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Abstract 
DNA replication-repair deficiency (RRD) arises from pathogenic variants in the mismatch repair and/or polymerase-
proofreading genes. Multiple germline cancer predisposition syndromes in children and young adults, including 
constitutional mismatch repair deficiency (CMMRD), Lynch, polymerase-proofreading deficiency, and rare digenic 
syndromes can lead to RRD cancers. The most frequent brain tumors in these children are high-grade gliomas. 
Embryonal tumors like medulloblastoma have also been described. Lower-grade tumors are reported from cancer 
surveillance initiatives. The latter has an extremely high rate of malignant transformation. Novel functional assays 
quantifying the genomic microsatellite indel load have been demonstrated to be highly sensitive and specific 
for the diagnosis of RRD cancers and children with germline CMMRD. Importantly, RRD brain tumors uniformly 
harbor high mutation and microsatellite burden. High T-cell infiltration makes these aggressive cancers amenable 
to immune checkpoint inhibition, irrespective of their germline genetic background. Synergistic combinations are 
reported to be successful in patients failing checkpoint inhibitor monotherapy. Future directions include the devel-
opment of innovative approaches to improve immune surveillance for RRD brain cancers. Additionally, the use of 
novel tools including circulating tumor DNA and quantifying microsatellite indel load over time can be useful to 
monitor disease burden and treatment responses in patients.
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Fidelity of DNA replication during cell division is maintained by 
the mismatch repair (MMR: PMS2, MSH6, MLH1, and MSH2) 
and polymerase-proofreading genes (PP: POLE, POLD1).1,2 
Aberrations in these genes lead to errors in the genome 
through the accumulation of large numbers of single nucle-
otide variants and insertions/deletions (indels).3,4 The latter is 
frequent in repetitive DNA segments (microsatellites), leading 
to microsatellite instability (MSI).5 Ultimately, MMR and/or PP 
deficiency (MMRD/PPD) lead to cancers with high single nu-
cleotide variants or tumor mutation burden (TMB) and MSI, 
which together, constitute the hallmarks of DNA replication-
repair deficiency (RRD).

While RRD is a pan-cancer mechanism, germline pathogenic 
variants in MMR, POLE/POLD1, and certain related upstream 

promoter genes, lead to cancer predisposition syndromes 
with overlapping biological characteristics.6 Germline RRD is, 
therefore, an umbrella terminology for several related syn-
dromes, including constitutional or biallelic MMR deficiency 
(CMMRD), heterozygous Lynch syndrome (LS), patients with 
germline heterozygous POLE variants and rare patients with 
digenic defects in MMR and POLE genes (Figure 1A).7 While 
multiple cancer types develop in these individuals, central 
nervous system (CNS) and gastrointestinal cancers form the 
main burden of cancers in these syndromes in childhood.8,9 
In the “Think Tank” on Genetic Predisposition to Primary CNS 
cancers, we focus on highlighting recent advances in the bio-
logical understanding, diagnostics, and treatment of CNS can-
cers arising in the germline RRD syndromes.

An update on central nervous system tumors in 
germline replication-repair deficiency syndromes  
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Expanding CNS Cancer Phenotype and Genotype 
Associations in Germline RRD

Collaborative efforts through the International RRD 
Consortium (IRRDC; https://replicationrepair.ca) and other 
networks have revealed that CNS cancers are common 
across all the RRD genes and genotypes.8 In contrast to pri-
mary glioma driver mutations in genes like TP53 and NF1, 
which are frequently somatic and only infrequently stem 
from respective germline predisposition syndromes, most 
primary gliomas with mutations in RRD genes will stem 
from germline RRD. This mandates expanded evaluation 
for the patient and cascade testing for family members. 
Importantly, an expanded spectrum of tumors beyond 
diffuse pediatric-type high-grade glioma H3-wildtype and 
IDH-wild type (pHGG) is now well-appreciated (Figure 
1B).8,10,11 These include astrocytoma IDH-mutant, poste-
rior fossa ependymoma, medulloblastoma, and other em-
bryonal tumors, both in children and young adults.8,11–13 
Lower-grade tumors, including optic pathway gliomas, are 

diagnosed mainly through surveillance protocols. It is im-
portant to note that low-grade gliomas in germline RRD 
are uniquely prone to rapid transformation to high-grade 
gliomas, mandating specialized management.9

While CMMRD remains the most common cause for RRD 
CNS tumors in children, CNS tumors in LS patients are 
increasingly reported.14,15 Both grade 3 astrocytoma IDH-
mutant and pHGG are described, especially in adolescents 
and young adults. As these patients do not exhibit non-
cancer stigmata, their diagnosis is commonly missed. This 
likely contributes to inferior outcomes. Likewise, germline 
heterozygous POLE patients, who were initially considered 
to have PP-associated polyposis (PPAP) syndrome, are 
now well-described to develop pHGG at young ages. Last, 
medulloblastoma and embryonal tumors have been diag-
nosed in both germline POLE, as well as in rare digenic pa-
tients with both LS and PPD.6,16 It remains unclear which 
individuals with LS/ PPD syndromes are predisposed to 
develop CNS tumors at young ages rather than gastro-
intestinal or genitourinary malignancies. However, it is 
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Figure 1. (A) Patients with germline heterozygous Lynch syndrome, constitutional mismatch repair deficiency (CMMRD), and germline heter-
ozygous POLE variants can develop cancers with biallelic MMR deficiency and polymerase-proofreading deficiencies due to gain of additional 
somatic hits. (B) The expanded spectrum of central nervous system cancers in patients with CMMRD.8 (C) Comparison of conventional MSI 
panel (Microsatellite Instability Analysis System, Promega, WI), TMB, immunohistochemistry, and LOGIC in the detection of MMR deficiency in 
replication-repair deficiency (RRD) brain tumors. Relative to these diagnostic tools, functional genomic assays quantifying the whole genomic 
MSI burden like LOGIC have superior sensitivity and specificity in diagnosing MMR deficiency in brain tumor tissues.4,5 Abbreviations: MMRD, 
mismatch repair deficiency; PPD, polymerase-proofreading deficiency; MSI, microsatellite indel/ instability; MSS, microsatellite stable; H, high; 
L, low; TMB, tumor mutation burden; IHC, Immunohistochemistry; LOGIC, low-coverage genomic instability characterization. Figures were gener-
ated using data from the International RRD Consortium.
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likely that such individuals have been previously under-
diagnosed due to a lack of testing for RRD and rapid fatality 
from their aggressive CNS tumors.

Biologically, LS tumors acquire biallelic MMRD during 
carcinogenesis. Furthermore, CNS cancers from both 
LS and CMMRD have a high chance of acquiring somatic 
mutations in additional RRD genes. Specifically, a combi-
nation of MMRD and PPD can result in extreme TMB ex-
ceeding 100 mutations/megabase (ultra-hypermutation).3 
Conversely, POLE/POLD1-driven CNS tumors commonly 
develop secondary somatic MMRD. In addition, RRD 
CNS cancers exhibit enrichment for somatic driver muta-
tions in genes including TP53, ATRX, the RAS/MAP-kinase 
pathway, and IDH1.8 Additionally, while these RRD CNS tu-
mors still have higher MSI as compared to other CNS tu-
mors, MSI burden is lower than that observed in non-CNS 
RRD cancers.4,8 These biological findings have important 
implications for the diagnosis and management of CNS 
cancers arising in RRD predisposition syndromes.

Importantly, the IRRDC has recently unearthed novel 
genotype-phenotype associations, specifically in indi-
viduals with CMMRD.8 While PMS2 and MSH6 are com-
monly affected genes in CMMRD, individuals with biallelic 
germline MSH2 or MLH1 affected, and those with trun-
cating variants across all four genes, not only have an 
earlier onset of cancers, including CNS tumors, but also 
have inferior survival, highlighting the relative biologic ef-
fects and dependencies in the MMR mechanism (Table 1).

Novel Diagnostic Tools to Detect RRD in Cancer 
and in the Germline

RRD cancers uniformly harbor high TMB and MSI, as 
well as characteristic patterns of genomic error accumu-
lation, identifiable as specific mutational and microsat-
ellite signatures. This allows the opportunity to use these 
as potential diagnostic tools. However, both TMB and 
immunohistochemistry for MMR protein expression, while 
useful, have limitations in detecting RRD in tumor sam-
ples.4,17,18 This has supported the development of func-
tional genomic assays that harness the characteristic high 
genomic MSI burden in RRD cancers.

It is important to note that traditional panel-based MSI 
testing is of limited benefit in germline RRD patients and 

specifically RRD CNS tumors, as microsatellite signatures 
in this context are unique and different from adult and gas-
trointestinal tumors for which such specific panels were 
developed. In contrast, several functional genomic assays 
quantifying the complete MSI burden have been reported 
to have superior diagnostic yield for RRD cancers.5,19,20 
Specifically, one such assay, termed low-coverage ge-
nomic instability characterization (LOGIC), has been 
reported to have excellent sensitivity and specificity to di-
agnose RRD in tumors in a scalable and inexpensive way 
(Figure 1C).5 The low-coverage genome sequencing can 
additionally be used to detect specific mutations and copy 
number changes in the tumor. Furthermore, LOGIC is ex-
tremely sensitive to diagnose CMMRD in the germline, as 
due to biallelic germline MMR deficiency, these patients 
have relatively high MSI burden in their nonmalignant 
(blood and saliva) tissues.5 Last, LOGIC was found to be 
useful in resolving difficult cases, allowing the correct di-
agnosis in patients and families in low-income settings in 
twinning programs by the IRRDC.17

Together, the use of TMB, MSI, and their unique sig-
natures results in extremely high sensitivity and speci-
ficity in diagnosing CNS RRD cancers and tracing them 
to the germline. These allow for early detection of cancers 
through the implementation of surveillance protocols and 
tailoring therapy for these cancers ultimately improving 
outcomes for these patients.

Advances in Therapies for CNS Tumors in 
Germline RRD

Aggressive RRD gliomas historically had extremely poor 
survival (Figure 2A, B). Temozolomide, which requires an 
intact MMR machinery for efficacy, is not useful, although 
Lomustine (CCNU) is an effective agent.21 However, the ex-
treme TMB and MSI allow these CNS tumors to have a pro-
immune or “hot” immune microenvironment with high 
CD8 positive T-cell infiltration and PD-L1 expression.22 The 
efficacy of immune checkpoint inhibition (ICI) using PD1 
blockade has therefore led to remarkable radiological re-
sponses and prolonged survival in patients with progres-
sive/ refractory RRD high-grade gliomas (Figure 2C–E).14,22,23 
Nearly a third of patients are disease-free at 4-year follow-up 
on anti-PD1 treatment.24 Additionally, several clinically 

Table 1. Characteristics of Different Genotypes in Patients With CMMRD (n = 201)8

Characteristics PMS2 MSH6 MLH1 MSH2

Prevalence within CMMRD 65% 25% 6% 2.5%

Median age at diagnosis 8.9 years 9.1 years 7.7 years 4.9 years

Gender ratio (male: female) 1.2:1 0.9:1 1:2 3:2

Cancer types

Central nervous system 49% 55% 50% 67%

Gastrointestinal 23% 16% 33% 33%

Hematological 18% 23% 6% 0

Others 10% 6% 11% 0

Estimated survival at age 15 y 50% 50% 9% 0



 4 Das et al.: RRD brain tumors

relevant biological insights have been gained from these 
studies. Prognostic biomarkers identified include TMB, 
MSI, CD8, and PD-L1 expression.22 Remarkably, high-grade 
glioma with a combination of these favorable biomarkers 
had excellent survival at relapse, prompting upfront ICI use 
in a select cohort of patients, allowing avoidance of radia-
tion and chemotherapy.25 This strategy will now be tested in 
an international, response-adapted clinical trial with an aim 
to avoid or delay radiation.

It is also important to underscore that a subset of pa-
tients, especially those with bulky disease, are at risk of 
“immune flare.”14 Conventional MRI sequences have lim-
ited utility in distinguishing true progression from immune 
flare. Perfusion-weighted MRI, use of iron nanoparticles, 
and positron emission tomography using radiotracers 
have shown early promise in identifying inflammation 
in specific studies but need further validation for routine 
clinical use.26,27 Biopsy, albeit helpful, is not feasible in a 
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Figure 2. (A) Progression-free survival (median: 9 months) following chemoradiation in patients with replication-repair deficiency (RRD) high-
grade glioma. (B) Post-relapse survival (median: 2.6 months) in patients with RRD high-grade glioma without immune checkpoint inhibition (ICI). 
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majority of cases, thereby generating interest in cell-free 
DNA and flow cytometry-based biomarker approaches to 
distinguish this in the future.22,26,27 Notably, however, ex-
cellent supportive care and continuing ICI after clinical 
stabilization of patients with immune flare, ideally while 
avoiding steroids and instead using anti-VEGF (personal 
experience; Figure 2F) allows delayed responses and pro-
longed survival. Peripheral blood biomarkers for activated 
and proliferating T-cells and cerebrospinal fluid testing can 
be useful to identify such patients.22

Radiotherapy remains an excellent modality for 
treating RRD CNS cancers, as radiation per se does not 
increase the risk of subsequent malignancies in germline 
RRD. Re-irradiation was recently found to be effective in 
inducing objective responses in synergism with ICI treat-
ment. This was partly related to the lack of radio-resistant 
genomic signatures (ID8) in RRD gliomas previously 
treated with radiation. It is postulated that these indels 
were immunogenic and hence were immune-edited fol-
lowing ICI therapy, leading to retained radiation sensitivity 
(Figure 2G).24

Finally, immune-directed combinatorial therapies have 
shown encouraging results for cancers refractory to 
anti-PD1 monotherapy. Genomic instability leads to contin-
uous mutation accumulation that impacts the microenvi-
ronment and can result in delayed responses despite initial 
progression. Furthermore, compensatory upregulation 
of untreated checkpoints allows inhibitors to be directed 
against them. Adding ipilimumab (anti-CTLA4) after failing 
nivolumab (anti-PD1) was linked to higher CTLA4 expres-
sion at progression and led to prolonged survival.24 In ad-
dition, oncogenic addiction of RRD gliomas to the RAS/
MAP-kinase pathway that can get enriched over time, al-
lowed targeted MEK-inhibition in combination with ICI to 
result in radiological responses, as well as synergism to in-
vigorate the peripheral immune responses.24,28 As the mu-
tational spectrum evolves rapidly in these cancers and can 
impact the immune microenvironment, safe debulking at 
progression can allow both the identification of novel vul-
nerabilities, as well as reduced disease burden for effective 
immune-directed combinatorial strategies.24,28 These com-
binatorial approaches will now be evaluated in prospective 
consortia clinical trials.

It is important to reiterate that all RRD CNS tumors, in-
cluding germline LS and PPD, acquire similar immuno-
genomic characteristics as germline biallelic/CMMRD 
patients and can respond similarly to ICI treatment.14 
However, as the CMMRD hosts harbor higher mutations 
in normal cells, combinatorial ICI leads to higher systemic 
immune toxicities in CMMRD than LS, plausibly due to 
higher neoantigen load even in nonmalignant/non-target 
tissues.24 These data need to be considered while devel-
oping future treatment strategies for these patients.

Future Directions

Raised awareness and novel assays have contributed to 
the expansion of the spectrum and impact of RRD in CNS 
tumors. This has allowed the diagnosis of RRD in CNS tu-
mors, tracing of specific variants to the germline, timely 

implementation of surveillance, cascade testing, and use 
of immune therapies for these previously deadly cancers. 
However, several challenges remain. The risk of subse-
quent malignancies is high, especially in CMMRD, with pa-
tients developing new cancers every two years.8 Improved 
surveillance and monitoring tools are therefore needed. 
Circulating tumor DNA (ctDNA) based approaches are 
promising and need to be further developed and validated 
for both surveillance in cancer-unaffected patients with 
CMMRD, and monitoring response to immune-directed 
therapies for those with cancers, given the challenges with 
radiological assessments highlighted above. Likewise, 
the optimal duration of immunotherapy and risk of im-
mune toxicities need to be better understood and man-
aged, and protocols for tapering treatment with radiology 
and ctDNA-based monitoring are being developed by the 
IRRDC and other interest groups. While immune surveil-
lance is useful, escape and resistance are major concerns. 
Prevention or interception approaches including vaccines 
and combinatorial strategies can be useful and need to be 
systematically developed and tested. Finally, international 
collaboration needs to be strengthened to better under-
stand the biology, genotype associations, and improve the 
outcomes for patients with these syndromes globally.29
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