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Delayed cerebral ischemia (DCI) disproportionately affects poor grade aneurysmal

subarachnoid hemorrhage (aSAH) patients. An unreliable neurological exam and the

lack of appropriate monitoring leads to unrecognized DCI, which in turn is associated

with severe long-term deficits and higher mortality. Near Infrared Spectroscopy (NIRS)

offers simple, continuous, real time, non-invasive cerebral monitoring. It provides regional

cerebral oxygen saturation (c-rSO2), which reflects the balance between cerebral oxygen

consumption and supply. Reports have demonstrated a good correlation with other

cerebral oxygen and blood flow monitoring, and credible cerebrovascular reactivity

indices were also derived from NIRS signals. Multiple critical c-rSO2 values have been

reported in aSAH patients, based on various thresholds, duration, variation from baseline

or cerebrovascular reactivity indices. Some were associated with vasospasm, some with

DCI and others with clinical outcomes. However, the poor grade aSAH population has

not been specifically studied and no randomized clinical trial has been published. The

available literature does not support a specific NIRS-based intervention threshold to

guide diagnostic or treatment in aSAH patients. We review herein the fundamental basic

concepts behind NIRS technology, relationship of c-rSO2 to other brain monitoring values

and their potential clinical interpretation. We follow with a critical evaluation of the use of

NIRS in the aSAH population, more specifically its ability to diagnose vasospasm, to

predict DCI and its association to outcome. In summary, NIRS might offer significant

potential for poor grade aSAH in the future. However, current evidence does not support

its use in clinical decision-making, and proper technology evaluation is required.

Keywords: near infrared spectroscopy, delayed cerebral ischemia, subarachnoid hemorrhage, vasospasm,

poor grade aneurysmal SAH, neuromonitoring

INTRODUCTION

For patients surviving the initial injury of an aneurysmal subarachnoid hemorrhage (aSAH),
delayed cerebral ischemia (DCI) deteriorating into cerebral infarction represents the main threat
to a favorable outcome (1). Patients with poor grade aSAH [IV and V on the World Federation
of Neurosurgeons (WFNS) scale (2)] are the most at-risk (3). They often present an altered
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level of consciousness, diminishing the reliability of the
neurological exam and jeopardizing the application of current
consensus DCI definition (4). Compared with clinically
apparent DCI, these unrecognized ischemic episodes (5) are
associated with worst long-term deficits and higher mortality (6).
Transcranial Doppler ultrasonography (TCD), serial vascular or
perfusion imaging, electroencephalographic (EEG) monitoring
and invasive multimodality monitoring have all been called
upon to mitigate these limitations in our ability to detect
ischemia. Unfortunately, the evidence supporting their use has
been disappointing so far and none has established itself as a
reliable modality to circumvent the loss of clinical exam in poor
grade aSAH (7).

Near Infrared Spectroscopy (NIRS) technology has been
advocated as a solution to this conundrum. It is a simple,
portable, continuous, real time, non-invasive monitoring of
cerebral oximetry. It should therefore be ideal for timely
detection of ischemia and to improve management in poor
grade aSAH. The technology has been around for more than
40 years, after it was introduced in 1977 by Jöbsis (8), and
subsequently popularized 20 years later by Kirkpatrick (9).
Since then, multiple NIRS systems came along, algorithms have
improved, a substantial corpus of literature—albeit contradictory
and of variable quality—has emerged, and NIRS technology has
gained sufficient popularity to be incorporated as a standard of
care in many operating theaters and critical care units around the
world. However, the quality of evidence supporting it use remains
low, and parameters that should influence management, if any,
are still unknown.

In this concise review, we lay out the basic concepts required
for non-experts to comprehend the technology, we provide a
critical appraisal of the possible interpretations and use of the
data and its potential impact on poor grade aSAH patients.
Closing remarks will review ongoing studies and give some
future directions.

BASIC CONCEPTS

The first basic concepts concern optical physics and light
attenuation. A NIRS device emits light from a light emitting
diode (LED) or a laser in the near infrared range, usually between
700 and 850 nm, and collects what reaches the photodetectors.
The loss of light between emitter and detectors represent optical
attenuation and is a consequence of two phenomena affecting
photon trajectory: absorption and scattering. The absorption is
proportional to the concentration of chromophores, which are
substances that absorb the light of a specific frequency. In our
context, the chromophores of interest are oxyhemoglobin
(HbO2) and deoxyhemoglobin (HHb). The differential
absorption profile should therefore allow the determination
of HbO2 and HHb content in the region of interest as described
by the Beer-Lambert law. There are however competing
chromophores and manufacturers must select wavelengths
where the absorption spectra of HbO2 and HHb are maximally
separated and where the overlap with water and melatonin (10)
absorption is minimal. The phenomenon of scattering is the

other critical variable and the major contributor to attenuation.
As light travels through biological tissue, the initial trajectory of
the photon is lost, and it is deviated to another direction. The
consequences are that some light never reaches the detector,
while some reaches it only after being scattered multiple times,
traveling a greater distance than the one separating the source
and the detector. Deflection is so significant that the path of
tissue-reflected photons in the adult head is parabolic rather than
in a straight line, explaining why the light source and detectors
are placed on adjacent areas of the head. Disentangling the effect
of absorption and scattering is one of the crucial roles of the
various proprietary algorithms embedded in NIRS devices. They
rely on many assumptions, including a fixed arterial: venous
ratio (usually 30:70 or 25:75) and a constant scattering, both of
which do not reflect what is happening in vivo. For example,
brain edema creates large shifts in intracranial photon scattering
that may profoundly alter readings in an unpredictable manner.

Commercially available oximeters rely on continuous wave
data acquisition and spatially resolved spectroscopy (11). The
latter is based on the use of multiple detectors, the number
of which varies amongst models. As the depth of tissue
interrogated is proportional to the distance between emitter
and detector, it is assumed that the closest detector receives
light that has passed through the scalp, whereas that arriving
at the farthest detector has passed through brain tissue.
Those distances vary between manufacturers. Multiple detectors
therefore allow a gain in spatial resolution and help to mitigate
extracranial contamination. This is a considerable weakness of
NIRS technology and estimates for the degree of contamination
from extracranial tissues range from 7 to 35% (12–14) and
vary amongst manufacturers. The biggest impact of spatially
resolved spectroscopy, however, is to derive a scaled absolute
hemoglobin concentration by combining measures of those
closely spaced detectors. That is, the absolute HbO2 and HHb
contents are unknown, but their relative proportion can be
calculated. Percentage of HbO2 over total hemoglobin thus
provides the cerebral regional oxygen saturation (c-rSO2), which
is variably coined and abbreviated by manufacturers (rSO2, TOI,
TCCO, StcO2).

Other concepts are about understanding what is being
monitored. The probes are normally placed on each side of
the forehead, 3 cm above the superciliary line to avoid the
frontal sinuses. Consistent positioning is required to minimize
variations and obtain reproducible results. As the hemoglobin
in larger vessels traps all incident infrared light, surface-detected
infrared reflections arise from blood vessels that are <1mm
in diameter (15) and ∼1.5 cm under the skin. The presence of
intracranial extravascular blood may influence readings because
of this infrared photon sequestration. Contrary to pulse oximetry
(SpO2), NIRS does not require actively flowing and pulsatile
flow. It measures a weighted average of arterial, capillary, and
venous compartments. C-rSO2 thus reflects primarily the small
venous compartment of 1.5 cm3 of gray matter brain tissue in the
territory between the anterior and middle cerebral arteries (16),
with some degree of extracranial contamination. True reference
values do not exist. Some widely available systems, such as
INVOSTM, benefit from a high volume of published data allowing
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the conclusion that for healthy and preoperative adult patients,
normal baseline probably ranges between 60 and 75% (17–19).
Reports comparing technologies (20, 21) show us that although
different NIRS devices provide similar trends, they give different
baseline estimates, rendering comparisons difficult. Potential
baseline values for aSAH patients are reported in Table 1 (27).

PHYSIOLOGICAL DATA—OXYGENATION,
BLOOD FLOW, CEREBROVASCULAR
REACTIVITY

C-rSO2 is assumed to reflect the balance between cerebral oxygen
consumption and supply in the region of interest and therefore
to essentially be determined by cerebral metabolic rate of oxygen
(CMRO2) and oxygen delivery. A pathological decline in c-
rSO2 might therefore signal arterial hypotension, low cardiac
output, systemic hypoxia, hyperventilation, stroke or impending
DCI. Conversely, high c-rSO2 might be secondary to hyperemia,
acidosis, hypoglycemia, high levels of sedation or hypothermia.
Convulsions might present as low, high or oscillating c-rSO2

(28). How does NIRS-determined c-rSO2 compared to other
brain oxygen monitoring technologies to detect meaningful
events? A few reports evaluated its performance against invasive
brain tissue oxygen monitoring (PtiO2) and jugular bulb venous
oxygenation (SjvO2). The comparisons are obviously limited,
as PtiO2 reflects the partial pressure of dissolved oxygen in
interstitial white matter, while SjvO2 is the global venous
saturation of drained hemispheric blood. Overall, the correlation
between NIRS and PtiO2 is good. They reflect similar dynamic
changes of cerebral oxygen metabolism (29–32), but they vary
in their degree and speed of response (33). The sensitivity of
NIRS to detect cerebral ischemia, here defined as a PtiO2 of <15
mmHg, seems problematic (30), including in the SAH population
(34). The same conclusions apply when comparing SjvO2 with
NIRS. There is a good correlation between modalities (33, 35)
and a somewhat lower sensitivity of NIRS to detect significant
desaturation (36). Data suggest that NIRS, PtiO2 and SjvO2 assess
different processes that are intimately related, but that crude
substitution is not warranted (37).

Several investigators also observed an association between
c-rSO2 and cerebral blood flow (CBF). Fluctuations in c-rSO2

correlate with CBF measurements made by xenon enhanced
computed tomography (38, 39) and computed tomography
perfusion imaging (40). Ventilation-based CBF manipulations
were also used to show the correlation between c-rSO2 and CBF
as measured with an invasive thermodilution probe (22). Finally,
cardiac output augmentation with either dobutamine (41) or
milrinone (25) in DCI patients also resulted in a better c-rSO2.

More recently, various teams used the information obtained
from NIRS monitoring to evaluate cerebrovascular reactivity
(42, 43). The reactivity index, variously named tissue oxygenation
index (TOx) or cerebral oxygenation index (COx), is calculated as
a rolling correlation coefficient between averaged CPP (or MAP)
values and the corresponding NIRS signals. It has been validated
against pressure reactivity index (PRx) (44) and TCD-derived
reactivity index (Mx) (45). It does, however, rely on assumptions

that have been regularly challenged (46). Other approaches to
evaluate cerebrovascular reactivity have been described, such as
those based on frequency-domain analysis, but they have not
been applied to our population of interest (47).

If we accept that abnormal c-rSO2 reflects a pathological
alteration in brain oxygenation, how should it be managed?
Most clinicians would suggest investigating plausible and
reversible causes as a first step. Correcting obvious systemic
physiological derangements such as significant hypoxemia,
arterial hypotension, or iatrogenic hyperventilation is also
sensible. However, the appropriate management of abnormal c-
rSO2 in aSAH patients, beyond what was just mentioned, is
unclear. The impact of vasopressors, for example, is controversial.
Studies have reported a decrease in c-rSO2 with vasopressor
infusion both in aSAH (48) and healthy patients (49), whereas
it improved c-rSO2 values in the first few hours post-
cardiac arrest (50). Studies reporting the effect of red blood
cell transfusions in neurocritical care patients, a minority of
which were aSAH, have also yielded conflicting results (51–
53). Controlled hypercapnia, in the range of 50–60 mmHg,
had some success to improve c-rSO2 in two studies involving
aSAH patients (22, 54). This approach, still investigational,
is deemed temporary to avoid rebound vasoconstriction.
Hyperoxia, targeting supraphysiological levels of arterial partial
pressure of oxygen, seems to improve c-rSO2 (55), but is also
potentially associated with a higher incidence of vasospasm (56),
DCI and poor outcome in aSAH (57). It would therefore be
inappropriate, based on currently available data, to recommend
any specific intervention to attempt correction of abnormal c-
rSO2 in aSAH patients.

CLINICAL DATA—VASOSPASM, DCI,
PROGNOSIS

The ultimate objective behind adequate monitoring of cerebral
oxygenation, perfusion and cerebrovascular reactivity is early
detection of secondary brain injury andmanagement guidance to
improve patient outcomes. Vasospasm detection, DCI prediction,
and prognostication have been specifically evaluated in the
aSAH population. Comparisons between TCD and commercially
available NIRS seem to support a moderate degree of correlation
between the two modalities (58). A decrease of more than 12% in
c-rSO2 from the baseline was associated with a better predictive
value than same-side TCD using the traditional threshold value
of 200 cm/s to detect severe vasospasm on CT angiography (59).
More interestingly, the same 12% cut-off yielded a sensitivity of
94% (95%CI: 73–99%) and a specificity of 71% (95%CI: 53–85%)
to detect DCI (59). Another study on 24 patients presenting with
poor grade aSAH reported a sensitivity of 86% (95% CI: 67–98%)
and specificity of 86% (95% CI: 67–96%) for DCI detection using
a greater than 15% decrease in c-rSO2 (60).

Others took a different approach and evaluated the association
between impaired cerebrovascular reactivity and DCI. Using an
index of |R| ≥ 0.5 on either side as a definition for impaired
cerebrovascular reactivity, and the consensus definition for DCI,
one group reported odds of DCI of 36 (95% CI: 6–211%) when
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TABLE 1 | Baseline regional cerebral oxygen saturation (c-rSO2) in aSAH patients.

NIRS technology Number of patients Poor grade SAH (%) Mean baseline c-rSO2 References

INVOSTM series (Somanetics, USA) 105 28 60 (22–24)

FORE-SIGHTTM (CAS Medical Systems, USA) 68 24 70 (23, 25)

Nonin series (Nonin Medical, USA) 20 0 64 (26)

impaired cerebrovascular reactivity was present (23). Another
investigator used TOx and found that impaired cerebrovascular
reactivity on the side contralateral to the aneurysm was
significantly more frequent in the DCI group than in the non-
DCI group (58 vs. 16%, p = 0.014) and was associated with an
OR of DCI of 19 (95% CI: 1.2–320) (24). Using a threshold of
0.07 conferred TOx a sensitivity of 58% and a specificity of 91%
to predict DCI.

Only three studies have examined the relationship between c-
rSO2 and outcome in aSAH patients. In one study, 163 aSAH
patients were monitored between day 5 and 10 after aneurysm
rupture (26). Using the definition of cerebral desaturation of
<50% for 30min on either side, and poor outcomes as a mRS of
4–6, it was observed that cerebral desaturation was independently
associated with poor functional outcomes at 3 months (OR 2.72,
95%CI 1.02–7.20) but not at 12 months. In a small study of
38 patients using a definition of cerebral desaturation of <60%
for at least 30min on either side, patients with an unfavorable
outcome spent more time with a cerebral desaturation than those
with a good outcome (5 h 43 vs. 1 h 47, p = 0.02) (61). Patients
with episodes of cerebral desaturation lasting more than 2 h were
at much higher risk of poor short-term outcomes than those
without [OR 15.4 (95% CI: 1.1–214.2%)]. Another small study
of 31 patients evaluated the association between NIRS-based
cerebrovascular reactivity indices and optimal blood pressure
with functional outcomes at 3 months and defined unfavorable
outcome as ≥ 3 on the mRS scale (44). In this study, preserved
cerebrovascular reactivity, as defined by a negative or near-zero
TOx was associated with good functional outcomes at 90 days
(OR, 2.5; 95% CI, 1.3–4.8), including after adjustment for age,
WFNS and DCI. Using NIRS-derived optimal blood pressures,
%time outside the limits of autoregulation was significantly
associated with poor 90-day outcomes (OR, 1.9; 95% CI, 1.3–2.9)
and deviation fromNIRS-derived autoregulatory limits predicted
poor 90-day outcomes with high sensitivity (0.82; 95% CI, 0.67–
0.98) and specificity (0.88; 95% CI, 0.76–1.00) (34). The studies
beforementioned are observational. NoNIRS-based intervention
study has been conducted in SAH patients with long term
functional outcome as a primary outcome. There is no data to
support specific NIRS-based management recommendations to
improve outcome in this population.

DISCUSSION AND PERSPECTIVE

Despite widespread availability for more than two decades
and obvious user-friendly characteristics, the role of NIRS in
aSAH management is still ill-defined. The technology possesses

obvious advantages: simple, safe, non-invasive, continuous.
Unfortunately, limitations are significant. One is the important
differences amongst devices: types and amounts of light
sources, wavelengths used, the distance between the emitters
and detectors, the number of detectors, arterial:venous ratio
assumptions, underlying proprietary algorithms, reported
normal baseline values, degree of extracranial contamination.
All these affect data accuracy and interpretation, complexifies
the adoption of conclusions obtained from one device to
another and is akin to work with uncalibrated instruments.
Technical problems, although rarely reported, should also be
considered. In some studies, up to 20% of the readings were
non-valid (34, 62). Competition for space on the forehead for
electroencephalography and lack of long-term adherence of
probes because of sweat are also potentially common (62).
Frontal hematoma, wounds on the forehead and deficient NIRS
signal are sometimes used as exclusion criteria (30) and bifrontal
decompressive craniectomies prevents usual NIRS placement
and interpretation (53). This review only covered commonly
used NIRS technologies at the bedside, but other devices rely
on time domain (63) and frequency domain spectroscopy (64)
rather than continuous wave spectroscopy. Some also employ
hybrid technologies such as ultrasound tagged near-infrared
spectroscopy (65) or diffuse correlation spectroscopy and diffuse
optical spectroscopy (66) to provide relative estimates of CBF
changes. However, promising these technological advances
might sound, none was proven superior for clinical applications
in aSAH.

The lack of a normal range of c-rSO2 for neurocritical care
patients, especially aSAH, is troublesome. The lack of consensus
regarding a lower limit of NIRS-derived c-rSO2 values, serving
as an intervention threshold, is even more problematic. Various
thresholds, duration, variations from the baseline, asymmetries,
cerebrovascular reactivity indices and ischemic burdens have
been described. None has established itself as a significant
physiological or clinical marker that should modify management
and the authors would be hard-pressed to suggest a specific
one. The overall low quality of the clinical research is important
to highlight. Published data on the use of NIRS in aSAH
since 1998 are all but one unblinded, uncontrolled, single
center observational studies, a third of which included fewer
than 15 patients. Consensus definition of DCI and cerebral
infarction are used in less than a third of the studies, and 90
days outcome are reported in <25%. Poor-grade aSAH, the
population most susceptible to benefit from such a monitoring,
is vastly underrepresented.

Conducting research on DCI in poor grade aSAH is
difficult. DCI is a complex, elusive and evolving entity lacking
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a gold standard in patients without a proper neurological
exam. No evidence-based treatment exists. Our understanding
of brain physiology, including oxygenation, perfusion and
autoregulation, is incomplete and the impact of a monitoring
strategy on clinical decision-making is more complex than
simply assessing accuracy. Nonetheless, NIRS technology should
be submitted to rigorous evaluation and assessment. We
suggest that clinical investigators focus on pragmatic, bedside-
applicable hypotheses rather than exploratory ones. The
heterogeneity of “ischemic” indices already hinders clinical
research tremendously. The population of poor grade aSAH
should be targeted. Observational studies are to be prospective
and blinded, and intervention studies should be properly
conducted, pragmatic and multicenter randomized clinical trials.
Outcomes should include cerebral infarction on MRI as a
surrogate for DCI and 90 days or more functional and quality-
of-life outcomes using a validated scale, aligned with published
common data elements (67). As no gold standard exists for
monitoring poor grade aSAH, comparisonwith othermonitoring
tools seems futile. At least two upcoming trials might help to
shade some light on the use of NIRS in aSAH patients. One is the
NeurO2 study, a prospective, blinded, multicenter observational

study that will recruit close to 300 TBI and aSAH patients,
monitoring them with NIRS and evaluating the outcome at 6

months using the Glasgow Outcome Scale extended and EQ-5D-
5L (68). The other one is an interventional, multicenter, single-
blinded, randomized clinical trial aiming to enroll 150 aSAH
patients to evaluate NIRS-directed optimal cerebral perfusion
pressure on Glasgow outcome scale at 6 months (69).

Improving outcomes in aSAH patients is intrinsically
associated with earlier detection and treatment of DCI,
preventing evolution toward cerebral infarction and the
associated sequelae. Poor grade aSAH are at high risk of
DCI, their clinical examination is suboptimal, and monitoring
alternatives are limited. NIRS technology profile is promising, but
current evidence does not support its use to guide management
in this population. High-quality research is urgently needed.
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