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Abstract
There is an enormous amount of information encoded in each genome – enough to create living,
responsive and adaptive organisms. Raw sequence data alone is not enough to understand function,
mechanisms or interactions. Changes in a single base pair can lead to disease, such as sickle-cell
anemia, while some large megabase deletions have no apparent phenotypic effect. Genomic
features are varied in their data types and annotation of these features is spread across multiple
databases. Herein, we develop a method to automate exploration of genomes by iteratively
exploring sequence data for correlations and building upon them. First, to integrate and compare
different annotation sources, a sequence matrix (SM) is developed to contain position-dependant
information. Second, a classification tree is developed for matrix row types, specifying how each
data type is to be treated with respect to other data types for analysis purposes. Third, correlative
analyses are developed to analyze features of each matrix row in terms of the other rows, guided
by the classification tree as to which analyses are appropriate. A prototype was developed and
successful in detecting coinciding genomic features among genes, exons, repetitive elements and
CpG islands.

1. Introduction
As the amount of data gathered and reported in biology
and medicine increases exponentially, integration of het-
erogeneous sources of data becomes an increasingly
important part of bioinformatics [1-3]. The number of
biomedical databases has been growing rapidly (Figure
1), especially sequence-related databases – storing infor-
mation on sequence annotation, variation, transcription
levels and structural predictions such as protein motifs,
families and folds [4]. Many modern technologies are
data-intensive and often the rate-limiting step is the abil-
ity to derive biological meaning (knowledge) from a series
of measurements (data). Data integration is important

because a set of data can be used to answer many more
questions than it was originally intended to, providing a
greater return on the resources invested in gathering the
data. Many issues, however, complicate the ability to inte-
grate more than a few sources of data at a time into a cen-
tral database for analysis. Note that the term "integration"
is not intended to simply mean the co-localization of
diverse sources of data (e.g. GeneCards [5], a central
source for gene-related web links), but a format which
permits a single program to draw upon multiple relational
data sources for analysis without requiring explicit
instructions for handling relations between datasets (e.g.,
tables).
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There are many software packages written for genomic
analysis, most of which provide a relatively standard bat-
tery of functions: Visualization of sequence features (e.g.
repetitive elements, enzyme cut sites, exons), alignment of
sequences (e.g. BLAST, BLAT, FASTA), and algorithmic
identification of patterns such as genes, promoters and
splice sites [6]. The journal Nucleic Acids Research pub-
lishes an annual issue for databases and web servers, and
offers a good overview of what is publicly available. The
underlying assumption during the development of most
genomic analysis tools is that a user knows – at least to a
degree – what he/she is looking for and this may not
always be the case. Frequently users are simply looking for
what they might describe as "something out of the ordi-
nary". Even packages such as Helix Bioinformatics'
GenoStar http://www-helix.inrialpes.fr/index.php that
engage in "exploratory genomics", are still driven by user
input. Most sequence analysis programs are not designed
to accept sets of data as input for analysis (besides phylo-
genetic packages), such as a series of genes or ontology
categories so that common features can be identified.
Given the enormous growth in the amount of publicly
available data, what is needed is a software package that
can systematically examine all available information for
statistically significant correlations and report them back
to the user.

1.1 Data Mining
Data mining is a relatively recent development that has
arisen principally as a response to the growing size of
datasets, defined loosely as "The nontrivial extraction of
implicit, previously unknown, and potentially useful
information from data"[7]. In essence, data mining
implies that there are answers out there to questions that
we have not thought to ask yet – data drives the genera-
tion of hypotheses rather than vice versa. As opposed to
traditional hypothesis testing designed to verify a priori
hypotheses about relations between variables, exploratory
data analysis (EDA) is used to systematically explore the
possibility of relations between variables when there are
no (or incomplete) a priori expectations as to the nature of
those relations. The usage of data-mining techniques in
biology and medicine has grown rapidly since 1997, but
has always been limited in scope by the number of differ-
ent features that can be analyzed.

Sequence databases are extremely difficult to "mine" – not
only are biological sequences associated with many differ-
ent data types, but sequence data itself is difficult to fit
neatly into any data type. Thus, data mining methods are
limited by the amount of information available for analy-
sis within the database they are used upon. The more data
that can be integrated into one source, the more potential
data mining methodologies have for discovery. Integrat-
ing various sources of genomic data into a common for-
mat that preserves position-specific information makes it
feasible to standardize analysis approaches.

Both data mining and the discovery of new scientific
knowledge often proceed through the logical process of
induction. Induction entails using specific observations to
infer general rules, definitions or categories. For a brief
history and discussion of induction through null hypo-
thesis significance testing, see Krueger [8]. In data mining,
inductive methods are typically used on well-defined
database fields, and are categorical in nature, whereas
genomic sequence is vast and varied, with heterogeneous
data types. Figure 2, for example, shows a screen shot of a
sequence analysis program called SIGNAL (Sequence
Information and GeNomic AnaLyses) [9], where a sam-
pling of heterogeneous data types and linkages can be
seen. For example, a gene is a single entity but G+C% is
calculated from a sequence window inside the gene and is
continuous, whereas hydropathy is also continuous but
linked to the protein translation instead. When different
data types are related to one another in different ways, this
makes it difficult to ask general questions (e.g., Do any
protein motifs tend to be proximal to polymorphic
repeats?) – rather they are answered by constructing spe-
cific routines to answer more specific questions (e.g., Do
transmembrane domains tend to be proximal to polymor-
phic repeats?).

Growth in the number of databases published in MEDLINE by yearFigure 1
Growth in the number of databases published in MEDLINE 
by year. Numbers estimated from unique acronym defini-
tions found in MEDLINE ending with the word "database".
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As the amount and complexity of data grows, there is an
increasing need to be able to ask more open-ended ques-
tions, which has been referred to as "data-driven" research
as opposed to "hypothesis driven" [10]. It's also accurate
to say that the hypothesis driving the research is that
informative trends exist within the data and can be found.
The goal of this report is to create a "genomic observation
system" – one that is able to intelligently employ a set of
defined algorithms on a set of genomic fields representing
features of interest and then inform the user of what it has
found. That is, to note features and/or associations that
stand out as statistically significant. However, if the sys-
tem is truly to be of value in discovering novel associa-
tions, it must be able not just to conduct analyses, but to
iteratively build upon them. For example, it is interesting
to note that some genes have CpG islands upstream and
some do not [11], but more interesting is to understand
what types of genes do or do not have CpG islands
upstream and what these genes have in common that
would help researchers better understand the significance
of CpG islands. CpG islands are stretches of DNA rich in
cytosine-guanine pairs, which can be methylated, and can
regulate expression of genes. It generally is assumed that
CpG islands are involved in modulating "house keeping"
genes[12], but recent reports indicate that there are excep-
tions to this "rule"[13]. To address this example requires
at least a two-step process – first the division must be iden-
tified, and then genes in each category must be associated
or analyzed in some other terms such as function, loca-

tion, or gene ontology. Because it is not obvious a priori
which analysis would be best to conduct on what feature
to offer insight into any given problem, the value of an
exploratory (data mining) approach becomes more
apparent.

1.2 A data integration format for association rule discovery
There is a strong need in bioinformatics for standardiza-
tion of analyses and integration of data. At the most basic
level is link federation, which is used by web-enabled
databases that provide links to other web-enabled data-
bases. Link federation, however, fails to address the issues
involved with data integration since it is vulnerable to
semantic differences, can fail due to link updates, and
shifts the work of integration to the user [14]. Another
approach has been view integration, where a wrapper/
mediator architecture middleware component is placed
between the databases and the user, presenting the data as
part of one large system. Examples of this are Kleisli [15],
GECKO [16] and AnaBench [17]. These, however, have
somewhat failed to take hold due to the need to write a
driver for each database to be accessed. View integration
also fails to fully address the integration issue as it only
brings the data to the user while leaving it up to the user
to describe how the data fits together. Additionally, there
is the option of data warehousing (e.g., Shah et al [18]),
whereby a unified schema is made, data is obtained from
heterogeneous sources and then transformed to match
that schema. However, this is difficult to maintain, as
updates need to be performed, making it vulnerable to fre-
quently changing database schema [14]. It also leaves the
relationships between the data up to the user. Finally,
there have been attempts to present data in a single type.
One such format used has been eXtended Markup Lan-
guage (XML), using wrappers to obtain the data and LSX
to convert it to XML [19]. They have even added support
for automated updates to the data [20]. Once the user
obtains the data locally, he is left with only one format to
read and query. The problem with XML is the same with
the other integration options in that it leaves the task of
fully integrating data to the user. Each of these means of
integrating data has its strengths and weaknesses, but
none are well suited for the type of exploratory and adap-
tive data mining approach we are proposing here.

The idea to develop a modular, standardized exploratory
genomic analysis system came from the realization that
many questions about genomic properties and correla-
tions involve relatively straightforward correlation analy-
ses, yet software that integrates different data sources is
typically written to answer one or a few related questions,
usually as a result of individual investigator interest (e.g.,
see references [21-23]). Data exists in many different
types, in many different locations and is produced by
many different software packages that run on different

Screenshot of a sequence analysis program, showing a small set of genomic features for the human gene HVECFigure 2
Screenshot of a sequence analysis program, showing a small 
set of genomic features for the human gene HVEC. In this 
window the transmembrane domain can be seen (indicated 
by the hydropathy value peaking while the charge (pI) value 
falls to zero) next to a CpG island (red line at bottom) and 
flanked to the right by a polymorphic glutamic acid repeat.
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platforms. Currently, the number of questions that can be
asked is much larger than the number that can be
answered, and the more genes, genomes and features that
are discovered, the more questions that can be asked. If
some method is not developed to begin integrating data
and methodologies of examination, then the number of
possible questions that can be asked will always exceed
our ability to answer them. To bridge this gap, we have
developed a prototype for an automated (i.e. minimally
dependant upon user guidance), extensible, modular and
systematic method of searching for correlations within
genomic data.

To create this automated analysis system, we must first
delimit the things we are interested in studying, then we
must specify the types of analyses we employ to study rela-
tions between, within and among them, and finally we
must define the circumstances under which an analysis is
appropriate to identify correlations between these things
we study. Complicating matters further is the number of
sources of data, the heterogeneity of data types, and the
functional relationships between data types. Figure 3
offers a graphical overview of biomedically relevant anno-
tation related to genomic sequence.

The approach described herein begins by encoding
sequence-based data in the columns of a matrix format
that permits position-specific information to be repre-
sented, including accommodations made for non-integer
data types (e.g. the presence of a gene can be denoted with
binary values, but the name of the gene must be linked to
an index value). Encoding raw genomic sequence data in
the columns of a position-specific matrix permits annota-
tion associated with specific genomic regions to be repre-
sented within rows. Annotation includes many data types
such as genes, intron-exon boundaries, chemically rele-
vant features such as guanine/cytosine percent (G+C%)
content, and gene ontology classifications to name a few.
Each row is linked to a row index (RI) that defines the type
of values within the row. To enable an exploratory
approach, a sequence matrix (SM) classification tree is
defined for each data type to be encoded in the rows. This
classification tree both limits and guides the types of anal-
yses that are appropriate to perform between rows based
upon their type. Finally, to enable the system to build
upon previous observations, new rows can be added to
the SM when statistically significant correlations are
found.

2. Construction of a Sequence Matrix Format
Sequence related data can be expressed as a matrix, where
rows represent features and columns represent positions
in the sequence. The Sequence Matrix format consists of
several files. First, each row is expressed as a file. Next,
there is an index file that specifies how each file is stored,

what it stores, and comparison related information. Pro-
grams were written in Visual Basic 6 (SP6) and run on a
Pentium 4, 3 GHz machine running Windows 2000 with
1 GB RDRAM. Genomic data was obtained from Genbank
ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/ and the
August 2004 update was used.

Figure 4 shows an example of how sequence data is
imported into a matrix format. Here, the columns repre-
sent position-specific information about a region of
genetic sequence. For example, column 1 corresponds to
position 72,162 within human chromosome 21. Each of
the rows corresponds to different annotations associated
with this region. The rows were constructed from Gen-
bank data and include genes, exons and known alterna-
tive splice variants. From genomic sequence data, the
system automatically calculates G+C% content, CpG
islands and periodicity, which consists primarily of Varia-
ble Number of Tandem Repeats (VNTR).

Especially of interest is to link genomic features to Gene
Ontologies (GO) [24], providing an excellent opportunity
to search for functional genomic correlations. Each GO
field is encoded with a numeric record ID, permitting it to

A functional or systems overview of biologyFigure 3
A functional or systems overview of biology. Going from 
genomic information (top) to creating a living organism with 
different features/attributes (bottom) involves a number of 
steps. Evolution begins at the sequence or informational level 
(left), but the effects of informational alterations manifest at 
different levels (moving left to right), as DNA is translated 
into proteins that interact in three dimensions. Molecular 
biologists obtain information and compile observations at 
various levels with the goal of linking sequence changes to 
physical ramifications such as changes in kinetics, solvability 
or structure. In the end, we want to understand how these 
alterations in physical properties create phenotypic changes. 
The ability to integrate sequence-level information with 
higher-level observations/classifications enables trends to be 
identified.
Page 4 of 11
(page number not for citation purposes)

ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/


BMC Bioinformatics 2005, 6(Suppl 2):S2
be easily incorporated into the SM. GO codes have been
downloaded and incorporated into a database, each GO
category indexed by its ID number.

2.1 Developing a classification tree for genomic features
A classification tree of each row type enables an explicit
formal specification of how to represent the objects, con-
cepts and other entities that are assumed to exist in some
area of interest and the relationships that hold among
them. Here, the entities being studied are genomic fea-
tures and the classification tree being developed is a
means of defining how these entities relate to one another
and the comparisons that can be conducted between
them.

Despite the heterogeneity of data types (e.g. window-
based, defined position start and end sites, variable com-
position), they can be roughly divided into two types:
Entity and property (shown below). Entities are defined as
portions of the genomic sequence with defined start and
end positions that serve a specific function and are either
present or not. Introns, for example, are regions that are
transcribed into RNA but spliced out in mature mRNA
transcripts. Properties, on the other hand, are a range of
quantitative or qualitative values that can be taken by a
region of sequence. C+G% content, for example, is calcu-
lated by examining a window of sequence and varies in its
value as the window moves along the sequence. Proper-

ties typically have threshold values that delineate genomic
features (e.g. C+G% content defines genetic "isochores").

1. Entity – A sequence region with a defined beginning
and end. Column values can be of type:

•a. Binary – A marker that indicates the existence of an
entity, spanning all columns from its beginning to end

•b. Index – A binary-like marker that indicates the exist-
ence of an entity, spanning all columns from its beginning
to end. The value contained within this field points to an
external database unique ID, such as the Genbank Identi-
fier or a Gene Ontology ID number

•c. Range – Possessing a continuous set of possible values

•d. Category – Possessing a discrete set of values, not nec-
essarily sequential

•e. Decimal – Used for entities that are conditionally
structured or ordered, such as alternative splice variants

2. Property – A genomic feature defined in relation to an
entity or region. Column values can be of type:

•a. Binary – Yes or no, on or off (e.g. is a nucleotide within
a CpG island?)

•b. Weighted – Frequency of occurrence in relation to
another field (e.g. positional variation such as single
nucleotide polymorphisms, or possibly exon splice vari-
ants)

•c. Range – Possessing a continuous set of possible values
(e.g. the number of protein-protein interactions a gene
has)

•d. Category – Possessing a discrete set of values, not nec-
essarily sequential (e.g. Gene Ontology IDs)

The goal in development is to keep the classification tree
as simple as possible, and as broad as possible on the top
node. If a top-level classification tree has only one mem-
ber, it is probably too specific and not appropriate for
inclusion (low-level subcategories can have only one
member). Each entry must both make sense and corre-
spond to a specific set or type of analysis to be conducted.
Subcategories, similarly, should not lead to entirely differ-
ent analyses but offer clarification, refinement or exclu-
sion of analyses defined by their parent category.

Some sequence data and annotation has already been
obtained from Genbank as mentioned, while a number of
different databases are publicly available that provide

Screenshot of a sequence matrix (SM) display, annotated at the left to indicate what features are being shown in each rowFigure 4
Screenshot of a sequence matrix (SM) display, annotated at 
the left to indicate what features are being shown in each 
row. Row zero is not actually part of the SM, but a re-con-
version of the numeric matrix into sequence. Sequence varia-
tion can easily and accurately be represented in a matrix 
format. The symbol "+" indicates that the field value is larger 
than one digit and cannot be shown without visually distort-
ing the display. Here, a CpG island overlaps with a gene's 5' 
UTR start site.
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information for each of the proposed fields in Table 1. The
use of matrices to contain sequence data has been well
established as a means for analysis of specific, smaller fea-
tures such as promoters, enhancers and splice sites [25].
The SM proposed is an advanced extension of the Position
Weight Matrix (PWM) concept, not limited to weighted
values. The SM format permits ID numbers (e.g. database
record identifiers) to be used as row values, enabling a
quick way of linking position-specific information
between databases. There is the possibility of incorporat-
ing Unigene EST database into the SM, which may provide
a more space-efficient, intuitive representation. EST data
permits expression levels to be estimated, along with
splice variants and possibly SNP data. However, EST levels
are normalized prior to deposition in the database, so
inference of transcription levels will be a rough approxi-
mation at best and SNP variations might equally be
sequencing errors.

2.2 Correlative analyses
Induction, defined as attempting to establish a general
principle using specific observations, can be used to iden-
tify correlations and in data mining is typically conducted
via inductive logic programming(ILP) [26]. Induction is
limited by the extent to which an induced principle holds
true. For example, if all alternatively spliced exons are
located within 5 kilobases of an upstream CpG island, this
can be induced as a general principle by the system. Note
that induction is used to find correlative principles and
not strictly defined rules or "truths", because any future
alternatively spliced exon in this example that does not
have an upstream CpG island would negate it as a strictly

defined rule. Induced properties are declared when they
pass a thresholded confidence level, and may change
upon the addition of new data to the system. The system
will automatically cycle through a range of p-values (e.g.
p < 0.01 to p < 0.10 stepping in increments of 0.01) to see
how performance is affected. That is, to see whether
inductions are highly sensitive to small changes in p-val-
ues or not. We anticipate they should not be, but if they
are then it suggests the possibility that correlations are
being formed somewhat spuriously and significance met-
rics should be reexamined.

Other induction algorithms such as CN2 [27], ID3 which
eventually evolved into C4.5[28], and the AQ series [29]
to name a few, are not suitable for the proposed study
because they are used for different purposes, and require
a training set of correct and incorrect inductions to begin
learning the underlying patterns before inductive classifi-
cation can begin. Induction will proceed by correlative
analyses since it is not known a priori what will be found.
An initial, non-exhaustive list of analyses is shown below.
Here, a classification tree for analysis defines which anal-
yses are deemed "appropriate" for each data type. Because
classification trees are hierarchical, they can be expanded
based upon sub-categories to exclude inappropriate anal-
yses. Also, because branches can share parent nodes, it is
possible that analyses can overlap between certain sub-
categories as appropriate.

Analyses
1. Proximity – Does the distance between X & Y deviate
from random? (e.g. closer or farther?)

Table 1: An initial list of genomic "features" that will be the subjects of analysis by the system.

Features Classification tree

Gene Entity
Splice site Entity, probabilistic
Alu Entity, probabilistic
Enzyme cut site Entity, set, categorical
Post-translation Mod Entity, set, categorical
Protein Motif Entity, set, categorical
Promoter Entity, set, categorical
VNTR Entity, set, categorical
Exon Entity, set, range
Chromosome Entity, set, range
Cytoband Entity, set, range
CpG island Property (sequence), window-based, binary
G+C% Isochore Property (sequence), window-based, range
# of interactions Property (gene), range
Transcript variants Property (gene), range
Transcription level Property (gene), range, conditional
Gene Ontology Property (gene), categorical, hierarchical
Imprinted Property (CpG Island), categorical (no/maternal/paternal)
Polymorphic Property (VNTR), range
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2. Co-incidence – Are X & Y co-incident with each other
more or less frequently than expected?

3. Composition – Is there a bias in X for either:

•a. Its frequency/presence within a distribution

•b. Its relative value within a range of values

4. Distribution – Does the observed distribution of values
deviate from the expected? (e.g. Exon-exon distances). The
absolute value of the differences between the areas under
the curve (AUC) can answer this question.

5. Sequence similarity – e.g. BLAST score (highly CPU
intensive when conducting multiple comparisons)

6. Gradient – Given a spectrum of values, does the set
being analyzed fall within an extreme?

Application of statistical models for significance analysis
(e.g. confidence intervals, p values) depends upon
assumptions about the distribution of the data. While it is
possible to find appropriate statistical analysis methods
for any given genome model (e.g. human), it is not con-
sistent with the goal of the system to be modular and
adaptive if users must propose a statistical model for every
new genome and genomic feature to be analyzed in terms
of every other feature already present. Therefore, we use
Monte Carlo (MC) stochastic simulations and bootstrap
statistical methods to establish a probabilistic inference
for the statistical significance of observations. These meth-
ods, while CPU intensive, are less dependant upon
assumptions about the distribution of values and have
been used frequently in biological analysis [30]. When
engaging in an extremely broad comparison of feature ver-
sus feature, it's reasonable to assume that distributions
will vary and cannot be characterized a priori. An MC cor-
relation testing method can calculate the probability of
getting an outcome at least as extreme as the particular
outcome observed under the null hypothesis. Figure 5
shows an example of how correlation significance testing
would work. When an analysis exceeds a statistical confi-
dence threshold, it will be incorporated into the SM as a
row-row correlation. Incorporating this information ena-
bles future steps to operate upon it and provides an itera-
tive discovery process (example shown in Figure 6). Figure
7 illustrates the iterative process whereby each row is
examined in the context of every other row if an analysis
type is permissible.

The addition of new rows to the SM is a critical part of
exploratory discovery, yet arguably the most difficult part
for several reasons. First, it's necessary to build upon pre-
vious observations. Consider an example in which one set

of genes has CpG islands upstream in their promoter and
the rest do not, CpG islands being necessary for shutting
off gene transcription via promoter methylation. Assume,
hypothetically, that CpG islands were known as a feature
of interest but their function was not known. In theory,
the SM data-mining approach should be able to identify
that CpG islands are located proximal to the 5' end of
genes to a statistically significant degree. This is an obser-
vation, yet it is not clear what to make of it without know-
ing the role of CpG islands. With one additional piece of
information, researchers might be able to deduce what
this correlation implies and formulate a testable hypo-
thesis for the role of CpG islands. A correlation (negative
in this case) might then be identified between genes with
CpG islands and an ontological category of basic meta-
bolic processes (i.e. genes that must be expressed in every
cell and therefore should not be shut off). Thus, it is nec-
essary to be able to record statistically significant events in
some manner, else the algorithm will be nothing more
than an exhaustive battery of analyses run against an
exhaustive set of fields. The addition of a new row marks
the genomic locations of the identified correlation and
the type of new row added would depend upon the type of
correlation identified. In the CpG island example given
above, the type of row added would be defined as a set of

Hypothetical histogram of a binned proximity analysis between genes (entity) and their nearest CpG islands (prop-erty), with Gene Ontology categories the subject of analysisFigure 5
Hypothetical histogram of a binned proximity analysis 
between genes (entity) and their nearest CpG islands (prop-
erty), with Gene Ontology categories the subject of analysis. 
Because the observed distribution is non-symmetrical, bimo-
dal and skewed, statistics that depend upon the central ten-
dency assumption are not appropriate. The black portion of 
the lines represents the known distribution for all genes 
while the white portion represents the distribution only for 
one specific GO category. An MC stochastic simulation tests 
the null hypothesis that there is no correlation and that the 
observed distribution could be a result of chance. By picking 
an equal number of genes as found in the GO category 
10,000 times, choosing randomly based upon the observed 
frequency distribution, and calculating the weighted average 
each time, we can arrive at a probabilistic estimate of how 
many times a weighted average equal to or greater than the 
one observed could arise by chance. Other MC-based statis-
tical tests are possible, such as analyzing the spread of data, 
but are not explored in this report.
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entities with defined start and end sites (i.e. the genes with
CpG islands upstream).

Rather than ask specific questions about genomic correla-
tions, if we can define when an event is statistically note-
worthy and select genomic features that might be of
potential interest (i.e. we are willing to examine in a
report), then we can enable a software program to look for
any and all statistically noteworthy associations and
report them to us. The system should be able to identify
known correlations and, optimally, the system will iden-
tify many that have not been documented within the sci-
entific literature. A major pitfall is that the system may
overfit the data – that is, it may find strong rules that hold
within a given dataset but do not generalize to new data-
sets. One possible remedy is to warn the user against "sta-
tistical" interpretation of significance scores, and to point
out significance scores are only used for ranking discov-
ered associations. This is an approach followed in the
association rule discovery literature. The traditional

machine learning remedy against overfitting is to split
data into a training and test set, find correlations on the
training set and, for the "best" rules, report significance
values computed on the test set. There are also techniques
for cross-validation that would be useful for on-the-fly
evaluation such as k-fold cross-validation and leave-one-
out cross-validation. This type of training is different than
the pattern-learning training normally associated with
inductive classification – here the training and test sets
would be used to define sensitivity thresholds.

2.3 Problems of significance
So far we have defined a format and means of automated
exploration of row-row correlations, and even a means
whereby we hope to circumvent the problems that may be
encountered with different data types and distributions,
but perhaps the most daunting challenge will be how to
establish the significance of a correlation. Using genomic
correlations already known to be true, we can first identify
minimal significance cutoffs that would miss valid obser-
vations were they any more stringent. These cutoffs may
well vary by data types compared, which may emerge as
the system is developed beyond the current version. Opti-
mal significance cutoffs are more difficult to determine,
but the iterative observation procedure outlined in the
previous section may enable us to empirically approxi-
mate this cutoff. Ultimately, any and all correlations iden-
tified by the system can be simplified to the questions "So
what?" or "What does it mean?", so we would first expect
that the system would not continue to add new observa-
tion rows indefinitely. Intuitively, while we expect there
may be much that we do not know about the relationship
between genomics and biology, there is nonetheless a
finite amount. As the system is further developed, we

Hypothetical example of how the iterative induction process would workFigure 6
Hypothetical example of how the iterative induction process 
would work. Extending upon the example offered earlier 
(Figure 7), a correlation is found by analysis of GO categories 
– a particular category is statistically overrepresented among 
genes that have CpG islands located after the start site. It is 
recorded as a new entity, named after its parent features and 
analyses that spawned the observation in the first place 
(10.3.8.1.6 – row #10 connected by analysis #3 with refer-
ence to row #8 and compared by analysis #1 to row #6). A 
new row with a unique name is then created in the SM. This 
new row is added to the existing SM as the next available 
number (row 11 in this example), with its name (10.3.8.1.6) 
providing a means of tracing its origin, and is populated with 
binary values corresponding to the location of these genomic 
regions. Later, when the system is re-running correlation 
analyses, it finds that Row 11 (which was not present during 
the last analysis run) is correlated with the presence of an 
unusually large number of transcript variants (arrows at bot-
tom right). The correlation identified is that genes in this GO 
category also tend to have many splice variants. One might 
use this correlation to hypothesize that splicing proceeds by 
"silencing" exons through methylation changes.

Simplified pseudocode representing the overall logic flow in the programFigure 7
Simplified pseudocode representing the overall logic flow in 
the program. The user either defines a set of features or all 
available features are used (NumFeatures). The code then 
compares each feature to each of the other features, check-
ing for what types of analyses are appropriate. If permission 
to use a specific analysis on two features is granted, then it is 
called by passing the matrix rows (N, M) as the subjects of 
analysis, defines the appropriate analysis (T, S) and returns a 
value (sigma) representing the significance of correlation 
between the two.
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expect to test the growth of new rows, both depth and
breadth, and hope this will permit us to adjust signifi-
cance cutoffs so that infinite matrix expansion is pre-
vented. As biologists examine SM correlations, we would
expect that their feedback on the utility/meaningfulness
of correlations would enable better adjustment of the sys-
tem as well in terms of significance cutoffs. That is, if cor-
relations identified by the system have no apparent
meaning to the biologist, then perhaps they may be statis-
tically valid, but without biological meaning. For exam-
ple, two features may coincide with one another at a
statistically significant frequency, yet there may be no cor-
responding implication – it may just be a coincidence.
Some correlations may exist in what at first appears to be
a vacuum, at least given our current level of understand-
ing, and not make sense until more information is known
about the evolution of genomes. Which leads to the final
aspect of why we believe the SM approach will be of great
utility – examining Figure 8, we see that when a significant
correlation is identified it is simply created as a new row.
In this example, certain genes with CpG islands located
upstream of the start site disproportionately fall within a
certain classification tree category. At first, a biologist
might concede that this observation seems interesting, but
in terms of relevance it falls within the "so what?" cate-
gory. Later in the iterative analysis, the system might then
identify that the positions in this row are strongly corre-
lated with whether or not the first exon is spliced out of a
gene. Tracing this row back to its ancestral correlation, it
would then be reasonable to hypothesize about the bio-
logical relevance of CpG islands located upstream of the
start site – perhaps they determine whether or not the first
exon is spliced out and offer a possible mechanism
(demethylation) by which such an action is possible.

3. Prototype testing – finding known correlations 
de novo
A prototype of the described system has been constructed
and tested to see if it was able to identify genomic correla-
tions. A routine was written for coincidence analysis –
detecting when two sequence features overlap more or
less frequently than would be expected by chance. Four
fields were tested for linkage: CpG islands, repetitive ele-
ments (microsatellites, with 1 to 3 bp repeated

sequences), genes and exons. We expected, of course, that
genes and exons should be tightly linked and used this as
the control. The correlations were run over the first 10
megabases from four different chromosomes: 3, 5, 13 and
18. Monte Carlo (MC) simulations were conducted with
each field analyzed, repositioning them randomly within
an equal number of base pairs. For the purposes of this
analysis it was stipulated that fields did not overlap (e.g.
two different genes located within the same contiguous
sequence range) – an assumption known to be false in
microbes, but holds true most of the time in mammals.
Ten MC simulations were conducted for each comparison
and the results summarized in Table 2.

Table 2 reveals a number of stronger and weaker correla-
tions and permits an analysis of the range of values to be
expected. The control analysis, that genes and exons
should always coincide, was compared with random
arrangements of genes and exons. The difference in the
average number of coincident features observed com-
pared to that observed during MC simulations was 3.02
times higher on average (chromosomes vary regionally in
their gene richness). Two other strong correlations stand
out, the first is that repetitive elements are relatively
uncommon within exons, an observation verified in other
studies[31]. The overrepresentation of CpGs in exons but
not in genes makes sense given that CpG islands are gen-
erally found upstream of genes, including the 5' untrans-
lated region, but genes are generally much larger than
their exons (e.g. the first 12 genes on chromosome 6 had
over 2.6 MB of sequence compared to only about 46 KB
for their corresponding exons). Transcription through C-
G base pairings requires separation of 3 hydrogen bonds
compared to 2 for A-T. Energy conservation is seen during
transcription in that frequently transcribed genes contain
shorter exons[32], thus it also makes sense that exons
would be more rich than introns in CpGs. Short repetitive
elements consisting of 1–2 base pair repeats were far more
common in introns than genes[31], so the lack of correla-
tion here also makes sense.

Discussion
Probably the greatest advantage of SM is that for data
analyses of spatially close positions, SM is embarrassingly

Table 2: Comparing the number of features observed together within the same genomic space against Monte Carlo stochastic 
placement simulations. The first 10 MB from chromosomes 3, 5, 13 and 18 were used for analysis and the averages shown above.

Feature Comparison Avg. # of coincident features (c) Avg. # of coincident features in MC simulation Average MC / c

CpGs vs. Repeats 676 580 1.26 ± 0.35
CpGs vs. Genes 670 550 1.24 ± 0.18
CpGs vs. Exons 167 59 3.08 ± 1.38
Repeats vs. Genes 2698 2600 1.03 ± 0.05
Repeats vs. Exons 43 111 0.38 ± 0.03
Genes vs. Exons 502 171 3.02 ± 0.60
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parallelizable. Data access time can be reduced greatly, by
reading windows in parallel, but also windowed compar-
isons can easily be done in parallel. With Bioinformatic
Sequence Markup Language (BSML) data, the data must
be pre-processed to know how to divide the data, and the
number of chunks it can be broken into while still retain-
ing XML properties limits parallelizing.

Proposed here is a system to enable automated associa-
tion rule discovery on genomic sequence data. Since
genomic data is intrinsically linked to raw sequence data,
we have proposed a format by which position-dependant
information can be both stored and represented in the
form of a sequence matrix where rows represent anno-
tated data linked to the sequence position represented by
the column. The explicit linking of row values makes the
SM embarrassingly parallelizable, which means it may
take advantage of the scaling power that computing clus-
ters have to offer. The sequence matrix enables correlative
data mining algorithms to be run, but by itself is static. We
have thus developed a means by which data mining can
be conducted through the creation of a classification tree
for row data types that define how and whether or not one
row data type can be analyzed in the context of another
row data type. The classification tree enables a means of
iteratively examining row-row relations through varying
data mining methods. Furthermore, because the classifi-
cation tree also defines the data type of the correlation
between rows, this enables iterative analysis of genomic
features by which significant correlations, when observed,
can be expanded into new rows. These new rows can then
be re-analyzed in the context of other known features,
enabling a machine learning system that is able to build
upon previous observations. One downside to the SM for-
mat is that overlapping features (e.g. genes that share the
same coding region on a chromosome) are difficult to
model in the current format, whereas markup languages
have no problem with this.

In this report, we have demonstrated functionality on a
prototype level. Preliminary testing of the system reveals
several limitations including, as expected, that the
amount of memory on the development computer limits
the size of the SM window available for sequence analysis.
Currently, about 10 megabases at a time can be efficiently
brought into memory for analysis. The conversion of data
into a SM format is both memory and CPU-intensive. The
workstation used for development does handle the cur-
rent data load efficiently, likely because the SM currently
contains only a dozen or so basic fields. The number of
fields simultaneously brought into the matrix for analysis
will likely become a rate-limiting step as more fields are
added. Ultimately, the system will be more useful when
expanded to include:

1. A de novo genome-wide analysis that searches for cor-
relations between all known fields and expands its matrix
when statistically significant matches are found.

2. User-defined set-based correlation query that enables a
user to select which features they want analyzed within
the SM (e.g. a set of genes, chromosomes, or promoter
regions) and run the same analysis

3. User-defined incorporation of a new matrix row, requir-
ing them to enter their own matrix values and specify a
classification tree structure (or select from existing
options). From that point, all currently defined analyses
can be performed and reported in terms of existing rows.

Unresolved problems include a means of significance test-
ing for row-row correlations. Herein, we've proposed to
use established correlations and Monte Carlo simulations
to identify a lower boundary for p-values, but it's not clear
yet what the distribution will be in these p-values and
whether or not there will be any overlap between the p-
values from correlations considered spurious and p-values
from known correlations. For example, a weak yet well-
established correlation could have a p-value less than 0.2,
whereas another correlation that has no apparent biolog-
ical meaning could have a p-value less than 0.05. It's not
clear yet whether this should simply be accepted as a
caveat and judgment reserved on the "meaningless" corre-
lation until a later date, or whether p-value boundary
refinements will be necessary.

For future directions, there are several functional genom-
ics questions that we are interested in, and hope the sys-
tem can eventually be used to answer. First, we know that
first exons are farther away from second exons and second
from third, etc. Do genes that deviate from this trend have
anything in common? GO correlations may prove helpful
in answering this question. Second, transcriptional regu-
lation by methylated promoters is being increasingly rec-
ognized as a possible origin for complex, late-onset
diseases. Not all genes have CpG islands upstream, dis-
tance from start site to CpG island varies, and so does the
number of methylatable sites. Do the extreme values for
any of these variables correlate disproportionately with
any late-onset diseases? Genes annotated in OMIM titles
with the words "late onset", "adult onset" and "variable
onset" will be used as an associative data type. As we think
to ask new questions that do not fit into any of the defined
categories of analysis discussed in this paper (i.e. that
would be either a row or analysis), the goal of the SM is to
provide a framework to make specific questions more
generalizable.
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