6) FMT recipient mice as measured by LC-MS. B) Circulating
butyric acid in serum in ChoweChow (n ¼ 9), HFD-Chow (n ¼ 10), HFD (n ¼ 7) and HFD-Met (n ¼ 6) FMT recipient mice as measured by LC-MS. C) Pathways identified with
GSEA to have significant downregulation in HFD-Met FMT (n ¼ 4) mice compared to HFD FMT (n ¼ 4) mice. D) Heat map of genes in the cholesterol metabolism pathway (most
enriched pathway in transcriptomics data set) (n ¼ 4 per group). E) In vitro MC38 clonogenic growth with 0.05e1 mM of butyrate (n ¼ 8 independent experiments for each
concentration, excluding 0.05 mM, n ¼ 6). Statistics: One-way ANOVA with Tukey (A, B, F) post-hoc testing, and unpaired two-sided t-testing (A, B, E) was used for a direct
comparison of HFD-FMT and HFD-Met FMT (A, B). *p < 0.05, **p < 0.01, ****p < 0.0001; d p < 0.05 for unpaired two-sided t-testing.
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suppressed circulating levels of the SCFAs propionate and butyrate in
chow fed mice consistent with previous findings [33,34] (Figure 4A,B)
Importantly, these suppressive effects of the HFD were countered
inmetformin-treated donors which had increased levels of propionate
(p ¼ 0.0152) and a strong tendency for an increase in butyrate
(p ¼ 0.0737) compared to HFD FMT control animals (Figure 4A,B).
There were no changes in other circulating fatty acids (Fig. S7).
To examine potential mechanisms by which changes in the SCFAs of
HFD-Met FMT mice inhibited tumor growth, we conduced global RNA-
sequencing of the tumors. Using gene set enrichment analysis (GSEA)
[35,36], we found that 815 gene sets were positively enriched in tumor
6 MOLECULAR METABOLISM 61 (2022) 101498 � 2022 The Author(s). Published by Elsevier GmbH. T
tissue from HFD-FMT mice as compared to HFD Met-FMT, 272 of which
were significant at FDR <25% (Fig. S8, Table S1). Conversely, 1098
gene sets were negatively enriched in tumor tissue from HFD-FMT mice
compared to HFD Met-FMT tumors (Fig. S8, Table S1). Surprisingly,
cholesterol metabolism and sterol response element binding protein
(SREBP) gene targets dominated the list of gene sets that were signif-
icantly downregulated in HFD Met-FMT tumors (Table S1, Figure 4C,D).
As cancer cells require cholesterol synthesis to support membrane
biosynthesis for proliferation (reviewed in [37]) these data suggest that
that the fecal microbiome from metformin treated mice may suppress
tumor growth by inhibiting cholesterol synthesis.
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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We next, cultured MC38 cells with metformin, propionate or butyrate.
Consistent with previous studies in cultured MC38 cells [12], there was
no inhibitory effect of clinically relevant concentrations of metformin on
MC38 proliferation, except at concentrations >2 mM, which is outside
the therapeutic window of exposure of <0.1 mM (Fig. S9). There was
also no effect of propionate at concentrations <10 mM (Fig. S9).
However, colony growth was dose-dependently decreased with
butyrate treatment (Figure 4E). These data when combined with pre-
vious findings indicating butyrate suppresses transcription factors
including SREBP and enzymes critical for cholesterol synthesis [43]
suggest that metformin reduces tumor proliferation in HFD-fed mice by
upregulating butyrate producing microbes.

3. DISCUSSION

The anti-cancer mechanisms of metformin treatment are complex and
challenging to isolate. In the present work, we found that the GMB
mediates metformin’s effects against cancer using a murine model of
CRC and fecal transfer protocols. This resulted in decreased tumor
volume, increased SCFA levels in circulation, and a transcriptomic
profile indicating reduced cholesterol metabolism. A strength of our
experiments is that that all fecal transfer experiments were completed
into immunocompetent and fully colonized specific pathogen free (SPF)
mice. Fecal microbiome transfers have been shown to transfer met-
formin treatment phenotypes from human samples into germ-free
recipient animals [21,24]. While the use of germ-free mice is often
required for studying human fecal effects, these models present
inherent challenges that limit translation to human health and pa-
thology. This includes impaired development of the immune system
and intestinal tissue maturation, the inability of all human gut microbes
to grow in the mouse intestinal tract, and the absence of environmental
factors that human fecal donors are exposed to that are not recapit-
ulated in the mouse environment [38]. Therefore, we sought to test the
direct effects of metformin on the GMB by transferring feces from
conventional HFD-fed, metformin-treated mice to HFD-fed conven-
tional SPF mice. Thus, providing a model that is less intrinsically
complicated that doesn’t cross species and has an established
baseline microbiome, fully developed immune system, and well-
known metabolic phenotypes with HFD feeding. Using this model,
we show that mice receiving an FMT from HFD-fed donor mice had
alterations in their GMB and that this was associated with increased
tumor growth. Treatment with oral, but not intraperitoneal, metformin
decreased tumor growth in HFD-fed mice. FMT recipients of these
HFD-Met fed mice also had reduced tumor growth, supporting a GMB-
mediated mechanism.
Using 16S rRNA sequencing, we observed enrichment of OTUs
belonging to the Lachnospiraceae and Ruminococcaceae families,
which are SCFA producers [29], in the stool of both HFD-Met donor
mice and their HFD-Met FMT recipient counterparts. SCFA producers,
and specifically members of the Lachnospiraceae family, have also
been reported to be decreased in CRC patients as compared to healthy
volunteers [39]. We also identified that the OTU Alistipes 72 was
altered in both HFD-Met donor mice and HFD-Met FMT recipients, a
phylum which may play a role in SCFA synthesis [28,29]. Indeed
previous studies have found that Alistipes is elevated in HFD-fed
metformin treated mice and is also correlated with improved glyce-
mic control in metformin-treated patients with T2D [40]. However,
notably, overall b-diversity was not significantly different between
HFD-Met FMT mice and HFD FMT mice and in contrast to previous
reports we found no change in glycemic parameters [40] with HFD-
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fecal transfers. Considering the importance of the immune system to
the GMB, the differences between studies could be due to our use of
immune-competent animals. Remarkably, despite no change in pa-
rameters related to glycemic control we still observed reductions in
tumor burden. To examine the potential mechanisms mediating the
anti-tumor effects of the metformin GMB, we measured tumor infil-
trating T cells and found no major difference in total levels of T-cells or
their activation. However, Citrus analysis identified highly activated T-
cell clusters (CD8þ, NK1.1þ, Ki67þ) that were decreased in HFD-Met
FMT tumors, an affect that could be linked to SCFA levels, with recent
evidence showing butyrate can impact T-cell metabolism, decreasing
Ki67 expression [41]. Subsequent, unbiased RNA-sequencing analysis
identified marked suppression of genes critical for regulating choles-
terol synthesis a process which is vital for supporting tumor cell
proliferation (recently reviewed in [42]).
Our findings that the GMB from metformin treated mice and FMT re-
cipients of those mice had increases in levels of SCFA producing
bacteria are consistent with humans being treated with metformin
[21,24]. They are also consistent with previous studies indicating
butyrate inhibits colon cancer and suppresses transcription factors,
including SREBP, and enzymes critical for cholesterol synthesis
[30,43]. Thus these data strongly support a model where a GMB-
butyrate axis is important for metformin-induced inhibition of tumor
growth and suggest a mechanism by which diet and drugs interact to
impact the GMB and influence carcinogenesis.

4. MATERIALS AND METHODS

4.1. Animal models and treatments
All experimental procedures and protocols were conducted in accor-
dance with approval from the McMaster Animal Research Ethics Board.
6-week old C57BL/6J mice (Jackson Laboratories, Bar Harbour, ME,
USA) were fed standard chow (17% kcal from fat; Diet 8640, Harlan
Teklad) or 45% high-fat diet (HFD; D12451, Research Diets, Cedar-
lane) ad libitum. After 12 weeks of HFD-feeding, animals were weight
matched into groups before commencement of treatments. Metformin
administration was via daily i.p. injections (100 mg/kg body weight), or
in drinking water (250 mg/kg body weight adjusted to weights weekly,
refreshed 3x weekly, and stored at 4 �C until use). Mice were main-
tained on a 12-hour light/dark schedule, with ambient room temper-
atures of 23e24 �C, bedding and enrichment, and ad libitum access to
drinking water. Body weights were measured weekly. Total adipose,
lean, and liquid mass was measured using a time-domain NMR whole-
body composition analyser (Minispec LF90II, Brucker, Milton, ON) with
the Minispec Plus and Opus programs (Brucker, Milton, ON). Percent
body fat was calculated as g adipose/g bodyweight (measured at time
of scan) * 100.

4.2. Metabolic testing and measurements
Mice were fasted for 6h following the dark/feeding cycle. Mouse
weights and baseline blood glucose measurements were taken with a
commercial glucometer (Aviva, Roche), and mice were i.p. injected
with 1 g/kg bodyweight of glucose. Blood glucose measurements were
taken at 20, 40, 60, 90, and 120 min after glucose injection. Fasting
blood glucose was taken using commercial glucometers (Aviva, Roche)
following an overnight, 12-hour fast. Blood was collected after this fast
and serum insulin was measured by ELISA (Millipore). Blood samples
were allowed to clot at room temperature for 30 min, centrifuged at
14,000rpm for 10 min at 4 �C, and stored at �80 �C until use. ELISA
data was analyzed by curve fitting of the output data and was
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http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


Brief Communication
conducted with 4-parameter logistic regression analysis on free
software available at elisaanalysis.com.

4.3. MC38 tumor allograft model
MC38 murine colon cancer cells (provided by Dr. Michael Pollak, McGill
University, Montreal, Canada) were maintained in DMEM (Gibco) media
with 10% fetal bovine serum (Gibco) and 1% antieanti solution
(Gibco). Cells were maintained in an incubator at 37 �C and 5% CO2.
Mice were anaesthetized using isofluorane, shaved on their hind flank
with an electric razor, and injected with 5 � 105 cells in 100 mL warm
PBS. A 25G needle was used for injections to avoid disrupting cells
during injection. When tumors were palpable (3e4 days post-
injection), tumor volume measurements were conducted every other
day using a Vernier hand caliper. Tumor volume was calculated using
the formula V ¼ 0.5(length * width2).

4.4. Fecal microbiome and fecal filtrate transfer protocol
Recipient cages (n ¼ 2e3 per cage) corresponded to specific donor
cages (n¼ 2e3 per cage) and recipients and donors were matched for
the duration of the experiment (no mixing of donor/recipient cages after
protocol start). Donor animals were on control or metformin-
supplemented water for 24-hours prior to fecal transfer initiation.
Feces were collected from donor cages prior to dilution (1:10 wt/vol) in
0.9% saline solution. Feces and saline were combined in conical tubes
and vortexed until homogenous (approximately 5 min, maximum vortex
speed), and centrifuged for 30 s at 2000rpm, and the supernatant
collected. Fecal filtrates were produced by filtering the supernatant
sequentially through sterile syringe filters (0.45 mm and 0.22 mm,
MilliporeSigma). 200 mL of the resulting supernatant and filtrate was
gavaged into recipient mice 3 times weekly for the remaining duration
of the study.

4.5. Cell culture proliferation and clonogenic assays
MC38 cells were grown in 25 mM glucose DMEM or 5 mM glucose
DMEM for two weeks prior to seeding. Metformin (Sigma Aldrich) and
sodium (Na-)butyrate (Sigma Aldrich), and sodium (Na-)propionate
(Sigma Aldrich) were made fresh prior to each experiment, and were
solubilized into water for treatments. Proliferation assays were con-
ducted by plating 500e1000 cells/well in 96-well plates with fecal
filtrate (prepared in supplemented DMEM following the protocol above)
at a maximum concentration of 25%, and serially diluted. Cells grew
for 72 h, and were stained with 0.5% crystal violet stain (Sigma
Aldrich) in 40% ethanol, washed in water, and allowed to dry over-
night. Remaining dye was dissolved in 0.5M NaH2PO4 (Sigma Aldrich)
solution and read at 570 nm on a plate reader. For clonogenic assays,
200 cells per well were seeded into 12-well plates, and allowed to
adhere overnight. Treatments were applied in triplicate the following
day, and cultures were monitored daily. Once cells had proliferated and
produced colonies (approximately 5e7 days), cells were washed with
PBS and stained with 0.5% crystal violet stain in 40% ethanol (Sigma
Aldrich). Once dried, colonies containing more than 50 cells were
counted using a grid mounted under the 12-well plate to ensure
accuracy.

4.6. 16S rRNA sequencing
Fresh fecal samples were collected between 7 and 9AM on the day
prior to sacrifice. Fecal pellets were stored in autoclaved tubes
at �80 �C. A commercially available kit was used for DNA extraction
(Zymo Research, Cat. No D6012). 16S rRNA amplification and
sequencing was conducted in the McMaster Farncombe Institute Ge-
nomics Facility. Purified DNA was used to amplify the v3 region of the
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16S rRNA gene by PCR. 50 ng of DNA was used as template with 1U of
Taq, 1x buffer, 1.5 mM MgCl2, 0.4 mg/mL BSA, 0.2 mM dNTPs, and
5 pmol each of 341F (CCTACGGGAGGCAGCAG) and 518R
(ATTACCGCGGCTGCTGG) Illumina adapted primers, as described in
Bartram et al. (2011) [46]. The reaction was carried out at 94 �C for
5 min, 25 cycles of 94 �C for 30 s, 50 �C for 30 s and 72 �C for 30 s,
with a final extension of 72 �C for 10 min. Resulting PCR products were
visualized on a 1.5% agarose gel. Positive amplicons were normalized
using the SequalPrep normalization kit (ThermoFisher#A1051001) and
sequenced on the Illumina MiSeq platform at the McMaster Genomics
Facility. Resulting sequences were run through the sl1p pipeline as
described in Whelan et al. (2017) [47].

4.7. Analysis of 16S rRNA sequencing
All microbiome analysis was conducted in R (version 3.4.4) [48]. Data
were curated using the phyloseq package (version 1.22.3) [49] and all
microbiome figures were plotted using ggplot2 (version 3.0.0) [50].
OTUs were filtered to remove all non-bacterial reads and any OTUs
present only once in the data set. BrayeCurtis distances were
calculated using the distance() function in phyloseq, and PCoA plots
were generated using phyloseq and ggplot2. To generate taxa bar
charts, data were organized using the following tidyverse [51] pack-
ages: dplyr (version 0.7.6), tidyr (0.8.1), and rlang (0.2.0). The plots
were generated using ggplot2. Color palettes used in the figures came
from the RColorBrewer package (1.1.2) [52]. PERMANOVA tests were
conducted using the vegan package (2.5.2). Exploratory analysis of
OTUs contributing to the separation of metformin-treated and control
mice was conducted using LEfSe [53] with all default parameters.
Linear models of Shannon and Simpson diversity were fit using lm() in
R.

4.8. Quantitation of serum lipids
Quantitation of fatty acids was performed using 3-NPH derivatizatione
UPLC-MRM/MS according to the procedures previously published [54].
Briefly, 20 mL of the supernatant of each serum sample was mixed
with 280 mL of methanol. The mixture was vortex-mixed and sonicated
in an ice-water bath for 5 min, followed by centrifugal clarification.
100 mL of the supernatant was mixed with 50 mL of 150-mM 3-NPH
solution and 50-mL of 100-mM EDC.HCl-6% pyridine solution. The
mixtures were allowed to react at 35 �C for 40 min in a thermomixer at
a shaking frequency of 900 rpm. After the reaction, 50 mL of an internal
standard solution containing the 13C6-3-NPH derivatives of all the
targeted fatty acids, which were prepared in a “one-pot” reaction with
the use of the standard substances of fatty acids was added. After
mixing, 10 mL was injected onto a Waters BEH C18 column (2.1 mm
I.D. x 50 mm, 1.7 mm) for LC separation with a mobile phase
composed of (A) 0.01% formic acid in water and (B) 0.01% formic acid
in isopropanol for binary-solvent gradient elution. Concentrations of
short-, medium and long-chain fatty acids in each sample were
calculated from the standard curves of the individual analytes with
internal-standard calibration. The calibration curves were prepared in
parallel with the sample analyses using serially diluted, mixed standard
solutions of individual fatty acids. An Agilent 1290 UHPLC system
coupled to an Agilent 6495B QQQ mass spectrometer equipped with an
electrospray ion (ESI) source was used. This MS instrument was
operated in the multiple-reaction monitoring (MRM) mode with
negative-ion (�) detection for analysis of fatty acids.

4.9. RNA sequencing and transcriptomics
RNA was isolated from frozen tumor samples maintained at �80 �C
using TRIzol reagent (Invitrogen, CA, USA) and purified in columns
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Panel Component Supplier Cat No Lot No Dilution

Core Panel CD45.2 BV510 BioLegend 109838 B266852 1:25
CD3 BV605 BD 563004 9137680 1:50
CD4 PerCP-Cy5.5 BD 550954 8346562 1:100
CD8 AF700 BD 557959 9025745 1:100

Panel 1 CD25 BV711 BioLegend 102049 B282102 1:400
NK1.1 PE-CF594 BD 562864 8318558 1:100
CD69 APC BioLegend 104514 B247009 1:40
KLRG1 AF488 BD 561619 7306667 1:20
FOXP3 PE eBioscience 12-5773-82 2001196 1:160
Ki67 BV421 BioLegend 652411 B265335 1:150

Panel 2 CD44 AF488 BioLegend 103016 B234375 1:50
CD62L PE-Cy7 Biolegend 104418 B269976 1:200
PD1 BV421 BD 562584 9014528 1:40
CTLA4 PE BioLegend 106306 B251635 1:40
CD27 BV785 BioLegend 124241 B283652 1:100
(RNeasy kit; Qaigen, CA, USA). Sequencing was conducted at the
McMaster Genomics Facility, Farncombe Institue at McMaster Uni-
versity. Sample quality was first assessed using a bioanalyzer (Agilent
2100 Bioanalyzer G2938C, Aligent RNA 6000 Nano Kit, Agilent; Santa
Clara, CA, USA), then enriched (NEBNext Poly(A) mRNA Magnetic
Isolation Module; NEB, Ipswich, MA, USA). Library preparations were
conducted (NEBNext Ultra II Directional RNA Library Prep Kit; NEB,
Ipswich, MA, USA) and library fragment size distribution was verified
(Agilent TapeSection D1000; Agilent, Santa Clara, CA, USA). Libraries
were quantified by qPCR, pooled in equimolar amounts, and qPCR and
fragment size distribution verification was conducted again. Libraries
were then sequenced on an Illumina HiSeq 1500 across 2 lanes of a
HiSeq Rapid v2 flow cell (Illumina; San Diego, CA, USA) using a paired-
end, 2 � 51 bp configuration, with onboard cluster generation. All
supplier-provided protocols were followed. FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) was used to test for
sequence quality and low-quality reads were removed with Trimmi-
matic10 (using default parameters). Reads were aligned to Ensembl
Mus musculus (GRCm38.92) genome using HISAT211 (default pa-
rameters). htseq-count identified the number of reads that mapped to
each gene (advanced options used: stranded set to “reverse”, mini-
mum alignment quality set to 10, feature type set to “exon” and
“simple”). Ensemble mouse GTF gene annotation was used. Default
parameters of DESeq212 normalized data and a custom python script
(McArthur) converted the DESeq2 output into a ranked list of genes.
Gene Set Enrichment Analysis (GSEA) [35,36] was performed on the
ranked list of genes using 1000 permutations, a 25% false-discovery
rate, and mouse gene set data base (Bader Lab, University of Toronto,
http://download.baderlab.org/EM_Genesets/current_release/Mouse).
Gene enrichment map was made using Cytoscape 3.7.2 to visualize
pathways, with Q-value cut off of 0.02, and edge cut-off of 0.5.
Heatmaps were generated in R using the heatmap.2 function from the
gplots package (version 3.0.3). Log-transformed normalized counts for
cholesterol related genes were scaled by row based on the z-score and
clustered using the hclust() and dist() functions.

4.10. T-cell profiling using flow cytometry
Fresh tumor samples were collected from mice, and mechanically
homogenized by hand in a prepared digest solution containing HyClone
Hank’s balanced salt solution (ThermoFisher; Waltham, MA, USA),
0.5 mg/mL collagenase type I (isolated from Clostridium histolyticum,
ThermoFisher/Gibco, Waltham, MA, USA) and 0.2 mg/mL DNaseI (from
Bovine pancreas, MilliporeSigma, Burlington, MA, USA). Homogenates
digested for 1h at 37 �C, rotating at 200rpm, then consecutively
strained through 70 mm and 40 mm nylon cell strainers (ThermoFisher;
Waltham, MA, USA). Homogenates were pelleted for 5 min at
1500rpm, and resuspended in ACK buffer (0.15M NH4Cl, 10 mM
KHCO3) for 5 min at room temperature to lyse red blood cells in the
samples. ACK lysis was stopped with ice cold PBS, samples pelleted,
and ACK lysis was repeated. Resulting pellets were resuspended in
cold PBS for cell counting and staining. Fluorescent antibody staining
was conducted in a 96-well round-bottom plate containing 1 � 106

cells/well. Briefly, cells were stained with NEar IR Live/Dead stain
(1:1000 dilution in PBS; ThermoFisher; Waltham, MA, USA) following
manufacturer’s protocol. Blocking was conducted with Fc Block (1:200
in PBS with 0.5% w/v BSA) for 15 min on ice. Antibodies for surface
markers were applied with the dilutions provided in the table below.
Intracellular markers were fixed and permeabolized (FOXP3/Tran-
scription factor staining buffer set, eBioscience/ThermoFisher, CA,
USA), then stained with fluorescent antibodies. Counting beads
(123count eBeads, ThermoFisher; Waltham, MA, USA) were used to
MOLECULAR METABOLISM 61 (2022) 101498 � 2022 The Author(s). Published by Elsevier GmbH. This is an open
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quantify cell numbers. To prepare for flow cytometry, samples were
resuspended in 200 mL of PBS with 0.5% w/v BSA, and filtered through
nylon mesh into FACS tubes. Samples were run on BD LSRFortessa.
Data were analyzed on FlowJo version 10.6.0, with gate setting guided
by lymphocytes isolated from fresh spleens, or spleen-isolated lym-
phocytes that were stimulated or unstimulated.
4.11. CITRUS methodology
Using a semi-supervised machine learning approach called CITRUS
(cluster identification, characterization, and regression), we sought to
identify features that differentiated the HFD-FMT and HFD Met-FMT
groups. CITRUS [55] can characterize clusters of significance using a
variety of metrics which are calculated on a per-sample basis. Panels 1
and 2were analysed by CITRUS usingmetrics that suitedeach individually.
To minimize noise, our analysis for both panels included only live CD45þ
single cells (“cells”), pre-processed in FlowJo v.10.6.2 (Becton Dick-
inson). CITRUSwas run using RStudio v.1.2.5042 (RStudio, Inc.) running R
v.3.6.3 (r-project.org). Cells were down-sampled to equal sizes for each
sample. Clusters were limited to aminimum of 2%of total cells. HFD-FMT
and HFD Met-FMT sample groups were compared in a pairwise manner.
Cells were concatenated from samples within the two groups. After un-
supervised agglomerative hierarchical clustering with chosen markers,
cluster abundances or median fluorescence intensities of chosenmarkers
were input into a nearest-shrunken centroid regression model (PAMR) to
determine if the differences between groups was significant [56]. Panel 1
clustering was performed using 5,000 down-sampled cells from each
sample with the following markers: CD3, CD4, CD8, CD25, CD69, FoxP3,
Ki-67, KLRG1 and NK1.1. Abundance features were used to quantify the
proportion of a sample’s cells that belong to a cluster. Panel 2 clustering
was performed using 10,000 down-sampled cells from each sample with
the following markers: CD3, CD4, CD8, CD27, CD44 and CD62L. Median
features were used to quantify the median fluorescence intensity (MFI)
value of the following functional markers in a cluster’s cells: PD-1 and
CTLA4.Antibodies are as listed above.

4.12. Statistical analysis
Unless stated otherwise, all data is presented as mean with SEM. Data
were analyzed and plotted in GraphPad Prism 8, except for 16S rRNA
and RNA sequencing analysis, which were analyzed as described
above. Depending on experimental design, two-sided t-tests, 1-way
and 2-way ANOVA were used to test for significant variation, with
post-hoc testing as documented in figure legends to test for differ-
ences between groups. Simple linear regression was used for linear
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curve fitting with R2 and 95% confidence intervals presented on the
figure. Significance was determined at p < 0.05. Graphical abstract
was generated using biorender.com.
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