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The purpose of this study was to determine the effect of liver
glycogen loading on net hepatic glycogen synthesis during
hyperinsulinemia or hepatic portal vein glucose infusion in vivo.
Liver glycogen levels were supercompensated (SCGly) in two
groups (using intraportal fructose infusion) but not in two others
(Gly) during hyperglycemic-normoinsulinemia. Following a 2-h
control period during which fructose infusion was stopped, there
was a 2-h experimental period in which the response to
hyperglycemia plus either 43 basal insulin (INS) or portal vein
glucose infusion (PoG) was measured. Increased hepatic glyco-
gen reduced the percent of glucose taken up by the liver that was
deposited in glycogen (746 3 vs. 536 5% in Gly+INS and SCGly+
INS, respectively, and 726 3 vs. 506 6% in Gly+PoG and SCGly+
PoG, respectively). The reduction in liver glycogen synthesis in
SCGly+INS was accompanied by a decrease in both insulin sig-
naling and an increase in AMPK activation, whereas only the
latter was observed in SCGly+PoG. These data indicate that liver
glycogen loading impairs glycogen synthesis regardless of the
signal used to stimulate it. Diabetes 62:96–101, 2013

I
n humans, one-third of the glucose ingested during
an oral challenge is taken up by the liver, whereas
the remaining two-thirds escape the splanchnic bed
to be metabolized elsewhere (1–3). This process is

reduced in humans with type 2 diabetes (2,4,5), thereby
highlighting the importance of understanding how this
complex process is regulated in the normal state and why
it becomes dysfunctional in the diseased state.

When hyperglycemia is accompanied by hyperinsulinemia
(6) and the presence of a negative arterial-portal vein glu-
cose gradient [also called the portal glucose signal (7)], both
net hepatic glucose uptake (NHGU) and glycogen synthesis
are stimulated to a maximal physiological level. Further-
more, both insulin’s and the portal glucose signal’s ability to
stimulate NHGU and glycogen synthesis are additive (6).
Although the mechanisms by which both insulin and the
portal glucose signal stimulate the uptake of glucose and
glycogen synthesis in the liver are not fully understood, both
are thought to involve the translocation of glucokinase from
the nucleus to the cytosol, where glucose phosphorylation
occurs (8), as well as the reciprocal coordination of the

activities of glycogen synthase (GS) and glycogen phos-
phorylase (GP).

Drugs are being developed to reduce postprandial glu-
cose excursions by stimulating hepatic glucose uptake and
glycogen deposition. However, questions remain about the
possible deleterious effect that loading the liver with gly-
cogen could have on hepatic glucose fluxes during the
postprandial state. In a previous study (9) when hepatic
glycogen was increased from 64 to 100 mg/g, hepatic gly-
cogen synthesis was reduced in response to hyperglyce-
mic-hyperinsulinemia plus the portal glucose signal. This
reduction in glycogen synthesis was accompanied by re-
duced insulin signaling, an increase in AMPK phosphory-
lation, and subsequent dysregulation of the activity of both
GS and GP toward states discouraging further glycogen
accretion. Were the impairment in glycogen synthesis
a function of reduced insulin signaling, the glycogen syn-
thetic rate should only be reduced in response to hyper-
insulinemia and remain unchanged in response to the
portal glucose signal. In contrast, if the increase in AMPK
activation causes the reduction in glycogen synthesis,
then the glycogen synthetic rate seen in response to
either hyperinsulinemia or portal vein glucose infusion
should be reduced. Therefore, the purpose of the current
study was to determine the effect of hepatic glycogen
supercompensation on insulin- or portal glucose signal-
stimulated increases in hepatic glycogen synthesis.

RESEARCH DESIGN AND METHODS

Animals and surgical procedures. Studies were carried out on 18-h fasted
dogs with a mean weight of 22.66 0.4 kg. The animals were housed in a facility
that met Association for Assessment and Accreditation of Laboratory Animal
Care International guidelines, and the protocol was approved by Vanderbilt
University’s Institutional Animal Care and Use Committee.

Two weeks before being studied, each dog underwent a laparotomy under
general anesthesia to permit placement of catheters for intraportal infusions
and blood sampling across the liver (6). Ultrasonic flow probes (Transonic
Systems, Ithaca, NY) were placed around the hepatic portal vein and the he-
patic artery to measure blood flow.
Experimental design. Experiments consisted of a 4-h liver glycogen loading
period (2360 to 2120 min), a 2-h control period (2120–0 min), and a 2-h
experimental period (0–120 min) and were initiated by the infusion of so-
matostatin (0.8 mg/kg/min; Bachem, Torrance, CA) into a peripheral vein to
disable the endocrine pancreas. This was accompanied by the intraportal re-
placement of both insulin (0.3 mU/kg/min; Eli Lilly & Co., Indianapolis, IN) and
glucagon (0.55 ng/kg/min; Novo Nordisk, Bagsvaerd, Denmark) at basal rates.
At the same time, blood glucose was doubled by infusing 50% dextrose into
a peripheral vein and either saline (Gly; n = 17) or fructose (1.0 mg/kg/min;
SCGly; n = 17) into the hepatic portal vein, the latter to stimulate hepatic
glycogen deposition. The glycogen-loading period was followed by a 2-h hy-
perglycemic control period during which fructose infusion was stopped but
basal hormone levels were maintained. A 14C-glucose infusion was begun at
290 min to assess hepatic glucose oxidation. During the 2-h experimental
period (0–120 min), seven of the animals in the SAL group (Gly+INS) and eight
animals in the SCGly group (SCGly+INS) received an intraportal infusion of
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insulin that was four times (1.2 mU/kg/min) basal. Another eight animals in the
SAL group (Gly+PoG) and seven animals in the SCGly group (SCGly+PoG)
received an intraportal infusion of 20% dextrose at a rate of 4.0 mg/kg/min.
Two animals from each of the Gly and SCGly groups were used for control
studies to assess basal molecular biology. In these animals, hyperglycemia was
maintained in the presence of basal insulin and glucagon until 120 min. The
only measured parameter that differed between these animals was liver gly-
cogen content (Fig. 4A), so data were combined to provide values for the time-
control group (CON; n = 4). At the conclusion of the study, all animals were
killed with pentobarbital. Liver biopsies were stored at 280°C. The processing
and analysis of blood samples and tissue analyses were performed as de-
scribed previously (9).
Calculations and data analysis.Net hepatic substrate balance and sinusoidal
hormone levels were calculated as described earlier (10–12). Net hepatic
glycogen synthesis and hepatic glucose oxidation were also measured as
previously described (9), as were glucose-6-phosphate (G6P) content (13) and
GS and GP activities (14,15).
Statistical analysis. All data are presented as mean 6 SEM. Data were an-
alyzed using repeated-measures ANOVA. Post hoc comparisons were made as
appropriate, and statistical significance was P , 0.05.

RESULTS

In vivo metabolic data. During both the control and ex-
perimental periods, the arterial blood glucose level and the
glucose load to the liver were not different among groups
(Fig. 1). At the outset of the experimental period (i.e., min

0), the hepatic sinusoidal insulin concentration was raised
fourfold in the Gly+INS and SCGly+INS groups and
maintained at a basal value in Gly+PoG and SCGly+PoG
(Fig. 1C). In all four groups, the hepatic sinusoidal gluca-
gon levels remained basal throughout the study (Fig. 1D).
NHGU was modest during the final 30 min of the control
period in all groups (Fig. 2A) and increased along with net
glycogen synthesis in all groups over the 2-h test period
(Fig. 2B). Nevertheless, the area under the curve for gly-
cogen synthesis over the final hour of the experimental
period was lower in SCGly+INS and SCGly+PoG than in
their respective saline-infused groups (P , 0.05). The re-
duction in net glycogen synthesis was primarily accounted
for by increased hepatic lactate output (Fig. 2C; P , 0.05).
When expressed as a percentage of NHGU, glycogen syn-
thesis was reduced in both SCGly groups compared with
their respective saline-infused controls, whereas lactate
output was increased (Fig. 3; P , 0.05).
Hepatic tissue data. Large differences in hepatic glyco-
gen existed between the Gly and SCGly groups at the end
of the experimental period (Fig. 4A). Compared with CON,
a rise in insulin increased the GS activity ratio nearly
threefold (Fig. 4B), an effect that was completely sup-
pressed in the presence of glycogen loading. In response to

FIG. 1. Arterial blood glucose (A), glucose load to the liver (B), hepatic sinusoidal insulin (C), and hepatic sinusoidal glucagon (D) prior to and
during the 120-min experimental period. No differences were detected among groups at any time point (P > 0.05). *P < 0.05 in both INS groups
compared with both PoG groups.
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intraportal glucose infusion, the GS activity ratio in Gly
+PoG remained at a value not different from that in CON.
However, the GS activity ratio was further suppressed in
the glycogen-loaded liver (P , 0.05). GP activity was
suppressed by 56% compared with CON in response to
hyperinsulinemia, an effect that was completely blocked
by liver glycogen loading (Fig. 4C; P , 0.05). Intraportal
glucose infusion had no effect on GP activity, and glycogen
loading also failed to alter it. Hyperinsulinemia doubled
Ser473 Akt phosphorylation in Gly+INS compared with
CON (Fig. 4D; P , 0.05). However, similar to its effect on
GS activity, glycogen loading reduced phospho-Akt to
a level similar to that seen in CON. In response to intra-
portal glucose infusion, hepatic Akt phosphorylation did
not increase significantly and thus was not diminished by
glycogen loading. Hepatic AMPK Thr172 phosphorylation
was not increased above CON in Gly+INS or Gly+PoG.
However, it was increased in both SCGly+INS and SCGly+
PoG compared with their respective saline groups (Fig. 4E;
P , 0.05). The increase in AMPK phosphorylation oc-
curred in spite of similar AMP, ADP, and ATP levels in all
groups (data not shown). Portal glucose infusion was as-
sociated with increased hepatic G6P levels, whereas
hyperinsulinemia was not. However, glycogen loading

increased G6P levels in both SCGly groups compared with
their respective control groups (Fig. 4F; P , 0.05).

DISCUSSION

In humans with type 2 diabetes, liver glucose uptake and
glycogen synthesis during the postprandial state are re-
duced compared with normal individuals, thereby con-
tributing to glucose intolerance (2,4,5). Hepatic glucose
uptake in response to a meal is triggered by three primary
stimuli: 1) an increase in the glucose load to the liver,
2) hyperinsulinemia, and 3) the portal glucose signal
(6,16,17). In a previous study (9), we showed that during
hyperglycemic-hyperinsulinemia plus the portal glucose
signal, increasing the hepatic glycogen level from 62 to 100
mg/g reduced the proportion of glucose taken up by the
liver that was incorporated into glycogen from 79 to 55%.
However, it remains unclear which signal (i.e., insulin or
portal glucose delivery) was impaired.

At the end of the hyperglycemic control period (0 min),
the percent of glucose taken up by the liver that was de-
posited in glycogen was 44 and 36% in the Gly and SCGly
groups, respectively. In Gly, this was increased to 74% by
insulin and 72% by portal glucose infusion, with an off-
setting decrease in lactate release. On the contrary, when

FIG. 2. NHGU (A), net glycogen synthesis (B), net hepatic lactate output (NHLO) (C), and hepatic glucose oxidation (D) during the experimental
period.
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liver glycogen was supercompensated (SCGly), the per-
cent of extracted glucose that was deposited in glycogen
was only 53 and 50% during hyperinsulinemia or portal
glucose infusion, respectively. Thus, regardless of the
signal, the liver’s ability to store incoming glucose as gly-
cogen was reduced by glycogen loading.

In the absence of liver glycogen loading, portal glucose
infusion (Gly+PoG) caused a rise in NHGU and glycogen
synthesis despite no change in the activity ratios of GS
or GP and no change in Akt or AMPK phosphorylation.
However, the ability of intraportally derived glucose to
promote its own incorporation into glycogen by a push
mechanism led to a twofold increase in G6P content,
a metabolite that allosterically activates and inhibits the
activities of GS and GP, respectively (18–21). Liver glyco-
gen loading (SCGly+PoG) caused an increase in AMPK
phosphorylation without lowering Akt phosphorylation. In
turn, the GS activity ratio was significantly reduced in the
absence of a change in GP activity. These data suggest that
the rise in AMPK activity most likely caused the reduction
in GS activity due to its ability to phosphorylate and in-
activate the enzyme (22). In contrast, the rise in AMPK had
no apparent effect on the activity of GP, a finding that is
consistent with previous data that the AMPK activator
AICAR does not reduce GP activity in vivo (23,24). The
G6P content doubled as a result of the reduction in net
glycogen synthesis in SCGly+PoG. However, despite this
increase, glycogen synthesis remained impaired, suggest-
ing a compromised ability of G6P to allosterically regulate
GS and/or GP activity (18).

In response to hyperinsulinemia (Gly+INS), both NHGU
and glycogen synthesis rose to levels seen in response to

the portal glucose signal. As expected, the rise in insulin
led to a rise and fall in the activity ratios of GS and GP,
respectively. In turn, liver G6P content remained low due
to the pull mechanism generated in response to the
changes in glycogenic enzyme activity. However, in re-
sponse to glycogen loading, AMPK activation rose and
insulin signaling was completely ablated, thereby leading
to GS and GP activity ratios similar to those seen in the
basal, unstimulated state. Because the percent reduction
in GS activity in response to glycogen loading was similar
in both SCGly groups, it further supports the notion that
the increase in AMPK activity was responsible (22). It is
alternatively possible that the increase in AMPK activity
reduced GS activity by impairing insulin signaling, as
AICAR has been shown to have this effect in muscle (25).
However, the presence of a reduction in GS activity in
SCGly+PoG despite the absence of a reduction in insulin
signaling argues against this possibility.

In addition to the reduction in GS activity ratio seen
in response to hyperinsulinemia as a result of glycogen
loading, GP activity was also increased. Whereas hyper-
insulinemia clearly reduced GP activity in Gly+INS, this
effect was completely absent in the glycogen-loaded liver
as GP activity in SCGly+INS was not different from CON
or either PoG group in which insulin levels remained basal.
Because there was no change in GP activity in either PoG
group, even with the increase in AMPK activation in SCGly+
PoG, we conclude that the reduction in insulin signaling
in SCGly+INS was responsible for the increase in GP ac-
tivity seen with liver glycogen loading. This conclusion is
supported by previous research indicating that GP activity
is not regulated by AMPK (23,24). As was the case during

FIG. 3. The disposition of glucose taken up by the liver in Gly and SCGly groups during the final 30 min of the hyperglycemic control period
(baseline), the final hour of the experimental period during hyperinsulinemia (INS), and portal vein glucose infusion (PoG). NHGU during the
baseline period averaged 2.0 6 0.3 mg/kg/min in both the Gly and SCGly groups (P> 0.05). During the final hour of the experimental period, NHGU
averaged 3.0 6 0.3 and 2.8 6 0.6 mg/kg/min in Gly+INS and SCGly+INS, respectively (P > 0.05), and 3.5 6 0.4 and 3.0 6 0.4 mg/kg/min in Gly+PoG
and SCGly+PoG, respectively (P > 0.05). *P < 0.05 for net hepatic glycogen synthesis and net hepatic lactate output in SCGly+INS compared with
Gly+INS; #P< 0.05 for net hepatic glycogen synthesis, net hepatic lactate output, and hepatic glucose oxidation in SCGly+PoG compared with Gly+
PoG.
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portal glucose infusion, glycogen loading led to a doubling
of hepatic G6P content to a level similar to that seen in
response to portal glucose infusion in the nonloaded liver.
Despite this increase in G6P, liver glycogen synthesis
remained compromised, which further supports our con-
clusion that glycogen loading impairs the ability of G6P to
regulate GS and/or GP activity.

In summary, our data show that acute hepatic glycogen
loading equipotently reduced net glycogen synthesis by the
liver during hyperinsulinemia or portal glucose infusion.
Despite this similarity, the manner in which excessive
glycogen accretion impairs glycogen synthesis in response
to either signal appears to be different. On the one hand,
glycogen loading likely reduces insulin-stimulated glyco-
gen synthesis by AMPK-mediated reductions in GS activity
and by increased GP activity from impaired insulin sig-
naling. On the other hand, portal glucose signal-induced
glycogen synthesis appears to be reduced by AMPK-
mediated reductions in GS activity and a compromised
ability of G6P to allosterically regulate the activities of GS
and/or GP. Thus, as treatments are developed to treat
glucose intolerance and type 2 diabetes by increasing he-
patic glucose uptake, care should be taken not to overfill
the hepatic glycogen pool due to its deleterious effects on
hepatic glucose metabolism.
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