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Abstract

Many methodologies are used to predict the genetic merit in animals and plants, but some

of them require priori assumptions that may increase the complexity of the model. Artificial

neural network (ANN) has advantage to not require priori assumptions about the relation-

ships between inputs and the output allowing great flexibility to handle different types of

complex non-additive effects, such as dominance and epistasis. Despite this advantage, the

biological interpretability of ANNs is still limited. The aim of this research was to estimate the

heritability and markers effects for two traits in Coffea canephora using an additive-domi-

nance architecture ANN and to compare it with genomic best linear unbiased prediction

(GBLUP). The data used consists of 51 clones of C. canephora varietal Conilon, 32 of varie-

tal group Robusta and 82 intervarietal hybrids. From this, 165 phenotyped individuals were

genotyped for 14,387 SNPs. Due to the high computational cost of ANNs, we used Bagging

decision tree to reduce the dimensionality of the data, selecting the markers that accumu-

lated 70% of the total importance. An ANN with three hidden layers was run, each varying

from 1 to 40 neurons summing 64,000 neural networks. The network architectures with the

best predictive ability were selected. The best architectures were composed by 4, 15, and

33 neurons in the first, second and third hidden layers, respectively, for yield, and by 13, 20,

and 24 neurons, respectively for rust resistance. The predictive ability was greater when

using ANN with three hidden layers than using one hidden layer and GBLUP, with 0.72 and

0.88 for yield and coffee leaf rust resistance, respectively. The concordance rate (CR) of the

10% larger markers effects among the methods varied between 10% and 13.8%, for addi-

tive effects and between 5.4% and 11.9% for dominance effects. The narrow-sense (h2
a) and

dominance-only (h2
d) heritability estimates were 0.25 and 0.06, respectively, for yield, and

0.67 and 0.03, respectively for rust resistance. The ANN was able to estimate the
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heritabilities from an additive-dominance genomic architectures and the ANN with three hid-

den layers obtained best predictive ability when compared with those obtained from GBLUP

and ANN with one hidden layer.

Introduction

The interest in semi- and non-parametric statistical methods for genome-enabled prediction is

increasing [1]. Methodologies based on machine learning, as Artificial Neural Networks

(ANN), has been successfully used to predict the genetic merit in animals [2, 3] and plants [4,

5]. ANN is a methodology inspired by the biological behavior of human brain. ANN comprises

layers divided into units called neurons. Each neuron’s output is expressed as the sum of inputs

to a neuron, regulating specific weights for the predictor variables through linear and nonlinear

activation functions [1, 6]. ANN have been applied for genomic prediction of complex traits in

some crops as maize, eucalypt [7], soybean [8] and wheat [9]. This approach does not require

making a priori assumptions about the relationships between inputs (SNP markers) and the

output (phenotypic observations). The non-priori assumptions allow for great flexibility to han-

dle different types of complex non-additive effects, such as dominance and epistasis [1, 10, 11].

Despite this advantage, reports about the biological interpretation from the marker effects

and genetic parameter (i.e., heritability) estimates are limited to the best of our knowledge.

Glória et al, [1] using simulated data, aimed to evaluate Bayesian regularized ANNs’ predictive

performance and exploit SNP effects and heritability estimates. Considering only additive

effects, the authors observed that based on the predictive ability and estimates of the heritabili-

ties, the best ANN presented similar results to those obtained by Ridge Regression BLUP

(RR_BLUP) and Bayesian Lasso (BLASSO).

For some species, for example, maize, eucalyptus, cotton, rice, pinus, and coffee [12–17],

where there is commercial interest in hybrids and heterosis, the contribution of dominance

presents high importance [16]. Coffee is globally one of the most important export crops and

is a part of the economy in more than 50 countries in Latin America, Africa, and Asia. Besides

the yield, traits associated with resistance to coffee rust are important in the selection in coffee,

since the coffee production can be reduced in the presence of this disease [18]. Therefore, the

identification of cultivars having resistance for diseases can improve the productivity of the

culture. Despite its relevance, the effective selection of new cultivars depends on the ability to

consider genomic models, which correctly represent complex traits with additive and domi-

nance effects. Therefore, methods considering dominance effects, different numbers of layers,

and neurons to exploit SNP effects and heritability can bring new insights for genomic selec-

tion in coffee.

Against this background, we aimed to exploit SNP effects and heritability from additive-

dominance genomic model by ANN of traits associated with the yield and coffee leaf rust resis-

tance, in Coffea cenephora. In addition, we predicted the individual genetic merits of the traits

(yield and coffee leaf rust resistance) using ANN, and compared the predictive ability obtained

for ANN and GBLUP for predicting genetic merit.

Material and methods

Phenotypic data

The used population consisted of 51 clones of C. canephora varietal group Conilon, 32 varietal

group Robusta and 82 intervarietal hybrids. These hybrids were originated from crosses
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between five Conilon genotypes (males) and five Robusta (females), obtained in a partial diallel

model [19]. The Conilon genetic material was obtained from the Capixaba Institute for

Research, Technical Assistance, and Rural Extension (INCAPER, Vitória, ES, Brazil). The

Robusta material was obtained from the Tropical Agronomic Research and Teaching Center

(CATIE, Cartago, Turrialba, Costa Rica). This population composes the breeding program of

the Agricultural Research Company of Minas Gerais (Epamig, Belo Horizonte, MG, Brazil) in

partnership with the Federal University of Viçosa (UFV, Viçosa, Minas Gerais, Brazil) and the

Brazilian Agricultural Research Company—Café (Embrapa Café, Oratório, Minas Gerais,

Brazil).

Individuals were phenotyped for two traits, coffee leaf rust resistance and yield, for three

years (2014 to 2016). Coffee leaf rust resistance (Hemileia vastatrix) was evaluated using a

5-point scale (1 = fully resistant, 5 = highly susceptible). The yield per coffee plant was evalu-

ated by harvesting all fruits present in a genotype and measuring the total volume of freshly

harvested coffee liters.

SNP genotyping

DNA samples of 165 young and fully expanded leaves coffee were genotyped using the meth-

odology described by Diniz et al. [20]. The concentration of DNA was verified in NanoDrop

2000, and its quality was evaluated in 1% agarose gel. The sample’s DNA concentration was

standardized and sent to Rapid Genomics (Florida, Orlando, USA) for identification of SNP

molecular markers. The data was genotyped using the Capture Seq methodologie [21], totaliz-

ing 14,387 markers.

Marker genotypes were coded according to the effects assumed. For additive effects, homo-

zygous markers containing only alleles with minor frequency, the value is 0. For heterozygous

markers, the value is 1, and for homozygous markers containing only alleles with major fre-

quency, the value is 2. For dominant codification, we used 0 for homozygous marker and 1 for

heterozygous marker.

Phenotypic data analysis

Prior to genomic analyses, the phenotypic data of both traits were independently adjusted for

systematic effects using Selegen REML/BLUP software [22] according to the following statisti-

cal model:

y ¼ Xuþ TcþWf þ Zmþ Qsþ Sbþ e ð1Þ

where y is the observed phenotype; μ is the effect of the overall mean in each evaluation year

(assumed as fixed effect) added to the general mean; c is the dominance effect of combination

between the parents Conilon and Robusta (assumed as random effect and distributed as

N � Is2
c ); f is the additive effect of combination of the parent Robusta (assumed as random

effect and distributed as N � As2
f ); m is the additive effect of combination of the parent Coni-

lon (assumed as random effect and distributed as N � As2
m); s is the effect of permanent envi-

ronment of individuals (assumed as random effect and distributed as N � Is2
s ); b is the effect

of permanent environment of blocks (assumed as random effect and distributed as N � Is2
b); e

is the residuals (assumed as random effect and distributed as N � Is2
e ); and X, T, W, Z, Q, and

S are the design matrices for the effects of μ, c, f, m, s, and, b, respectivaly. From this, adjusted

phenotypes (Y�) were calculated as the sum of the estimates of random effects c, f, and m, and

the residual, and used for subsequent genomic analyses that were carried out in R [23].
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Genomic analyses

Genomic BLUP (GBLUP). The additive dominance model for the REML/GBLUP

(restricted maximum likelihood/genomic linear unbiased predictor) method is given by:

Y� ¼ Xbþ Zμa þ Zμd þ e; ð2Þ

where Y� is the vector of adjusted phenotypic observations obtained in Eq (1), b is the vector

of fixed effects, μa is the vector of random of additive marker effects, μd is the vector of random

of dominance marker effects, e refers to the vector of random errors; and X, Z, are the design

matrix. The variance structure is given by:
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where Ga and Gd are the genomic relationship matrices for the additive and dominance effects,

respectively, and I is the identity matrix.

An equivalent model [24] at the marker level is given by

Y� ¼ Xbþ ZUma þ ZSmd þ e; ð3Þ

where: μa = Uma; Var(Uma) = UIs2
ma

U’ = UU’s2
ma

;μd = Smd; Var(Smd) = SIs2
md

S’ = SS’s2
ma

; X is

the design matrix for the vector b and Z is the design matrix for the vectors additive (ma) and

dominance (md) marker genetic effects. The variance components associated to these effects

are s2
ma

and s2
md

, respectively. The quantity ma in one locus is the allele substitution effect and

is given by ma = αi = ai + (qi–pi)di, where pi and qi are allelic frequencies and ai and di are the

genotypic values for one homozygote and heterozygote, respectively, at locus i. In turn, the

quantity md can be directly defined as mdi = di. The matrices U and S are defined based on the

values 0, 1 and 2 for the number of one of the alleles at the ith marker locus in a diploid individ-

ual. The correct parameterization of U and S is as follows, according to the marker genotypes

at a locus m.

U ¼

MM : 2 � 2p ! 2q

Mm : 1 � 2p ! q � p

mm : 0 � 2p ! � 2p

8
>><

>>:

S ¼

MM : 0 ! � 2q2

Mm : 1 ! 2pq

mm : 0! � 2p2

8
>><

>>:

The covariance matrix for the additive effects is given by Gas
2
a = Var(Uma) = UU 0s2

ma
, which

leads to: Ga ¼ UU 0=ðs2
ma
= s2

aÞ ¼ UU 0=
Xn

i¼1
½2pið1 � piÞ�, as s2

a =
Xn

i¼1
½2pið1 � piÞ�s

2

ma
. The

covariance matrix for the dominance effects is given by Gd = VarðSmdÞ SS
0s2

md
. Thus, Gds

2
d ¼

SS0=ðs2
md
= s2

dÞ ¼ SS0=
Xn

i¼1
½2pið1 � piÞ� as s2

d ¼
Xn

i¼1
½2pið1 � piÞ�s

2

md
. The additive (i.e., nar-

row-sense) heritability was calculated as ĥ2
a
¼ ŝ2

a
=ðŝ2

a
þ ŝ2

d þ ŝ
2
eÞ and the dominant heritabil-

ity as ĥ2
d ¼ ŝ

2
d=ðŝ

2
a
þ ŝ2

d þ ŝ
2
eÞ. The additive-dominance GBLUP method was fitted using

GenomicLand software [25] via REML through mixed model equations.
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Artificial neural network. The ANN is composed by a combination of neurons in a single

or multiple layers. A vector of real values enters as input in each neuron, with the values 0, 1

and 2, which are computed the weighted average of these values followed by a transformation,

then the output of neurons can be directly fed as input into other neurons in the next layer

[26].

One of the most common families of architectures for connecting neurons into a network

is the feed-forward, which can have multiple layers [27]. This architecture is composed by an

input layer (IL), j = 1,2, . . ., J hidden layers (HL), and an output layer (OL). The IL is composed

by nil neurons corresponding to the number of markers, the HL are composed by n1, n2, . . ., nj

neurons respectively, and the OL is composed by nol neurons representing the output values of

the application. In this architecture every neuron of the layer j is connected only to the neurons

of the layer j +1 producing matrixes of weights Wi, where the output is generated by a linear

combination of the last HL.

As we can see in Fig 1, the output of the neurons in the first HL (HL1) is given by

a½1�i ¼ f
XP

t¼1
w½1�1t xti þ b1

� �

, in the second HL (HL2), the outputs of the neurons is given by a

linear combination of the outputs from HL1: a½2�i ¼ g
Xn1

t¼1
w½2�1t a½1�t þ b2

� �
. The third HL

(HL3) output is obtained using the same thoughts we use to obtain those from HL2. Finally,

the outputs from the OL is obtained by yi ¼ zð
Xn3

t¼1
w½4�1t a½3�t þ b4Þ ¼ yi ¼ zð

Xn3

t¼1
w½4�1t h

ð
Xn2

t¼1
w½3�1t a½2�t þ b3Þ þ b4Þ ¼ zð

Xn3

t¼1
w½4�1t hð

Xn2

t¼1
w½3�1t gð

Xn1

t¼1
w½2�1t a½1�t þ b2Þ þ b3Þ þ b4Þ

¼ zð
Xn3

t¼1
w½4�1t hð

Xn2

t¼1
w½3�1t gð

Xn1

t¼1
w½2�1t f ð

XP

t¼1
w½1�1t xti þ b1Þ þ b2Þ þ b3Þ þ b4Þ.

Once an ANN demands high computational processing, it is necessary the use of methodol-

ogies to reduce the dimensionality of the data [28]. The reduction of the markers was made by

Bagging decision tree. This procedure is an ensemble methodology consisting of training

many decision trees built using a random part of the same original data. The variables that, on

average, reduces more the residual sum of squares (RSS) are classified as the most important

variables. We selected the variables that accumulated 70% of the total importance and used

them in the ANN. The network structure considers 1,302 markers as input for resistance to

coffee leaf and 1,086 markers as inputs for yield, three hidden layers, and the output that

Fig 1. Multilayer perceptron architecture. Feed forward neural network architecture with three hidden layers.

https://doi.org/10.1371/journal.pone.0262055.g001
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predicts traits. The ANNs architecture uses the backpropagation as a learning algorithm [29]

and the logistic function as activation function. The three hidden layers varied from 1 to 40

neurons, and the architecture was chosen according to the best predictive ability.

To estimate the heritability and SNP effects, the relative importance (RI) of markers were

obtained. Olden et al. [30] proposed a methodology that uses all the connection weights even

when the ANN has multiple hidden layers to obtain the RI. To calculate the vector of RI of all

markers, the connection weights matrices were multiplied. Considering W[i = 1] as the matrix

of estimated weights connecting the (j—1)th layer to the jth layer where j is the number of layers

of the ANN, the RI is obtained multiplying W[j] �W[2] � . . .W[j-1]. To estimate the additive and

dominant SNP effect vectors (βa and βd) using RI, a linear approximation adapted from [31]

was used. The estimators are given by β̂ ¼ ZM0ðMZM0Þ
� 1ŷ changing only the codification of

the matrix M to obtain the additive or dominant effect, Z is a diagonal matrix composed by the

RI values, the matrix M is the matrix of markers and ŷ is the genomic estimated breeding val-

ues (GEBV) from ANN.

To estimate heritabilities, the additive and dominant variance ðs2
a
and s2

dÞ were esti-

mated using β̂a and β̂d in the following equations: ŝ2
a
¼
XP

j¼1
2pjð1 � pjÞb̂

2
aj

and

ŝ2
d ¼

XP

j¼1
ð2pjð1 � pjÞÞ

2
b̂2

dj
. The residual variance ðs2

eÞ was estimated through the differ-

ence of the real phenotype and GEBV, thus ŝ2
e ¼ VarðêÞ, being ê ¼ y � ŷ.

Results

The input layer (IL) was composed of a genotype matrix X with 165 rows (plants) and 1302

columns (markers) for coffee leaf rust resistance. For yield, the matrix was made up of 165

rows and 1086 markers. The markers were selected using bagging. After reducing dimension-

ality, 64,000 neural networks were performed, with each hidden layer ranging from 1 to 40

neurons, and the ANN was chosen based on the best predictive ability. For yield, the best ANN

has 4, 15, and 33 neurons for the first, second, and third hidden layers, respectively. For coffee

leaf rust resistance, the best ANN has 13, 20, and 24 neurons for the first, second, and third

hidden layers, respectively. In Fig 2, we can observe the map of each trait with the effects (in

absolute terms) of each marker estimated by the ANNs cited above.

The predictive ability mean was calculated (Fig 3) by fixing the number of neurons in one

HL and varying the number of neurons in the other. The data showed that in Fig 3, the predic-

tive ability is more affected when we change the number of neurons in the first hidden layer.

In the second and the third hidden layers, the average predictive ability does not change signif-

icantly as we change the number of neurons.

The chosen ANNs were compared with GBLUP and with the simplest ANN containing one

hidden layer with one neuron and the logistic function as activation function according to pre-

dictive ability. The most complex ANNs showed a better predictive ability, 0.72 and 0.88 for

yield and coffee leaf rust resistance, respectively, indicating that the traits are complex. The

ANNs with a single HL with one neuron showed the worse predictive ability, 0.18 and 0.57 for

yield and coffee leaf rust resistance, respectively (Fig 4). The ANNs has the ability to capture

non-additive effects as dominance and espistasis [1, 10, 11]. It occurs because the interactions

between the markers are implicit in the neuron´s outputs.

For both traits, the additive and dominance heritabilities captured by ANN with 3HL

(ANN/3HL) were similar to those obtained by GBLUP (Table 1). The ANN with 1HL (ANN/

1HL) showed only additive heritability from coffee leaf rust resistance was similar to the other

methodologies.
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The marker effects were estimated using linear approximation [31] based on the method of

Olden et al. [30] for ANN. For GBLUP, the marker effects were estimated through a fitted

regression model. The absolute values of marker effects from the yield trait are plotted in Fig 5.

For this trait, ANN/3HL obtained bigger values than other methodologies evaluated.

The absolute values of marker effects from the coffee leaf rust resistance trait are in Fig 6.

For this trait, ANN/1HL obtained bigger values than other methodologies evaluated. In both

traits, there is not a strong pattern when comparing the important markers among the

methodologies.

Looking at the top 10% larger marker effects in each methodology (Table 2), the concor-

dance rate (CR) among additive marker effects was bigger than dominance marker effects. For

the yield trait, the CR between ANN/1HL and GBLUP for additive marker effects was bigger

(0.14), and between GBLUP and ANN/1HL for dominance, marker effects were the lowest

(0.06). For rust resistance, the biggest CR was between ANN/1HL and GBLUP for the additive

marker (0.12), the lowest CR was between GBLUP and ANN/1HL for dominance marker

effects (0.05).

Discussion

The use of ANN for predicting the individual genetic merit of plants considering yield and cof-

fee leaf rust resistance in Coffea canephora was efficient. The ANN/3HL presented higher val-

ues of predictive ability compared with those obtained by GBLUP, a result also obtained by

Glória et al. [1], Waldmann [32] and Maldonado [7]. Indeed, the better result was expected

Fig 2. Manhattan plot. A, Manhattan plot showing the effects (in absolute terms) of each marker for coffee leaf rust resistance according to the chromosome

position. B, Manhattan plot showing the effects (in absolute terms) of each marker for yield according to the chromosome position.

https://doi.org/10.1371/journal.pone.0262055.g002
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since the ANN allows to estimate the functional relationships between the variables using non-

linear functions [33]. Thus, the ANN allows great flexibility to handle different types of com-

plex non-additive effects such as dominance and epistasis [34]. The interactions between

inputs (SNPs genotypes) and between inputs and the output (phenotypic observations) are

naturally modelling from the data. In other words, differently than the traditional methods

proposed for genomic selection [11, 35], ANN does not require a priori assumptions about the

model relationships allowing to infer the trait architecture directly from the data set [1, 11, 36].

The heritability estimated by ANN/3HL for yield (h2
a = 0.25; h2

d = 0.06) and coffee leaf rust

resistance (h2
a = 0.67; h2

d = 0.31) were similar to those obtained by GBLUP (yield - h2
a = 0.26; h2

d

= 0.05; coffee leaf rust resistance - h2
a = 0.55; h2

d = 0.22). In addition, these estimates were con-

sistent with those reported in the literature. The heritability estimate for yield was within the

range of estimates for coffee (0.15–0.79 [37]). For coffee leaf rust resistance, the estimate was

close to that reported by Alkimin et al. [37] (0.37).

Glória et al [1] considering only additive effects showed that it is possible to obtain esti-

mates from heritabilities through fitting an ANN composes by one layer, one neuron, and

identity activation function. However, for some species, for example maize [38, 39], eucalyptus

[40, 41], cotton [42, 43], rice [44, 45], pinus [16, 46] and coffee [47, 48], where there is com-

mercial interest in hybrids, the contribution of dominance presents importance. In fact, an

ANN composed by one layer, one neuron, and identity activation function can seem like

Fig 3. Average predictive capacity of the neural networks according to the numbers of neurons in each hidden layers. A, B, and C are the average predictive capacity

when varying the number of neurons in the first, second, and third hidden layers, respectively, for coffee leaf rust resistance in coffee Canephora. D, E, and F are the

predictive capacity overage when varying the number of neurons in the first, second, and third hidden layers, respectively, for yield in coffee Canephora.

https://doi.org/10.1371/journal.pone.0262055.g003
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multiple regression. Differently from [1], the ANN/3HL fitted in this work presents more than

one hidden layer, and the activation function is not the identity. Nevertheless, the ANN/3HL

was able to obtain heritability estimates similar to those obtained by GBLUP. Therefore,

besides increasing the predictive ability, the ANN/3HL allows to access the marker effects and

consequently the heritability estimate.

A different pattern in marker effects was obtained in the two traits (Figs 5 and 6). A bigger

dominance markers effects were observed for yield when compared with the additive marker

effect. In comparison, the additive marker effects were bigger than dominance for coffee leaf

rust resistance. This can be explained due yield be a polygenic trait and coffee leaf rust resis-

tance oligogenic. According to Cruz [49], when the trait is polygenic, and there is none or

Fig 4. Estimated predictive ability. Yield’s estimated predictive ability and coffee leaf rust resistance’s estimated predictive ability according to artificial neural

network with 1 and 3 hidden layers and Genomic BLUP (GBLUP).

https://doi.org/10.1371/journal.pone.0262055.g004

Table 1. Estimates of additive and dominance heritabilities.

Yield Rust resistance

ANN/1HL ANN/3HL GBLUP ANN/1HL ANN/3HL GBLUP

h2
a 0.07 0.25 0.26 0.55 0.67 0.55

h2
d 0.02 0.06 0.05 0.45 0.30 0.22

ANN/1HL, an artificial neural network with one hidden layers; ANN/3HL, an artificial neural network with three hidden layer; GBLUP, genomic best linear unbiased

predictor; h2
a, additive heritability; h2

d , dominance heritability.

https://doi.org/10.1371/journal.pone.0262055.t001
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fewer dominance, the phenotype distribution becomes symmetric and starts to obtain asym-

metry as the dominance starts to increase. Observing the histogram of both traits (S1 Fig), we

see that yield has symmetry distribution and coffee leaf rust resistance an asymmetry

distribution.

An issue related to using an ANN approach is the computational cost [50]. Once it is neces-

sary to choose the best network topology, the ANN fitting requires a high computational cost.

The ANN/3HL was 409.36 and 1331.49 times slower than GBLUP for yield and coffee leaf rust

resistance, respectively. Some approaches can be used to minimize the computational cost. For

example, it is possible to reduce the number of inputs of an ANN using some reduction

dimensionality methods [51]. Other approaches to select markers used in this work are based

on machine learning [52]. Sousa et al. [53] used bagging to select the most important markers.

However, since, in general, the number of markers is huge in genomic selection problems, the

use of a methodology to reduce the computational cost cannot be effective.

Conclusions

The Artificial Neural Network was able to access the marker effects and heritability estimates

from additive-dominance genomic architectures by neural networks in Coffea canephora. In

addition, considering the estimates of predictive ability, ANN/3HL presented better results

compared with those obtained from GBLUP and ANN/1HL.

Fig 5. Additive and dominance markers effects for yield in coffee canephora. 1086 markers effects for yield in coffee Canephora. A, B and C are the additive markers

effects estimated by a neural network with three hidden layers, a neural network with one hidden layer, and GBLUP, respectively. D, E, and F are the dominance

markers effects estimated by a neural network with three hidden layers, a neural network with one hidden layer, and GBLUP, respectively.

https://doi.org/10.1371/journal.pone.0262055.g005
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S1 Fig. Histogram. Histogram of yield and rust resistance.
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Fig 6. Additive and dominance markers effects for coffee leaf rust resistance in coffee canephora. 1302 markers effects for coffee leaf rust resistance in coffee

Canephora. A, B and C are the additive markers effects estimated by neural network with three hidden layers, neural network with one hidden layer, and GBLUP,

respectively. D, E, and F are the dominance markers effects estimated by neural network with three hidden layers, neural network with one hidden layer, and GBLUP,

respectively.

https://doi.org/10.1371/journal.pone.0262055.g006

Table 2. Concordance of top 10% bigger marker effect among methodologies, in upper triangular matrix refers to additive marker effects, in lower triangular

matrix refers to dominance marker effects.

Methodologies Yield Rust Resistance

ANN/3HL ANN/1HL GBLUP ANN/3HL ANN/1HL GBLUP

ANN/3HL 109 12 13 130 13 15

ANN/1HL 13 109 15 14 130 16

GBLUP 8 6 109 11 7 130

ANN/3HL, Artificial neural network with three hidden layers; ANN/1HL, Artificial neural network with one hidden layer; GBLUP, Genomic Best Linear Unbiased

Prediction.

https://doi.org/10.1371/journal.pone.0262055.t002
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1. Glória LS, Cruz CD, Vieira RAM, de Resende MDV, Lopes PS, de Siqueira OHGBD, et al. Accessing

marker effects and heritability estimates from genome prediction by Bayesian regularized neural net-

works. Livest Sci. 2016; 191: 91–96. https://doi.org/10.1016/j.livsci.2016.07.015

2. Ehret A, Hochstuhl D, Gianola D, Thaller G. Application of neural networks with back-propagation to

genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle. Genet

Sel Evol. 2015; 47: 22. https://doi.org/10.1186/s12711-015-0097-5 PMID: 25886037

3. Abdollahi-Arpanahi R, Gianola D, Peñagaricano F. Deep learning versus parametric and ensemble

methods for genomic prediction of complex phenotypes. Genet Sel Evol. 2020; 52: 1–15. https://doi.

org/10.1186/s12711-019-0522-2 PMID: 31941436
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