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Abstract
Purpose: The goal is to provide a sufficient condition for the invertibility of a
multi-energy (ME) X-ray transform. The energy-dependent X-ray attenuation
profiles can be represented by a set of coefficients using the Alvarez–Macovski
(AM) method. An ME X-ray transform is a mapping from N AM coefficients to N
noise-free energy-weighted measurements, where N ≥ 2.
Methods: We apply a general invertibility theorem to prove the equivalence of
global and local invertibility for an ME X-ray transform. We explore the global
invertibility through testing whether the Jacobian of the mapping J(A) has zero
values over the support of the mapping. The Jacobian of an arbitrary ME X-ray
transform is an integration over all spectral measurements.A sufficient condition
for J(A) ≠ 0 for all A is that the integrand of J(A) is ≥ 0 (or ≤ 0) everywhere.Note
that the trivial case of the integrand equals 0 everywhere is ignored.Using sym-
metry,we simplified the integrand of the Jacobian to three factors that are deter-
mined by the total attenuation, the basis functions, and the energy-weighting
functions, respectively. The factor related to the total attenuation is always pos-
itive; hence, the invertibility of the X-ray transform can be determined by test-
ing the signs of the other two factors. Furthermore, we use the Cramér–Rao
lower bound (CRLB) to characterize the noise-induced estimation uncertainty
and provide a maximum-likelihood (ML) estimator.
Results: The factor related to the basis functions is always negative when the
photoelectric/Compton/Rayleigh basis functions are used and K-edge materi-
als are not considered. The sign of the energy-weighting factor depends on
the system source spectra and the detector response functions. For four spe-
cial types of X-ray detectors, the sign of this factor stays the same over the
integration range. Therefore, when these four types of detectors are used for
imaging non-K-edge materials, the ME X-ray transform is globally invertible.The
same framework can be used to study an arbitrary ME X-ray imaging system,
for example, when K-edge materials are present. Furthermore, the ML estima-
tor we presented is an unbiased, efficient estimator and can be used for a wide
range of scenes.
Conclusions: We have provided a framework to study the invertibility of an
arbitrary ME X-ray transform and proved the global invertibility for four types of
systems.
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1 INTRODUCTION

Multi-energy (ME) X-ray imaging, also referred to as
spectral or energy-selective X-ray imaging, has long
been used to image the chemical composition of
the object being scanned.1–6 In X-ray imaging, the
chemical composition of a material is characterized
by the energy dependence of the X-ray attenuation
profile. As an X-ray attenuation profile can be rep-
resented as a linear combination of basis functions
with known energy dependences, it can be summa-
rized by a few energy-independent coefficients as in
the Alvarez–Macovski method.1 We refer to these coef-
ficients as AM coefficients. Imaging AM coefficients
requires multiple energy-weighted measurements, for
example, energy integration with varying source tube
voltages or photocounting with multiple energy bins.
We refer to the mapping from the AM coefficients to
the energy-weighted measurements an X-ray transform.
The question whether an X-ray transform is invert-
ible has only been explored recently for dual-energy
(DE)7,8 and ME measurements.9 The purpose of this
work is to provide a sufficient condition for the invert-
ibility of a general ME X-ray transform from a different
perspective.

With the recent developments in detectors, ME X-ray
imaging is becoming more tangible. DE X-ray imaging
recovers two AM coefficients1 that represent contribu-
tions from photoelectric absorption and Compton scat-
tering to the linear attenuation profile, respectively. The
contribution from Rayleigh scattering has been consid-
ered negligible or assumed to be captured by the other
two AM coefficients in DE X-ray imaging.10–12 How-
ever, it is difficult to predict the effect caused by ignor-
ing the Rayleigh scattering term due to the nonlinear
nature of the X-ray transform, especially for security-
and industrial-screening applications where the mate-
rials of interest are not necessarily low-Z materials.
With ME detectors, the AM coefficient corresponding
to the Rayleigh scattering can be recovered. Further-
more, ME X-ray imaging systems can image materi-
als containing K-edges in the spectral range used for
imaging.5

With broad-spectrum X-ray sources, measurements
of many X-ray systems are naturally energy-weighted.13

ME measurements can be acquired with varying source
settings14,15 or with detectors with varying energy
responses, such as sandwich detectors,16 counting
and integrating X-ray (CIX) detectors,17 and multi-
bin photon-counting (PC) detectors.18 More specifi-
cally, the recent advancement in PC detectors with
pulse-height analysis, which output signals in multiple
energy levels, provides a paradigm shift in X-ray
detector technology and is enabling many new
applications.19,20

The invertibility of a transform is a fundamental ques-
tion in inverse problems.The invertibility problem consid-
ers noise-free measurements and determines whether
a unique solution exists. A system of N linear equations
of N unknowns has a unique solution (as long as the for-
ward matrix is invertible); this is not necessarily true for
nonlinear transforms.Levine et al7 demonstrated a case
of DE X-ray imaging with nonunique solutions. Alvarez
et al8 have applied a two-dimensional global inverse
theorem21 to DE X-ray transforms.Bal et al9 provided an
invertibility criteria for an ME X-ray transform by placing
strong orientation constraints on the Jacobian matrices
and demonstrated the equivalence of global and local
invertibility for some examples through numerical exper-
iments. We apply a global inverse function theorem for
an N-dimensional map and prove that, for an ME X-ray
transform, local invertibility is equivalent to global invert-
ibility. Our global invertibility criteria is local invertibility,
which is a weaker sufficient condition than the criteria
provided by Bal et al.9 This is proved through topological
properties of the definition region and inequalities of the
X-ray transform. Furthermore, we provide a sufficient
condition for the global invertibility by taking advantage
of the symmetries in the expression of the Jaco-
bian. With its simple expression, this condition can be
applied to the design of ME X-ray imaging systems and
detectors.

In this paper, we provide a framework to study the
invertibility of an arbitrary ME X-ray transform and prove
the invertibility for four special cases of energy-weighted
detectors. Furthermore, we consider Poisson noise in
the measurement data and present the Cramér–Rao
lower bound (CRLB) on the estimation of AM coeffi-
cients.Lastly,we provide a fast maximum-likelihood (ML)
algorithm for coefficients estimation and demonstrate its
application in an X-ray reconstruction problem.

2 FORWARD PROBLEM: ME X-RAY
TRANSFORM

In the energy range 20-200 keV,which is commonly used
for X-ray transmission imaging, the interaction between
X-ray photons and the medium can be categorized into
the following three processes: photoelectric absorption,
Compton (incoherent) scattering, and Rayleigh (coher-
ent ) scattering. Correspondingly, the X-ray linear atten-
uation coefficient profiles can be represented accurately
by a summation of N terms as:

𝜇(E) =
N∑
i

ai fi(E) = a ⋅ f (E), (1)

where each component of f is a function of energy
E, the coefficients a are determined by the material
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F IGURE 1 Shape of fi(E) for i = 1, 2, 3 (left) and fitted attenuation profile of water (right)

composition, and the N terms include photo electric,
Compton scattering, Rayleigh scattering, and K-edges.
Here “photo electric”refers to the smooth energy depen-
dence of the photo electric effect and “K-edges” refers
to the discontinuities in the energy dependence of the
photo electric effect just above the binding energy of the
K-shell electrons. We use this set of fi(E) functions as
basis functions and the coefficients a as the AM coeffi-
cients.

For materials that do not contain K-edges in the
energy range of interest, the number of basis func-
tions needed is N = 3. Approximated expressions of
photo electric and Rayleigh scattering term have been
provided in Williamson et al22 by fitting to DLC-146
cross-section data23 and the Klein–Nishina function1

describes the Compton scattering term:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f1(E) = c1E−3.088,

f2(E) = c2

(
1 + 𝛼

𝛼2

[
2(1 + 𝛼)
1 + 2𝛼

−
1
𝛼

ln(1 + 2𝛼)
]

+
1

2𝛼
ln(1 + 2𝛼) −

1 + 3𝛼

(1 + 2𝛼)2

)
,

f3(E) = c3E−1.737,

(2)

where 𝛼 = E∕(510.975 keV), the subscripts 1-3 refer to
the photoelectric effect, the Compton scattering and the
Rayleigh scattering, respectively, and ci are normaliza-
tion factors so that ‖fi(E)‖2 = 1. The normalized basis
functions are presented in Figure 1 (left).The usefulness
of these functions in representing attenuation coefficient
profiles is well known.We generated attenuation profiles
for 128 materials based on the NIST XCOM data.24 As
an example, the fitted attenuation profile and the XCOM
data for water are presented in Figure 1 (right).

In a tomographic imaging or measurement system,
the total attenuation 𝜏(E) is the line integral of the X-ray

attenuation coefficient 𝜇(E) along the ray path

𝜏(E) = ∫ dl 𝜇(E) =
N∑

i=1

Aifi(E) = A ⋅ f (E), (3)

where

Ai = ∫ dl ai(R) (4)

is a sinogram of the ith AM coefficient. For a parallel-
beam system, Ai(𝜃, 𝜌) is the Radon transform of ai(R),
where 𝜃 is the rotation angle of the ray path and 𝜌 is the
position along the detector plane.

The object ai(R) can be reconstructed from the sino-
grams Ai(𝜃, 𝜌),and the line integrals Ai(𝜃, 𝜌) can be esti-
mated from ME measurements of the corresponding ray
path. Consider an ME X-ray imaging system producing
M energy-weighted measurements with a source photon
budget I0 (total number of photons emitted by the source
across the energy range of interest). To describe the
mth energy-weighted measurement,where m = 1,… , M,
denote Dm(E) as the detector response and Sm(E) as
the normalized source spectrum of the mth measure-
ment. For a given ray path, the mean signal of the mth
measurement can be described by

Im = I0 ∫
∞

0
dE Dm(E) Sm(E) exp [−A ⋅ f (E)],

= I0 ∫
∞

0
dE pm(E) exp [−A ⋅ f (E)],

(5)

where pm(E) = Dm(E)Sm(E) is the combined energy-
weighting function. This equation can be used to
describe many energy-weighted measurements,
such as a PC binning detector and an energy-
integrating detector. In the most general case, the source
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F IGURE 2 Energy weighting functions for
four special cases: (a) CIX-PC/EI/MI, (b)
nonoverlapping bins with arbitrary response, (c)
three rect bins with ideal energy resolution, and
(d) a slightly overlapping three-bin detector,
where the overlap is introduced by the finite
energy resolution of the detector

spectra may vary across measurements and the com-
bined weighting functions are arbitrary and can take
on any real nonnegative values at each energy. The
basis functions f (E) can contain components describing
K-edges as well. Therefore, Equation (5) describes a
general ME X-ray transform. In the following sections,
we study the invertibility of the mapping defined by this
equation in the domain Ai ≥ 0 for i = 1, 2,… , N.

A special case of an ME detector is a CIX detector
that counts the number of photons and integrates
both the energy and the momentum of the photons
(PC/EI/MI), providing measurements with detector
response D1(E) = 1, D2(E) ∝ E, and D3(E) ∝

√
E, as

shown in Figure 2(a). As a CIX PC/EI detector has
been developed,17 it is reasonable to assume that it
is feasible to build a CIX PC/EI/MI detector. A second
special case is a binning detector where the weighting
functions are arbitrary and nonoverlapping as shown in
Figure 2(b).Another special case is an ideal PC detector
as illustrated in Figure 2(c),where the detector response
of each bin can be considered as rect functions and
there may be overlaps between different bins. Binning
detectors in real life tend to have nonoverlapping bins.
Here, for the comprehensiveness, we include detectors
with overlapping bins. Another special case considers
a slightly overlapping three-bin detector, where the
overlap is introduced by the finite energy resolution of
the detector. The detector response functions of such a
detector are plotted in Figure 2(d).

3 INVERTIBILITY

We explore the invertibility of the mapping from the AM
coefficients A to the noise-free ME measurement data I.
Suppose that we have M = N measurements. The coef-

ficients A and the mean photon count I are both subsets
of N-dimensional Euclidean space RN. We define the
ME X-ray transform from A to I as  : M1 → M2, where
the domain of the mapping is A in M1 and the range of
the mapping is I in M2.

The Hadamard’s global inverse function
theorem:25 Let M1 and M2 be smooth, connected
N-dimensional manifolds and let  : M1 → M2 be a
C1 function. If (1)  is proper, (2) the Jacobian of 
vanishes nowhere, and (3) M2 is simply connected,
then  is a homeomorphism. A homeomorphism
is one-to-one and onto, which implies global invert-
ibility, whereas nonvanishing Jacobian implies local
invertibility.

In the following sections, we will use the Hadamard’s
global inverse function theorem to prove the equiva-
lence of global and local invertibility for an ME X-ray
transform. We will first construct a simply-connected
range M2, then prove that the mapping  : M1 → M2 is
proper through inequality relations. Lastly, we will pro-
vide a simplified expression for the Jacobian determi-
nant and a sufficient condition for the Jacobian to vanish
nowhere.

3.1 Simply connected

We briefly summarize the property of the mapping  .
The first-order derivative of the X-ray transform can be
expressed as follows:

𝜕Im
𝜕Ai

= −I0 ∫
∞

0
dE pm(E) fi(E) exp [−A ⋅ f (E)]. (6)

The first-order derivative exists and is continuous;
therefore, the mapping  is a C1 mapping. The values
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(0), which represents the mean signals of an air
scan, are finite and equal to the maximum (mean)
count values. We further define a normalization factor
dm = ∫ ∞

0 dE pm(E). With this definition, the maximum
mean count measured by the mth detector is I0dm.
As the magnitude of A approaches infinity, the counts
approach zeros. We will use these properties and the
assumption that the Jacobian is nonvanishing in RN

to construct a simply connected range M2 with the
corresponding domain M1 connected. Furthermore,
we will justify that the interior of M1 and M2 are both
smooth N-dimensional manifolds.

The ME X-ray transform, as defined in Equation (5),
has physical meaning when A is in the positive subspace
of RN,denoted as PN,where Ai ≥ 0 for all i.However, the
transform is mathematically valid over the domain RN.
To construct a simply connected M2, we will expand the
domain of the mapping from PN.

Let U0 = PN and V0 be the image of U0 under
the mapping  . In V0, the mean photon count I is
bounded by 0 < Im ≤ I0dm. Furthermore, as U0 is path
connected and  is a continuous mapping, V0 is path
connected26(p. 150). From every point I i in V0, draw a
straight line to the maximum-count point I0d and define
this line with end points as Vi . Every point in Vi is
bounded by Iim ≤ Im ≤ I0dm. Define M2 as the union of
all Vi . As V0 and Vi are all path connected, M2 is path
connected. The space M2 is simply connected if every
closed curve in M2 can be contracted to a point.25 Define
a closed curve 𝜙(s) : [0, 1] → M2. We can contract 𝜙(s)
to the maximum-count point I0d through the following
continuous function H: [0, 1] × [0, 1] → M2,

H(s, t) = t𝜙(s) + (1 − t)I0d. (7)

As M2 is path connected, the closed curve 𝜙(s) can be
contracted to any points in M2

26 (p. 332). Therefore, M2
is simply connected.

We assume that the Jacobian vanishes nowhere in
RN. In other words, the mapping  is a local homeo-
morphism, which means that every point of A ∈ RN has
a neighborhood that is homeomorphic to an open sub-
set in the range. For every straight line Vi(I), the cor-
responding preimage ui(A) in the domain RN can be
constructed by successive local inverses −1(I). The
maximum-count point I0d corresponds to only one point
in U0, and this point is the origin of the coefficient space.
Therefore, the origin is one end point of all preimages.
The point I i may have multiple local inverses, which we
can index with subscript j. The jth local inverse intro-
duces an inverse curve uij , where the jth local inverse
is the second end point of the corresponding preimage
uij .Each uij is connected and connected to U0.We define
the union of all uij(A) as Ui . Furthermore, we define M1

as the union of all Ui .M1 is connected and a superset of
PN. The expansion of the range and domain for N = 2
is illustrated in Figure 3.

The interior points of M1 and M2 (excluding the
boundaries) are both smooth N-dimensional manifolds,
because they are open subsets of RN27 (p. 19). We will
limit our proof to the interior of M1 and M2 and discuss
the boundary points in Section 6.

3.2 Proper

We derive the bounds on the coefficients A for given
measurement data I. Using Jensen’s inequality,we have

ln
Im

dmI0
> ∫

∞

0
dE

pm(E)
dm

[−A ⋅ f (E)], (8)

where dm has been defined previously and dmI0 is
the maximum count in the mth measurement. These
inequalities can be written as

A ⋅ nm > ln[(dmI0)∕Im], (9)

where

nm = ∫
∞

0
dE pm(E)f (E)∕dm. (10)

The vector nm has all nonnegative components.Further-
more, the mean photon count Im in M2, is always less
than or equal to the maximum count,dmI0.Therefore, the
right-hand side of Equation (9) is always larger than or
equal to 0.Each of the inequalities in Equation (9) forces
the vector A to be on the side that is opposite to the origin
of the hyperplane defined by to A ⋅ nm = − ln[Im∕(dmI0)],
as shown in Figure 4(a) for the case of N = 2.

We define the support of the weighting functions
pm(E) as Ωm. Using the Schwarz inequality, we have

I2m ≤ I20

[
∫
Ωm

dE p2
m(E)

][
∫
Ωm

dE exp [−2A ⋅ f (E)]

]
,

(11)
with equality if and only if pm(E) ∝ exp[−A ⋅ f (E)]. In
many occasions, the equality condition is not attainable.
For example, when the three basis functions given in
Equation (2) are used, exp[−A ⋅ f (E)] is not proportional
to the pm(E) of the detectors illustrated in Figure 2(b)–
(d). If we define

𝛾m =
I2m
I20

[
∫
Ωm

dE p2
m(E)

]−1

, (12)
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F IGURE 3 Constructing a simply connected range M2 by expanding the domain of the map  : (a) The initial domain U0 and range V0. (b)
Vi , defined by points I i and I0d, and its corresponding preimages uij . Ui is defined as the union of all uij . (c) The expanded domain M1 and range
M2. (d) Every closed curve 𝜙(s) (blue loop) can be shrunk down to the point I0d through the function H(s, t). Color varying from blue to green
represents t from 1 to 0. The black-dashed line is the trajectory of a point s in the loop 𝜙 as t decreases from 1 to 0

F IGURE 4 (a) For given noise-free measurement data I, the vector A is bounded in the area indicated in gray. Each energy-weighted
measurement generates a pair of red and blue hyperplanes, which bound the vector A. (b) Illustration of the sign-switched mirror symmetry in
function det[F(E1, E2)] along line E1 = E2

then we have

𝛾m ≤ ∫
Ωm

dE exp [−2A ⋅ f (E)]. (13)

Assume that the length |Ωm| of each support set is
finite. Replacing the integrand with its maximum possi-
ble value gives

𝛾m ≤ exp
{
−2 min

E∈Ωm
[A ⋅ f (E)]

}|Ωm|. (14)

Therefore, we have another set of inequalities

min
E∈Ωm

[A ⋅ f (E)] ≤ 1
2

ln
(|Ωm|

𝛾m

)
. (15)

Now we may choose an energy Em such that

A ⋅ f (Em) ≤ ln
⎛⎜⎜⎝
√|Ωm|

𝛾m

⎞⎟⎟⎠. (16)
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The right-hand side satisfies ln(
√|Ωm|∕𝛾m) ≥

ln(dmI0∕Im) ≥ 0 through the Schwarz inequality as
follows:

d2
m =

[
∫
Ωm

dE pm(E)

]2

≤ |Ωm|[∫
Ωm

dE p2
m(E)

]
. (17)

Each of the inequalities in Equation (16) forces the vec-
tor A to be on the same side of the corresponding hyper-
plane as the origin.

Therefore, for given mean photon count I, where
dmI0 ≥ Im > 0, the inequalities defined by Equations (9)
and (16) force A to be in a bounded set defined by the
first set of hyperplanes and the second set of hyper-
planes. A typical picture of this scenario for N = 2 is
shown in Figure 4(a). Note that for a physical mea-
surement, the corresponding coefficients A are further
bounded by the coordinate planes. Here we focus on
demonstrating that A is bounded for a given I even with-
out the positivity constraints on A.

Now we show that the mapping  : M1 → M2 is a
proper mapping. If we have a compact set C in the data
space M2,where all of the data vectors are located, then
there are maximum and minimum values for each Im
over all I in C. The maximum value for Im determines
the hyperplane A ⋅ nm = ln[(dmI0)∕Im] that is close to the
origin. The minimum value for Im determines the hyper-
plane A ⋅ f (Em) = ln(

√|Ωm|∕𝛾m) that is furthest away
from the origin. Therefore, the set of A that are mapped
into C is contained in a region bounded by these two
sets of hyperplanes. This bounded region together with
its boundary form a closed and bounded set in ℝN,
hence a compact set. As the map (A) is continu-
ous, the set of A that are mapped into the closed set
C is closed. The set of A that are mapped into C is
a closed subset of a compact set. This set is there-
fore also compact. As a result, the mapping (A) is
proper.

3.3 Jacobian

The Jacobian of the mapping is J(A) = |det(∇AI)|,
where | ⋅ | represents the absolute value and det(⋅) is
the determinant of a matrix. The matrix inside the deter-
minant is

∇AI =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕I1
𝜕A1

𝜕I1
𝜕A2

…
𝜕I1
𝜕AN

𝜕I2
𝜕A1

𝜕I2
𝜕A2

…
𝜕I2
𝜕AN

… … … …

𝜕IM
𝜕A1

𝜕IM
𝜕A2

…
𝜕IM
𝜕AN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

As M = N,∇AI is a square matrix. Defining the set Ω =

Ω1 × Ω2 … × Ωm, the determinant of a square matrix can
be expressed in Leibniz formula as

det(∇AI) =
∑
𝝈

sgn(𝝈)
M∏

m=1

𝜕Im
𝜕A𝜎m

,

= (−I0)M
∑
𝝈

sgn(𝝈)
M∏

m=1
∫
Ωm

dEm pm(Em)

× f𝜎m
(Em) exp [−A ⋅ f (Em)]

= (−I0)M ∫
Ω

dME

{ M∏
m=1

pm(Em)e−A⋅f (Em)

}

×
∑
𝝈

sgn(𝝈)
M∏

m=1

f𝜎m
(Em),

(19)

where the sum is computed over all permutations 𝝈 of
the set {1, 2,… , M}, and the sign of the permutation 𝝈,
sgn(𝝈), is+1 or−1 for even or odd permutations,respec-
tively. Invoking the Leibniz formula again,we can simplify
the Jacobian to:

det(∇AI) = (−I0)M ∫
Ω

dME

{
M∏

m=1

pm(Em)e−A⋅f (Em)

}
det[F(E)],

= (−I0)M ∫
Ω

dME

{
M∏

m=1

fm(Em)e−A⋅f (Em)

}
det[P(E)],

(20)
where the second line follows a similar derivation as
Equation (19) by swapping the subscripts of p(E) and
f (E). The matrix F as a function of E = (E1, E2,… , EM)
is

F(E) =

⎡⎢⎢⎢⎢⎢⎣

f1(E1) f2(E1) … fN(E1)

f1(E2) f2(E2) … fN(E2)

… … … …

f1(EM) f2(EM) … fN(EM)

⎤⎥⎥⎥⎥⎥⎦
, (21)

and the matrix P as a function of E is

P(E) =

⎡⎢⎢⎢⎢⎢⎣

p1(E1) p2(E1) … pN(E1)

p1(E2) p2(E2) … pN(E2)

… … … …

p1(EM) p2(EM) … pN(EM)

⎤⎥⎥⎥⎥⎥⎦
. (22)
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The integrand in Equation (20) has several interest-
ing symmetry properties. The factor

∏M
m=1 e−A⋅f (Em) =

e−A⋅
∑M

m=1 f (Em) has mirror symmetry about all hyper-
planes Ei = Ej for i, j ∈ {1, 2, .., M}. The other factor,
det[F(E)], has sign-switching mirror symmetry about
the same hyperplanes, which can be described mathe-
matically as:

det[F(E1, E2,… , EM)] = sgn(𝝈) det[F(E𝜎1
, E𝜎2

,… , E𝜎M
)].

(23)
A sign-switching mirror symmetry means that, when
we switch the positions of two coordinates (odd per-
mutation), the sign of the function changes but the
absolute value of the function is preserved. For exam-
ple, with two coordinates E1 and E2, det[F(E1, E2)] =
f1(E1)f2(E2) − f2(E1)f1(E2) = −det[F(E2, E1)]. To illus-
trate the sign-switching mirror symmetry, we plotted
det[F(E1, E2)] for the case when f1(E) and f2(E) are
both Gaussian functions in Figure 4(b).

Now we can divide the space occupied by Ω into M!

subspaces with hyperplanes Ei = Ej for i, j ∈ {1, 2, .., M}.
One of the subspace has property E1 < E2 < … < EM
and we define this subspace as Ω1,2…M. For every point
(E1, E2,… , EM) in the subspace Ω1,2…M, there is a corre-
sponding point (E𝜎1

, E𝜎2
,… , E𝜎M

) in each of the remain-
ing subspaces. Applying the sign-switching mirror sym-
metry of the determinant, we can further simplify the
Jacobian to:

det(∇AI) = (−I0)M ∫
Ω12..M

dME

{ M∏
m=1

e−A⋅f (Em)

}

× det[F(E)]
∑
𝝈

sgn(𝝈)
M∏

m=1

pm(E𝜎m
),

= (−I0)M ∫
Ω12..M

dME

{ M∏
m=1

e−A⋅f (Em)

}

× det[F(E)] det[P(E)].

(24)

The symbol M emphasizes that the integration is over
all spectral measurements.The three factors of the inte-
grand,

∏M
m=1 e−A⋅f (Em), det[F(E)] and det[P(E)], depend

on the total attenuation, the basis functions, and the
energy-weighting functions, respectively.

When the Jacobian is nonvanishing everywhere in RN,
we can construct the domain M1M1 and the range M2M2
and prove that the mapping  : M1 → M2 : M1 → M2
is globally invertible. As a result, the ME X-ray trans-
form defined on the domain PNPN, which is a subset of
M1M1, is globally invertible. Therefore, we have proved
the equivalence of global invertibility with local invert-

ibility for an ME X-ray transform. This equivalence holds
when K-edge basis functions are considered.

3.4 A sufficient condition
for invertibility

A sufficient but not necessary condition for J(A) ≠ 0
is that the integrand of J(A), which is given in Equa-
tion (24), has the same sign over the subspace S12…N
and has nonzero values. The first factor in the inte-
grand, which depends solely on the total attenuation,
is always positive. If we ignore the trivial case that
det[F(E)] det[P(E)] = 0 everywhere, a sufficient condi-
tion for the invertibility of the ME X-ray transform is
det[F(E)] det[P(E)] ≤ 0 (or≥ 0) for all E in S12…N.As the
sign of the integrand does not depend on A, if the suffi-
cient condition is satisfied, the Jacobian is nonvanishing
for all A in RN.

When the photoelectric/Compton/Rayleigh basis
functions are used, the basis-function determinant
det[F(E)] is always negative in the subspace Ω123. This
set of three basis functions is sufficient to describe an
object when the materials of interest have no K-edges
in the energy range used for imaging, for example,
soft tissue and bone. The proof of det[F(E)] < 0 for
all E that satisfy E1 < E2 < E3 is provided in Online
Appendix A. When K-edge materials are considered,
the values of det[F(E)] can be calculated numerically
and the positive regions of det[F(E)] can be avoided by
adjusting the detector sensitivity or source spectrum in
pm(E).

Now we apply the sufficient condition for invertibility to
the DE scenario that has nonunique solutions discussed
by Levine.7 For DE X-ray imaging, a set of two basis
functions, photoelectric and Compton, can be used. The
basis-function determinant is always positive in the sub-
space S12.Levine assumed the same detector response
for the two measurements;hence,the sign of det[P(E)] is
the same with the sign of det[S(E)], which is the source-
spectra determinant. Similar to the definition in Equa-
tion (22), the matrix S(E) can be written as

S(E1, E2) =

[
S1(E1) S2(E1)

S1(E2) S2(E2)

]
, (25)

where (E1, E2) can be any combinations of two energies.
With these, det[S(E)] = S1(E1)S2(E2) − S1(E2)S2(E1).
Levine assumed that both source spectra S1(E) and
S2(E) are not zero only at three energy points (30,
60, 100) keV. Hence, det[S(E)] is not zero only when
(E1, E2) are combinations of the set {30, 60, 100} keV.
Within the subspace S12, where E1 is always less
than E2, det[S(E)] is nonvanishing only at three points
(E1, E2) = (30, 60), (30, 100), and (60, 100) keV. Given
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the two source spectra as S1(E) = (1, 1, 1) and S2(E) =
(0.93, 1.71, 0.30) at E = (30, 60, 100) keV, respectively.
The values of det[S(E)] at (E1, E2) = (30, 60), (30, 100),
and (60, 100) keV are 0.78, −0.63, and −1.41, respec-
tively. Therefore, det[S(E)] does not have constant sign
over the subspace S12…N; hence, the invertibility of the
DE X-ray transform for the proposed scenario is not
guaranteed. Note that this analysis only shows that the
existence of nonunique solutions is possible, it does not
prove their existence.

We then consider the sign of det[P(E)] for the four
types of detectors illustrated in Figure 2. Assuming that
the source spectrum S(E) is same for different m, the
weighting-function determinant det[P(E)] has the same
sign with the detector-response determinant det[D(E)],
where the (i, j) element of matrix D(E) is the detec-
tor response of the ith measurement at Ej denoted as
Di(Ej). The sign of det[D(E)] for the four types of detec-
tors is studied in Online Appendix A and the main results
are presented as follows.

(a) An CIX-PC/EI/MI detector: det[D(E)] < 0 for all E ∈

Ω123.
(b) A three bin detector, where the three bins are not

overlapping and the energy-response functions are
arbitrary: det[D(E)] ≥ 0 for all E ∈ Ω123.

(c) A three bin PC detector with rect-response func-
tions and possible overlaps between bins: if Bin 1
and Bin 3 has no overlap, the lower edges of the
three bins satisfy l1 < l2 < l3 and the upper edges of
the three bins satisfy u1 < u2,< u3, the determinant
det[D(E)] ≥ 0 for all E ∈ Ω123.

(d) A nonoverlapping three bin PC detector with finite
energy resolution: if the energy resolution of the
detector can be modeled by a narrow truncated
function (for mathematical description, see Online
Appendix A) and there is no overlap between Bin
1 and Bin 3, det[D(E)] ≥ 0 in Ω123.

In conclusion,the mapping : A → I is globally invert-
ible for these four types of detectors when measur-
ing attenuation profiles without K-edges. For arbitrary
detectors or systems with varying source spectra, the
values of det[P(E)] can be calculated numerically. One
can alway maintain det[F(E)] det[P(E)] ≤ 0 for any E in
S12…N by adjusting the energy-response function or the
bin boundaries of the detectors.

4 ESTIMATION UNCERTAINTIES
FOR POISSON DATA

From a practical point of view, it is also crucial to con-
sider the uncertainty in the estimation under the pres-
ence of noise. In this section, we consider PC detectors
with nonoverlapping bins. If only inherent quantum noise

is considered, the data of the mth measurement at a
given ray path, gm, is a Poisson random variable with
mean equals to Im,

gm(A) = oiss(Im(A)), (26)

where Im(A) is the mean photon count of the mth mea-
surement given in Equation (5). Combining all M mea-
surements, we get the measurement data g. The proba-
bility density function of the data g given the AM coeffi-
cient A along the ray path is

pr(g|A) =
M∏

m=1

Im(A)gme−Im(A)

gm!
. (27)

The log-likelihood function of the AM coefficients A is

L(A|g) = ln pr(g|A) =
M∑

m=1

gm ln Im(A) − Im(A) − ln gm!.

(28)
The first derivative of the log-likelihood function is

𝜕L
𝜕Ai

(A) =
M∑

m=1

gm − Im(A)
Im(A)

𝜕Im
𝜕Ai

(A) =
M∑

m=1

gm − Im(A)
Im(A)

[∇AI]mi .

(29)
The Hessian, or second derivative, of the log-likelihood
function is given by

[∇2
AL]ij =

𝜕2L
𝜕Ai𝜕Aj

=

M∑
m=1

gm − Im
Im

𝜕2Im
𝜕Ai𝜕Aj

−
gm

I2m

𝜕Im
𝜕Ai

𝜕Im
𝜕Aj

. (30)

The components of the Fisher information matrix
are

FIMij(A) = −

⟨
𝜕2L

𝜕Ai𝜕Aj

⟩
g|A

= −∫ dMg pr(g|A)

×

M∑
m=1

[
gm − Im

Im

𝜕2Im
𝜕Ai𝜕Aj

−
𝜕Im
𝜕Ai

𝜕Im
𝜕Aj

gm

I2m

]

=

M∑
m=1

1
Im

𝜕Im
𝜕Ai

𝜕Im
𝜕Aj

.

(31)

Therefore, the Fisher information matrix is

FIM(A) = (∇AI)TΛ−1(∇AI), (32)
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where Λ is a diagonal matrix with the mth diagonal ele-
ment equals to Im.

The Crámer–Rao bounds28,29 characterize the limit
on the estimation uncertainties induced by noise. It
states that for an unbiased estimate of the ith parameter,
its variance must be at least as large as the ith diagonal
element of the inverse of the Fisher information matrix.
Mathematically, the CRLBs are

Var(Âi − Ai) ≥ [FIM−1]ii = [(∇AI)−1Λ(∇AI)−1,T ]ii , (33)

where the symbol Â indicates an estimate of A. Note
that the uncertainty in the estimation is inversely related
with the source photon budget I0, which agrees with
our intuition. Also, note that the uncertainty of an unbi-
ased estimation is inversely related with the Jaco-
bian J(A) = |det(∇AI)|. If the Jacobian J(A) is close
to zero, the estimation uncertainty is close to infinity
and the coefficients cannot be estimated accurately in
practice.

5 ESTIMATION ALGORITHM AND
ILLUSTRATIVE RESULTS

In this section, we develop an ML algorithm for Pois-
son data. The goal of the algorithm is to estimate AM-
coefficients A from noisy data g. The assumption for the
algorithm is that both Equations (5) and (27) are valid.
First, consider L as a function of the mean signal I. The
first derivation of this function is

𝜕L
𝜕Ii

=
gi

Ii
− 1. (34)

Hence, the point I = g is a critical point. The Hessian of
the function L(I|g) is

[∇2
I L]ij =

𝜕2L
𝜕Ii𝜕Ij

= −
gi

I2i
𝜎ij , (35)

where 𝜎ij = 1 when i = j,and 𝜎ij = 0 otherwise.This Hes-
sian is a diagonal matrix with all negative elements when
gm > 0. Therefore, the function L(I|g) is a concave func-
tion and the critical point at I = g is the global maximum
for L. When the mapping  : A → I is invertible and g is
within the range of the mapping, the maximum value of
L corresponds to a point Ag that satisfies I(Ag) = g.

We then consider L as a function of the AM coef-
ficients A. When the matrix ∇AI is invertible, which is
true when the X-ray transform is invertible, Ag is a crit-
ical point of the likelihood function L(A|g), as L(Ag|g)
is the ML value. Furthermore, when A is located within
the region defined by Im(A) ≥ gm, the likelihood function
L(A|g) is a concave function of A. An ML algorithm can
be developed based on Newton’s method30,31 with iter-

ations described as

Ak+1 = Ak + tk ∗ ΔAk,

and ΔAk = −[∇2
AL(Ak)]−1∇AL(Ak), (36)

where Ak is the attenuation coefficients at iteration k and
tk is the step size chosen with an Armijo-type (or back-
tracking) line search to enforce sufficient increase in L
and the negativeness of the Hessian ∇2

AL. Note that the
enforcement of negative definiteness of the Hessian is
important, as the algorithm may not converge otherwise.
The likelihood function is convex in the region 0 ≤ A ≤
Ag; hence, the algorithm works the best when the initial-
ization point A0 is less than Ag. Furthermore, during the
iterations, the Hessian may become rank-deficient due
to numerical accuracy. In this case, a gradient-descent
step can be used instead of the Newton step. For exam-
ple, in our implementation, we used an initialization of
A0 = (0, 0, 0) and back-tracking parameters 𝛼 = 0.1 and
𝛽 = 0.1 (𝛼 and 𝛽 are defined as in Ref. 30), and the con-
vergence of the algorithm required less than 15 iteration
steps for every case we have tested in the following sec-
tions.

5.1 AM coefficients estimation
uncertainties

To demonstrate the applications of this ML algorithm,
we considered an ideal three-bin PC detector with non-
overlapping rect response functions, as shown in Fig-
ure 2(c) but with equal heights and no overlapping. The
source is operated at 160 kVp and generates a broad
X-ray spectrum.32 The material attenuation profiles are
extracted from the NIST XCOM data. X-ray attenuation
was simulated according to Beer’s law. X-ray scattering
and detector imperfections are not considered.The data
were simulated at source photon budget I0 = 107 with
Poisson noise.

We simulated a single X-ray path with different lengths
of water as the attenuating media. The energy-bin
boundaries of the detector were set at [30, 75, 100,
160] keV. The length of water ranged from 1 to 28 cm.
For each length, 1000 sets of noisy data were gener-
ated, and the AM coefficients were estimated for each
set of data. We calculated the mean and the variance
of the estimated coefficients and compared the estima-
tion uncertainty to the CRLB. The results are presented
in Figure 5.

To check if the algorithm works for materials that are
very different from water, we changed the material in
the X-ray path to iron and the detector bin boundaries
to [30, 110, 140, 160] keV. The bin boundaries were
changed so that there are sufficient number of pho-
tons collected in all three bins.The length of iron ranged
from 0.1 to 3 cm. The mean and variance of the 1000
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F IGURE 5 Uncertainties in the three estimated photoelectric/Compton-scattering/Rayleigh-scattering coefficients for different lengths of
water

F IGURE 6 Uncertainties in the three estimated photoelectric/Compton-scattering/Rayleigh-scattering coefficients for different lengths of
iron

repeated estimations at each length are presented in
Figure 6.

In both scenarios, the mean of the estimates (black
line) matches well with the true coefficient (red circle).
The slight deviation between the true coefficient and
the mean estimation at high attenuation region can be
attributed to sampling error in Monte-Carlo simulation.
The standard deviation of the estimates (purple area)
is almost perfectly aligned with the CRLB. These results
demonstrate that our estimation algorithm is unbiased
and efficient. Furthermore, the AM coefficient corre-
sponding to the Rayleigh scattering is estimable and the
uncertainty in Ârs is comparable to the uncertainty in
Âpe,which corresponds to the photoelectric effect.How-
ever, the Âpe and Ârs are anticorrelated,which is demon-

strated by a negative value of the element [FIM−1]13.
This correlation is probably due to the fact that the
basis functions fpe(E) and frs(E) have similar shapes.
This correlation may partially explain why Âpe and Ârs

have more variance than Âcs, as shown in Figure 5. As
a result of the correlation, the estimated total attenua-
tion �̂�(E) = Âpefpe(E) + Âcsfcs(E) + Ârsfrs(E),which is the
ultimate physical quantity we are interest in, is not very
noisy, as will be shown in the reconstruction results of
the phantom.

5.2 Phantom reconstruction

We further applied the ML estimation algorithm for an
image reconstruction. The reconstruction problem in X-
ray computed tomography (CT) is to estimate the dis-

tribution a(R) from the estimated line integrals Â for
each ray path. The AM coefficients a at each location
R correspond to an attenuation profile 𝜇(E). For a two-
dimensional scene, the object 𝜇(E, R) and the recon-
struction �̂�(E, R) are both three-dimensional data cubes.
To present the reconstruction result, we plot 𝜇(E, R) and
�̂�(E, R) at an arbitrary energy.

We simulate a two-dimensional fan-beam CT system
(62◦ fan-beam angle) with 360 views and 245 detectors.
The field of view is 256×256 pixels with a pixel pitch
of 1–1.5 mm. The same source, detector, and material
database described in the previous section are used.
X-ray attenuation is simulated according to Beer’s law,
whereas scattering and detector imperfections are not
considered.The detector energy bin boundaries are [30,
75, 100, 160] keV. The source photon budget for each
beam path is 107. The AM coefficients A are estimated
for each beam path and the object represented by a(R)
is reconstructed from Â using a filtered-back projection
(FBP) algorithm.

The first phantom reconstructed is a circular water
phantom of diameter about 30 cm with pixel-pitch
0.15 cm.This phantom and its reconstruction are plotted
at E = 75.5 keV in Figure 7.The reconstruction matches
well with the object. As shown in the centerline plot
in the right panel of Figure 7, the reconstruction has
no cupping artifacts, which is typically associated with
beam hardening.

A second phantom is a multi-material resolution phan-
tom design inspired by Gong et al.33 The length of the
phantom is 20 cm with pixel pitch around 0.1 cm. The
phantom, as shown in Figure 8 (left), is a Delrin block
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F IGURE 7 Reconstruction of the circular phantom. The object 𝜇(E, R) (left), the reconstruction �̂�(E, R) (middle), and the centerline plots
(right) are all presented at E = 75.5 keV

F IGURE 8 Reconstruction of the resolution phantom. The object 𝜇(E, R) (left), the reconstruction �̂�(E, R) (middle), and the centerline plots
(right) are all presented at E = 75.5 keV

with 25 circular inserts in five rows and five columns.
In each row, the inserts are made from the same mate-
rial; in each column, the inserts have the same diame-
ter. From top to bottom, the five materials for the inserts
are water, polyvinyl chloride, cast magnesium, acrylic,
and methanol. The diameters of the inserts are from
0.6 to 1.8 cm with 0.3 cm step. The reconstruction of
the resolution phantom is plotted at E = 75.5 keV in Fig-
ure 8. In the plots, different shades of grey represent
different materials. The reconstruction results show that
the ML estimation algorithm works for a broad range of
AM coefficients

Each reconstruction, which calls the ML estimation
algorithm 88,200 times, takes approximately 130 s on a
desktop with a quad-core central processing unit (CPU).
The reconstruction can be further sped up using a
graphic processing unit (GPU).

6 DISCUSSION

In our proof of invertibility, we focused on the interior
points of M1 and M2 and proved that, for an ME X-ray
transform, the global invertibility is equivalent to local
invertibility for A in the interior of M1 and I in the interior
of M2. This equivalence can be extended to the bound-
aries of M1 and M2 by invoking Theorem 6 in Sand-

berg et al.34 As mentioned in the introduction, Bal et al9

have also provided a sufficient condition for the invert-
ibility of ME X-ray transform. Their sufficient condition
is that the Jacobian is a P-matrix in a rectangle in RN.
P-matrix, which is a concept related to the preserva-
tion of orientation, requires the matrix and a few sub-
matrices to be all positive. For the definition of P-matrix,
please refer to Bal et al9 or Gale and Nikaido.35 Bal
et al studied the invertibility of different ME X-ray sys-
tems by numerically calculating the Jacobian matrix on
a grid of A values for each system. Based on numeri-
cal simulations, they have suggested that an ME X-ray
system may become invertible as soon as the mapping
is locally invertible in the rectangle. Our sufficient con-
dition for global invertibility is that the Jacobian is non-
vanishing for all points in M1. In comparison to Bal et al,
our sufficient condition is weaker (better),but the domain
where the Jacobian matrix needs to be checked is larger.
For ease of computation, we also provide a sufficient
condition for nonvanishing Jacobian, which requires the
integrand of the Jacobian to have constant sign over all
energy combinations in S12…N. From a practical point of
view, the latter condition is significantly easier to use, as
(1) the sign of the Jacobian integrand does not depend
on A, and (2) the properties of the basis functions
and the detector response functions can be studied
separately.
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Invertibility only requires that the Jacobian J(A) ≠ 0
for all coefficients A. Nonetheless, a smaller J(A) leads
to a worse-conditioned inverse problem and hence more
uncertainty in the estimation as discussed in Section 4.
Take the binning detector depicted in Figure 2(c) as
an example, when Bin 1 and Bin 3 do not overlap, the
system is invertible for N = 3 (when imaging materials
with no K-edges). However, the overlap between bins
would result in a reduction in the Jacobian and hence
more uncertainty in the coefficient estimation,which has
also been observed in other works.36,37 One can employ
the CRLB to optimize bin boundaries for a given set of
AM coefficients A. As the CRLB varies with A, the opti-
mum bin boundaries depend on the prior distribution of
the objects. An optimum energy-weighting strategy that
is not object-dependent has been proposed by Wang
et al.38 Their strategy is to set the weights pm(E) same as
the attenuation basis functions fi(E). They have proved
that this measurement strategy provided a sufficient
statistic to the X-ray spectral flux. From Equation (24),
we can prove that this strategy is globally invert-
ible, because det[F(E)] det[P(E)] = {det[F(E)]}2 ≥ 0, for
all E.

Conventional DECT systems reconstruct the effective
atomic number (Ze) and the electron density (𝜌)39 from
two energy-weighted measurements. However, Ze and
𝜌 may not capture all of the information about mate-
rial composition measurable from attenuation-based X-
ray systems. Based on principal component analysis
(PCA), Bornefalk et al40 have suggested that the intrin-
sic dimensionality of the attenuation profiles of low-Z
materials in the XCOM data base is four. Midgley et al41

also showed similar degrees of freedom in the param-
eterization of the X-ray linear attenuation profiles. How-
ever, whether these intrinsic dimensions are accessible
or not is still up to debate.42,43 There is potential value in
collecting ME X-ray data, but the benefits may depend
on the task of the imaging system and the experimen-
tal setup.

We used a set of basis functions that describe pho-
toelectric, Compton scattering and Rayleigh scattering,
because we wanted to investigate whether the Rayleigh
coefficient is estimable or not. Rayleigh scattering has
often been ignored in DE imaging due to its small contri-
bution in the X-ray attenuation profile. Our results show
that the Rayleigh component, Ars, is solvable and the
uncertainty in its estimation is comparable to that of
the photoelectric coefficient. However, we did not specif-
ically study how important Ars is for the task of mate-
rial discrimination. Other basis functions that are based
on materials of interest (such as water and bone) or
on PCA40,44–46 can be used as well. As pointed out by
Alvarez et al,8 the choice of a particular basis set does
not affect the invertibility. The uncertainty in the esti-
mated attenuation profile should not be affected by the
choice of the basis set either.

We demonstrated a two-step reconstruction algorithm
that consists of an ML estimation of the AM coeffi-
cients and the FBP reconstruction. Many work have
been done in DECT and MECT reconstruction. Recon-
struction algorithms are currently available in three main
flavors: object-domain based,47,48 projection-domain
based,49,50 and one-step statistical algorithms51–55 that
estimate â(R) from the raw data directly. Our ML esti-
mation algorithm was designed for Poisson likelihood
and ideal ME X-ray transform where Equation (5) is
valid.When the Poisson likelihood model or the ideal for-
ward model are not accurate, the estimation algorithm
needs modification.

Our ML estimation algorithm is almost unbiased and
achieves the CRLB.The ML estimation is an established
paradigm for nonlinear estimation tasks. At high signal-
to-noise ratio (SNR), ML estimates are asymptotically
unbiased and efficient (achieves CRLB). At low SNR
(e.g., short exposure time), however, the ML estimates
tend to be skewed and the variance is often larger than
the Cramer–Rao bound.56 The reason why our estima-
tor is efficient is probably that our simulation was car-
ried out in the high SNR regime. In our experiment, the
smallest photon count collected in an energy bin is about
300 photons, which still has a relatively high SNR. To
analyze a realistic system, one need to first identify if
the system is operating at low SNR regime. If that is
the case, instead of using the Crámer–Rao bound to
characterize the variance of the ML estimates, one can
apply other measures such as 𝜒2

pdf−ML-isocontours57 to
describe the distribution of the ML estimates.

There are several limitations in our work. First, the
physical process considered by the mapping  : A → I
includes only the attenuation of the X-ray photons,which
follows Beer’s law, but not signals due to scattered radi-
ation or background radiation. Although scattered radi-
ation and background radiation can be significantly mit-
igated through antiscatter grids,58 those signals should
be characterized and accounted for, as they may affect
the invertibility of a realistic system.Second,effects that
limit detector performance, such as charge sharing,59,60

charge trapping,60,61 and pulse pileup,are ignored.Such
details should be considered in the system model when
the framework is applied to a specific imaging sys-
tem. For a given realistic detector response function, the
invertibility of the system can be studied by calculating
det[P(E)] numerically over the subspace Ω12…N. In this
case,det[P(E)] ≤ 0 (or ≥ 0) overΩ12…N may not be guar-
anteed; hence, the invertibility is not guaranteed. How-
ever,one can apply the invertibility framework in the opti-
mization of detector designs. Lastly, we assumed the
energy-weighting functions, including the source spec-
trum and the detector energy response functions, are
known exactly. In reality, one can measure the energy-
weighting functions experimentally62 within some uncer-
tainty.
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7 CONCLUSION

We have provided a sufficient condition for the global
invertibility of an ME X-ray transform for attenuation-
based X-ray imaging. The ME X-ray transform is
defined as the mapping from N (N ≥ 2) AM coefficients
to N energy-weighted noise-free measurements. The
invertibility of this transform depends greatly on the
weighting schemes used in the measurements. Con-
sidering scenes with no K-edge materials, we repre-
sented the X-ray attenuation profiles with N = 3 AM
coefficients and proved the global invertibility of the
transform for four commonly used weighting schemes.
The same framework can be used to examine the
invertibility of an arbitrary ME X-ray system, such
as a system with nonideal detectors, a system with
multiple source emission spectra, and scenes with
K-edge materials. This mathematical framework can
be applied broadly in the design of X-ray detectors
and systems.

We also considered Poisson noise in the measure-
ment data and presented the CRLB on the estimation
uncertainty. Furthermore, we presented an ML estima-
tion algorithm and applied the algorithm to estimate AM
coefficients for varying lengths of water and varying
lengths of iron. The results have shown that the coeffi-
cient corresponding to Rayleigh scattering is estimable.
Last but not least, we demonstrated the application
of the ML estimator in reconstruction. Two phantoms
imaged through a simulated fan-beam CT with ideal
three-energy discriminating PC detectors were recon-
structed. The reconstructed images match well with the
objects and are free of the “cupping artifacts” induced
by beam hardening.
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