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Immunoglobulin repertoire sequencing has successfully been applied to identify 
expanded antigen-activated B-cell clones that play a role in the pathogenesis of immune 
disorders. One challenge is the selection of the Ag-specific B cells from the measured 
repertoire for downstream analyses. A general feature of an immune response is the 
expansion of specific clones resulting in a set of subclones with common ancestry 
varying in abundance and in the number of acquired somatic mutations. The expanded 
subclones are expected to have BCR affinities for the Ag higher than the affinities of 
the naive B cells in the background population. For these reasons, several groups 
successfully proceeded or suggested selecting highly abundant subclones from the 
repertoire to obtain the Ag-specific B cells. Given the nature of affinity maturation one 
would expect that abundant subclones are of high affinity but since repertoire sequencing 
only provides information about abundancies, this can only be verified with additional 
experiments, which are very labor intensive. Moreover, this would also require knowledge 
of the Ag, which is often not available for clinical samples. Consequently, in general we 
do not know if the selected highly abundant subclone(s) are also the high(est) affinity 
subclones. Such knowledge would likely improve the selection of relevant subclones 
for further characterization and Ag screening. Therefore, to gain insight in the relation 
between subclone abundancy and affinity, we developed a computational model that 
simulates affinity maturation in a single GC while tracking individual subclones in terms 
of abundancy and affinity. We show that the model correctly captures the overall GC 
dynamics, and that the amount of expansion is qualitatively comparable to expansion 
observed from B cells isolated from human lymph nodes. Analysis of the fraction of 
high- and low-affinity subclones among the unexpanded and expanded subclones 
reveals a limited correlation between abundancy and affinity and shows that the low 
abundant subclones are of highest affinity. Thus, our model suggests that selecting 
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1. inTrODUcTiOn

The adaptive immune system is a key component of our defense 
against pathogens and comprises highly specialized cells and 
processes. Its humoral component is responsible for memory 
B-cell formation and high-affinity antibody (Ab) production 
resulting from affinity maturation in germinal centers (GCs) 
(1, 2). During this process, GC B cells undergo multiple rounds 
of proliferation, somatic hypermutation (SHM), and selection to 
improve their affinity for the given antigen (Ag). This results in 
a dynamic ensemble of low- and high-affinity B-cell subclones 
comprising variants of a clone within a V(D)J family produced by 
SHM. Higher-affinity cells have increased chance to be positively 
selected for further rounds of proliferation and SHM, or for dif-
ferentiation to memory cells and plasma cells.

Repertoire sequencing using high-throughput sequenc-
ing enables the determination of T- and B-cell repertoires in 
(clinical) samples by sequencing the expressed V, D, and J gene 
segments (3–6). Immune responses typically involve the initia-
tion and coexistence of up to several hundreds of GCs, which 
emerge over an extended period of time (7–9). Consequently, 
B-cell repertoire sequencing of clinical samples typically identi-
fies (sub)clones originating from a multitude of Ag-activated B 
cells and GCs or even from responses to multiple Ags. Despite 
this complexity, we and others successfully used repertoire 
sequencing for the identification of B cells involved in (auto)
immune disorders or infection. One challenge is to select the 
Ag-specific B cells from the measured repertoire. A general fea-
ture of an immune response is the expansion of specific clones 
resulting in a set of subclones with common ancestry varying 
in abundance and the number of acquired somatic mutations. 
These expanded subclones will have BCR-binding affinities 
for the Ag that are expected to be higher than affinities of the 
naive B cells in the background population. This is a direct 
consequence of the higher initial affinities of the activated B 
cells for the Ag and the subsequent affinity maturation process. 
For this reason, several groups successfully proceeded or sug-
gested selecting highly abundant subclones from the repertoire 
(10–15). Given the nature of affinity maturation, one would 
expect that abundant subclones are of high affinity, but since 
repertoire sequencing only provides information about abun-
dancies, this can only be verified with additional experiments. 
Experimental determination of BCR affinities for a reasonable 
number of subclones is feasible as is, for example, demonstrated 
by vaccination studies but very labor intensive (5, 16). Since 
B cells are destructed in the sequencing experiment, affinity 
analysis requires either selective cloning of the individual B 
cells or expression of single BCRs in cloning systems. Currently, 
these requirements prohibit a routine analysis of affinity in BCR 
repertoire studies. Moreover, affinity measurement requires 

knowledge of the Ag, which is often not available for clinical 
samples. Consequently, we do not know if highly abundant 
subclone(s) are generally also of the high(est) affinity. We devel-
oped a computational model of a single GC to gain insight in the 
putative affinity distribution among expanded and unexpanded 
subclones identified by B-cell repertoire sequencing. Inspired 
by existing models of affinity maturation [e.g., Ref. (17–20)], 
we implemented a mathematical model that comprises a large 
evolving set of ordinary differential equations (ODEs) provid-
ing information about the abundancy and affinity of individual 
subclones emerging during the GCR. We did not use one of 
the published models, since existing ODE models do not track 
individual subclones, while agent-based models [e.g., Ref. (20)] 
are faced with the additional complexity of GC spatial dynam-
ics, which we aimed to avoid. Moreover, most models are not 
available as a software implementation.

We show that our computational model is in agreement with 
typical GC dynamics. We also show that the amount of expansion 
of selected B-cell lineages from repertoire data acquired from a 
human lymph node is qualitatively comparable to the level of 
expansion observed in the simulated data. Given this support 
for our model, we subsequently inspected the affinities and 
abundancies of the individual subclones from the simulations 
and found that the expanded and unexpanded B-cell subclone 
compartments each comprise a mixture of high- and low-affinity 
cells, i.e., there is only partial correlation between affinity and 
abundancy of subclones within a clonal family. Moreover, the 
low abundant subclones were of highest affinity. Although further 
work is required to experimentally validate these results, our 
simulations suggest that selection of highly abundant subclones 
from BCR repertoires will not necessarily lead to the highest 
affinity subclones. Therefore, additional or alternative selection 
strategies should be applied.

2. MaTerials anD MeThODs

2.1. sample and experimental Data
We selected a single sample for analysis and comparison to the 
simulation results. This sample represents leukocytes isolated 
from a lymph node from an otherwise healthy human indi-
vidual, without ongoing infection (represented in biochemical 
parameters such as C-reactive protein). The sample was taken 
as described earlier (21). The needle biopsy was stored in liquid 
nitrogen until use. Total RNA was isolated using polytron tissue 
homogenizer (Kinematica AG, Littau-Lucerne, Switzerland) 
and AllPrep DNA/RNA mini kit (#80204, Qiagen, Venlo, The 
Netherlands) according to manufacturer’s protocol and stored at 
−80°C until further use. The BCR repertoire was analyzed using 
dedicated primers. This linear amplification protocol has been 

highly abundant subclones from repertoire sequencing experiments would not always 
lead to the high(est) affinity B cells. Consequently, additional or alternative selection 
approaches need to be applied.
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FigUre 1 | simulation time line of the germinal center reaction (gcr). 
The GCR starts with 3 founder B cells (affinities 0.1, 0.2 and 0.3 μM) 2 days 
after immunization and continues for 21 days.
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extensively described earlier (3, 10, 22). Samples were prepared 
for sequencing according to the manual for amplicon sequenc-
ing (Roche FLX Titanium platform). Study candidates were 
informed about the background and purpose of the study and 
the biopsy procedure and possible complications (in particular 
hematoma). Written informed consent was obtained. Ethics 
approval was provided by the Ethics Committee Academic 
Medical Center/University of Amsterdam. Repertoire sequenc-
ing resulted in 7,771 reads (6,777 unique reads). Processing of 
the sequence data was performed as described in Ref. (3). In 
brief, reads from a multiplexed sequence run were separated by 
their multiplex identifiers (MID) and aligned against the IMGT 
database (23) with BLAT (24) to identify the corresponding 
V and J segments. Subsequently, each read was translated to 
a peptide sequence, and the CDR3 sequence was determined 
by identifying conserved motifs in the V and J segment that 
delineate the CDR3 (25). Consequently, only in-frame reads 
were used. Sequences with uncalled bases in their CDR3 region 
were excluded from analysis. This resulted in 4,454 unique 
subclones (clones within a VJ family defined as a peptide with 
a unique V and J assignment, and unique CDR3 sequence). 
This number of sequence reads is sufficient to represent most 
(expanded) subclones but may miss subclones occurring at very 
low frequencies. A full analysis and presentation of this and 
other lymph node samples will be part of future paper.

2.2. The Mathematical Model
We developed a mathematical model using ordinary differen-
tial equations (ODEs) to describe the dynamics of individual 
subclones during the GCR. This model is implemented in the 
R statistical environment version 3.2.2 (26) using R packages 
deSolve (version 1.12) (27), R6 (version 2.1.2), ggplot 2.0, and 
beeswarm 0.2.1. The software is available as open source (GPLv3) 
on request from the author.

2.2.1. Overall Simulation Setup
Our simulation framework represents a simplified but adequate 
model of the GCR (1, 2) (Figure 1). Briefly, prior to the GCR, 
B cells and T cells are activated by recognition of their cognate 
antigen in the primary follicle and T-cell zone, respectively (day 
−2 in Figure  1). Activated B cells and T cells migrate to the 
interfollicular region and interact resulting in the full activation 

of B cells, while the T cells differentiate to T follicular helper 
cells (Tfh). Two days after immunization, the GCR is initiated 
(day 0 in our simulation) with the Tfh cells and activated B cells 
migrating into the follicle, which is characterized by a network 
of follicular dendritic cells (FDCs). Here, the B cells engage 
in a rapid monoclonal expansion to over 10,000 cells at day 4 
forming the GC. During this expansion, a dark zone compris-
ing centroblasts (CBs) and a light zone comprising centrocytes 
(CC), FDCs, and Tfh cells are established. The dark zone is the 
site of B-cell clonal expansion and BCR diversification through 
SHM, producing novel subclones. The GC light zone is the site 
of positive B-cell selection through Ag and Tfh binding and 
signaling. Together, these processes are responsible for B-cell 
affinity maturation. SHM has been reported to start at day 7 
post-immunization in mice (28). Oprea and Perelson (17) 
assumed that the GC is initiated 3 days after immunization and, 
correspondingly, start SHM at day 4 of the GCR in their model. 
Others reported that SHM starts 2  days post-immunization 
(29) or even prior to GC formation (30). Following Oprea 
and Perelson, we also start SHM at day 4 in our simulations. 
Following monoclonal expansion, memory cells and plasma 
cells are being produced (day 4 in our simulation). Although 
the precise mechanisms and timing of the output cells are 
not well understood (31), it has been proposed that initially 
memory B  cells are produced while at later stages the GCR 
is dedicated toward (higher-affinity) long-lived plasma cells 
(32, 33). In our model the production of memory and plasma 
cells starts at the same moment (day 4), but we made the rate of 
plasma cell differentiation dependent on the absolute affinity of 
the CCs resulting in a low plasma cell output during early stages 
of the GCR. Since we were not interested in the production of 
output cells, these are not further discussed in this paper. Our 
simulation starts at day 0 with three founder B cells (CBs) with 
different affinities and terminates after 21 days, the life span of 
an average GC. Consequently, we do not model GC shutdown 
since its mechanisms remain to be established. Our model does 
not explicitly includes the dark/light zones, Ags, FDCs, or Tfh 
cells since we are neither interested in the spatial dynamics nor 
in the precise selection mechanisms but rather in modeling 
subclonal diversity, expansion, and affinity. Therefore, to avoid 
an overly complex model, we represent the Ag and Tfh survival 
signals with sigmoidal functions as explained below.

2.2.2. Somatic Hypermutation,  
Subclones, and Affinity
The V, D, and J segments that make up the BCR cover four frame-
work regions (FWRs) providing the Ab structural framework and 
three Ag-binding complementary determining regions (CDRs) 
(34, 35). Our model considers the FWR and CDR regions without 
an explicit nucleotide representation of the BCR, but instead, 
using a decision tree that decides on the fate of each individual 
SHM (18, 36, 37) (Figure 2). This tree involves probabilities for 
silent (synonymous mutations), lethal FWR, and affinity-chang-
ing CDR mutations. The probabilities for replacement and silent 
mutations were determined from many mice germline sequences. 
The probability of the lethal mutations was based on studies that 
analyzed mutation patterns in real sequences. To determine the 
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FigUre 2 | Fate of each somatic hypermutation. After each CB 
division the daughter cells are affected by m ≥ 0 mutations that affect the 
framework region (FWR) with a probability of α or the complementary-
determining region (CDR). A mutation may replace (R) an amino acid of the 
Ig FWR or CDR region with probability β and γ, respectively. A mutation in 
the FWR is lethal with probability δ. A replacement mutation in the CDR is 
neutral or changes the affinity of the subclone. Part of our simulations 
neglect mutations indicated by the thick boxes to produce subclones at the 
peptide level. Probabilities in this tree are according to Ref. (18) and 
references therein.
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number of mutations during each CB cell division, we defined 
the BCR to have a length of 600 nucleotides (i.e., one light and 
heavy chain). Given that the SHM rate is 10−3 per bp per divi-
sion this results in 0.6 mutations per division. We model this as 
a Poisson distribution m = Poisson(λ = 0.6), and consequently, 
each cell acquires 0, 1, or more mutations after each cell division. 
The mutation decision tree distinguishes the CDRs and their 
surrounding structural FWRs but does not differentiate between 
CDR1, CDR2, and CDR3 (34, 35).

In repertoire sequencing one is usually interested determin-
ing the population of (sub)clones in an immune response. Each 
of these subclones has its own binding affinity for the Ag. Since 
the CDR3 region is the main determinant in Ag-binding, one 
generally defines and discriminates these subclones on the 
basis of their unique CDR3 peptide sequence within a VJ 
family. Alternatively, we can also define a subclone as hav-
ing a unique BCR nucleotide sequences (i.e., V-CDR3-J). In 
the first situation, only non-synonymous SHMs in the CDR3 
region produce new subclones, while in the second situation 
each non-lethal SHM results in a new subclone. The mutation 
decision tree (Figure 2) is defined at the level of the nucleotide 
sequence, and consequently, in our simulation we implicitly 
define and track subclones at the nucleotide level throughout 
the GCR. Consequently, each SHM generates a new subclone 
that is initially represented as a single CB that subsequently 
proliferates and differentiates to coexist as CB, CC, memory 
cell, and plasma cell at succeeding time points. Alternatively, 
we may consider only CDR replacement mutations to define 
and track subclones at the peptide level. In this situation, 
only non-lethal replacement mutations in the CDR generate 

new subclones. Since the tree does not specifically distinguish 
CDR3 from CDR1 and CDR2, our simulations at the peptide 
level effectively includes all three CDRs, which may give an 
overestimation of the number of unique clones compared to 
only considering the CDR3 as is done in repertoire sequencing 
experiments. However, since all three CDR regions are involved 
in Ag binding, the simulation might be more realistic. Subclones 
with CB cell counts less than one (a result from using continuous 
differential equations; see below) are kept in our simulation but 
are not further be affected by SHM to avoid the generation of 
new subclones from these cells.

Each subclone in our model has a unique BCR with an 
absolute affinity σ that specifies the interaction strength with 
the Ag. The affinities of the three single cell founder CBs 
are set to arbitrary but different low-affinity values (0.1, 0.3, 
and 0.5 μM). Three different values were chosen to establish 
an initial level competition between the founder cells. The 
magnitude of the initial affinities does not affect the dynam-
ics of our model since this depends on relative affinities 
(see below). Only plasma cell output depends on absolute 
affinities. For each affinity changing mutation (Figure 2) the 
affinity of the affected subclone is updated according to σnew 

subclone = σparent + Δσ where Δσ is drawn from a distribution f(σ) 
with probability density function:

 f g s r parent( ) ( ) ( )σ µ σ= , − − ∗ . ,0 1  (1)

where g(s, r) is the inverse gamma distribution with s = 3 and 
r = 0.3 representing the shape and rate parameter, respectively. μ 
is the expected value of g(s, r) and subtracted from g(s, r) to center 
the distribution g around zero resulting in about equal chances 
for decreasing and increasing the affinity of mutated subclones. 
We used the gamma distribution because it is right skewed and, 
therefore, allows for a small chance for making larger affinity 
improvements representing key mutations (36, 38). We do not 
distinguish between one or multiple affinity changing muta-
tions. To account for the fact that mutations in higher-affinity 
subclones have less chance to further improve affinity we shift 
distribution f to the left as a function of the parent cell affinity 
(Figure S2 in Supplementary Material). The distribution shape 
and rate parameters (3 and 0.3) and the affinity shift (0.1) were 
chosen by trial and error such as to obtain the dynamics of a 
typical GC.

2.2.3. Positive and Negative Selection of Subclones
Following cell division and SHM, the CBs differentiate to CCs 
that are programmed to undergo apoptosis (negative selection) 
unless they receive survival signals (positive selection) through 
interactions with the Ag (presented by FDCs) and Tfh cells (1). 
These selection mechanisms impose competition between the 
B-cell subclones, which are assumed to be based on their relative 
BCR affinities σrel (1). CCs bind Ag to acquire their first survival 
signal. Subsequently, the Ag is internalized and presented to 
Tfh cells. Higher-affinity B cells present more Ag and, therefore, 
compete favorably for the limited number of Tfh cells to acquire a 
second survival signal. Positively selected CCs recycle to the dark 
zone for further rounds of division and SHM, or they differentiate 
into memory cells or plasma B cells.
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FigUre 3 | The relative affinity of each subclone determines the 
magnitude of the overall survival signal. Left axis: Sd corresponds to 
signal affecting the CB to CC differentiation rate (dashed line). Sa corresponds 
to the signal affecting CC apoptosis (dotted line). Right axis: effect of signal S 
on the differentiation and apoptosis rates. A high signal results in low 
differentiation and apoptosis rates.

TaBle 1 | Model parameters.

B-cell type Proliferation 
rate (day−1)

Differentiation  
rate (day−1)

apoptosis  
rate (day−1)

Centroblast (CB) ρCB = 4 (40–42) ηCB→CC = 6 (1)

Centrocyte (CC) ηCC→M = 1 (43)
ηCC→P = 0.1 (43)
ηCC→CB = 1 (1)

μCC = 4 (17)

Plasma cell (P) μP = 0.25 (43)

Memory cell (M) μM = 0.01 (43)

Other parameters
Capacity A = 8,000 k = 0.06, n = 1 (Sd) s = 3.0

Number of founder cells: 3 k = 0.1, n = 4 (Sa) r = 0.3

Initial affinities: 0.1, 0.3, 0.5 μM h = 20 Affinity shift = 0.1 μM
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To avoid an overly complex model, Ag and Tfh survival signals 
are modeled with a sigmoidal function:

 S
krel i

rel i
n

n
rel i
n( )σ

σ
σ,
,

,

=
+

, (2)

where i denotes a subclone. This function converts relative affini-
ties σrel,i to a signal strength between 0 and 1. Relative affinities are 
obtained by scaling absolute affinities σ to values between 0 and 
1. Signal S affects the CB to CC differentiation rate (ηCB→CC) and 
the CC apoptosis rate (μCC) [equations (3a) and (3b)]. Recently, it 
was shown that higher-affinity cells stay longer in the dark zone 
further facilitating their expansion and diversification resulting 
in less apoptosis (39). This is accommodated in our model by 
multiplying the CB to CC differentiation rate with (1 − S) result-
ing in a rate between 0 and its maximum value ηCB→CC (Table 1). 
Similarly, a higher signal reduces the apoptosis rate. We assume 
that S does not affect these rates to the same extent and, therefore, 
we parameterized S separately for differentiation and apoptosis. 
We set k = 0.06 and n = 1 for differentiation (Sd), and k = 0.1 
and n  =  4 for apoptosis (Sa; Figure  3). The parameters k and 
n were chosen to obtain a typical GC response that attains a 
maximum number of cells during the first phase of the GCR. 
During our simulation the emergence of new subclones with 
higher absolute affinity will “push” existing subclones with lower 
affinities to lower relative affinities as result of the scaling and, 
hence, to smaller survival signals resulting in the vanishing of 
these subclones.

2.2.4. Ordinary Differential Equations
Each subclone i assumes 4 phenotypes: centrocytes (CCi), centro-
blasts (CBi), memory cells (Mi), and plasma cells (Pi) (Figure 4). 
The temporal dynamics of each individual subclone is described 
by a set of ordinary differential equations (ODEs) representing 
these four phenotypes [equations (3a)–(3d)].

 
dCB

dt
A

CB A
CB CC

S

i
CB

h

total
h h i CC CB i

d rel i

= ⋅
+









 ⋅ + ⋅

− −

→

,

ρ η

σ1 ( )(( ) ⋅ ⋅→ηCB CC iCB

 (3a)

 

dCC
dt

S CB CC

S

i
d rel i CB CC i CC CB i

a rel i

= −( ) ⋅ ⋅ − ⋅

− −( )
, → →

,

1

1

( )

( )

σ η η

σ ⋅⋅ ⋅ − ⋅

− ⋅ ⋅
→

→

µ η

η σ
CC i CC M i

CC P i i

CC CC
CC

 (3b)

 
dM
dt

CC Mi
CC M i M i= ⋅ − ⋅→η µ  (3c)

 dP
dt

CC Pi
CC P i i P i= ⋅ ⋅ − ⋅→η σ µ  (3d)

To allow the GC to grow to a sufficient number of cells dur-
ing monoclonal expansion, the signal S{d,a} is set to 0.9 for the 
first 4  days of the simulation to reduce differentiation of CBs 
to CCs and apoptosis of these initial CCs. The CB equation 
includes a density-dependent expansion term defining non-
specific resource competition between the B cells, reducing their 

proliferation rate if the number of cells approaches A. The CC 
apoptosis rate and the CB to CC differentiation rate are multi-
plied by ( ( ))1− ,S d a reli{ } σ  for reasons explained above. Plasma cell 
differentiation depends on the absolute affinity σi to reduce their 
production at earlier stages of the GCR. During the simulation 
we calculate the differential equations for periods of 6  h (the 
duration of one CB division). After each division we impose 
SHM and update the population of subclones as described above. 
For each non-lethal SHM, a new subclone and an additional set 
of four ODEs are created. The CB cell count for new subclones 
is set to one, while the corresponding cell counts for the CCs, 
memory cells, and plasma cells are set to zero. The CB cell count 
of the parent subclone is reduced by one. If the sum of CC and CB 
counts for subclone i is less than 0.1 cell, we remove the subclone 
and corresponding equations from the system. Since SHM is a 
stochastic process that affects the subclone population and their 
(relative) affinities, we repeated the simulations 15 times with 
the same initial conditions (three founder B cells with initial 
affinities 0.1, 0.3, and 0.5).
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FigUre 4 | graphical representation of the ordinary differential 
equations representing a single subclone i. Each subclone assumes four 
phenotypes: centrocytes (CC), centroblasts (CB), plasma cells (P), and 
memory cells (M). Cells proliferate (ρCB), differentiate (ηCB→CC, ηCC→CB, ηCC→P, 
ηCC→M), or go into apoptosis (μCC, μP, μM) with indicated rates. The apoptosis 
rate of CCs and differentiation rate of CBs depend on signal Sa and Sd, 
respectively. Differentiation to plasma cells depends on the absolute affinity of 
the CCs.
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2.2.5. Model Parameters
Parameter values for proliferation, differentiation, and apopto-
sis were obtained from literature (Table 1). Parameters A and h 
were chosen to limit the maximum size of the GC. Values for 
parameters k, n, s, r, and affinity shift were acquired by trail and 
error aiming to produce a typical GC response with a peak of 
at least 10,000 cells during the first phase of the GCR. There 
are very limited (quantitative) data describing the GC response. 
We are not aware of any data obtained from human samples 
describing the dynamics of GC volume (number of cells) during 
the GCR. Consequently, the precise timing and magnitude of 
the maximum GC response, its decay, the biological variation 
of this response across samples and organisms, and the factors 
affecting this response remain to be established. The canonical 
GC response has, for example, been observed by tracking follicle 
center volume as fraction of total splenic volume in mice (41) or 
as fraction of the total volume of the GC in rat (44), which may 
be used as GC cell count substitutes. These volumes showed a 
peak during the first phase of the GC. Such measurements have 
been used previously to validate a GC model (20). However, 
other studies showed that there might not exist a typical GC in 
terms of size (45), and that GCs in a single immune response 
might not be synchronized (8). The lack of precise quantitative 
data, current uncertainties in GC dynamics, and our decision 
not the model GC termination limits the possibilities and 
value of a compute-intensive parameter inference strategy to 
obtain values for the aforementioned parameters. However, 
instead of our trial and error approach, Approximate Bayesian 

Computation algorithms (46), MEANS (47), or other methods 
may be used to fit parameters on complex stochastic models 
such as ours.

2.3. identification of expanded subclones
To determine a threshold that identifies expanded subclones we 
follow an approach that is similar to the method we applied in our 
previous repertoire sequencing studies, e.g., Ref. (3, 10). First, a 
histogram of counts c (cell counts for simulated data and read 
counts for experimental data) for all (un)expanded subclones 
is constructed to reflect their cell/read count frequencies F(c) 
(Figure S3 in Supplementary Material). In general, subclones 
with low counts (e.g., c = 1) occur much more frequently (high F) 
than subclones with high count (e.g., c = 100). Next, we define 
T as lowest count c for which F(c) =  0. That is, no subclones 
with c cells/reads are observed. We assume that F(c ≥ T) = 0 for 
the underlying but unknown null distribution of unexpanded 
subclones. We define subclones with c  >  T  (F(c)  ≥  1) to be 
expanded. That is, subclones observed with cell/read counts 
c  >  T are larger than expected based on the distribution of 
unexpanded subclones. The threshold T is stringent but could 
be relaxed by defining the threshold T as the lowest count c for 
which F(T) < p, with p ≥ 1.

The expansion threshold T was estimated for each individual 
simulation. We assumed that repertoire sequencing experiments 
measure mainly CCs since CBs do not, or at very low levels, 
express BCRs. Consequently, for the simulated data we determine 
threshold T from CC cell counts only. CC cell counts were taken 
from the last time point of the simulation.

2.4. comparison of simulated and 
experimental Data
We qualitatively compare subclone cell counts from our simula-
tions to read counts from a single sample repertoire sequencing 
experiment. Since our computational model does not explicitly 
represents the BCR as a nucleotide (or protein) sequence we 
do not consider multiple (back) mutations occurring at previ-
ously mutated positions. Consequently, the number of different 
mutations and, hence, subclones in our simulation is slightly 
overestimated.

Each unique nucleotide read obtained from repertoire 
sequencing (RNAseq) can be considered as a unique subclone 
representing a set of mutations acquired during affinity matura-
tion. Statistics calculated for these subclones can be compared 
to statistics calculated for the nucleotide-level subclones gener-
ated in our simulations. Alternatively, we can define subclones 
measured in the sample at the peptide level as having unique 
combination of V and J segments (determined by alignment) 
together with a unique CDR3. The peptide level definition 
allows to compare the statistics from the experimental data to 
the peptide-level simulations. In contrast to subclones analyzed 
at the nucleotide-level, this definition considers any mutations 
in the CDR3 for the experimental data and any affinity changing 
mutation in CDR1,2,3 for the simulated data.

Repertoire sequencing experiments performed on tissue (e.g., 
lymph node) generally results in a set of subclones from multiple 
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TaBle 2 | selected B-cell subclones from sample ln25.

subclone Total largest cluster 
(lineage)

subclones reads subclones reads

V3.7-J4 (nt) 171 334 84 232
V3.74-J4 (nt) 125 249 23 56
V3.23-J4 (nt) 37 60 5 12

Total (nt) 333 643 112 300

V3.7-J4 (pep) 89 606 19 36
V3.74-J4 (pep) 97 519 9 14
V3.23-J4 (pep) 76 193 7 12

Total (pep) 262 1,318 35 62

second largest cluster 
(lineage)

V3.7-J4 (pep) 89 606 9 417

V and J nomenclature follow IGMT (23, 34). Subclones are defined as unique nucleotide 
sequences (nt) or as peptides (pep) with unique V and J assignment and a unique 
CDR3 sequence. For each V–J family, the number of subclones and corresponding 
number of sequence reads are shown. The selected clusters for the given V–J 
segments correspond to the largest cluster of subclones having ≤2 differences at 
nucleotide or peptide level. For V3.7-J4, the second largest cluster, which contains the 
most abundant subclone, is also included.
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GCs and, most likely, from different Ag responses, while in our 
simulation we generate subclones from a single GCR initiated by 
three founder clones. We account for this by selecting subclones 
corresponding to three lineages from sample LN25. We first map 
all reads against reference sequences extracted from the IMGT 
database to determine their V and J segments. Subsequently, 
combinations of V and J are counted, and reads corresponding to 
the three most abundant V–J combinations (V3.7-J4, V3.74-J4, 
and V3.23-J4) are selected. The resulting three groups of reads 
still comprise subclones from multiple lineages. Therefore, we 
subsequently aligned all pairs of reads within each V–J group 
to determine the number of nucleotide differences (mutations) 
between them. Each pair of reads with two or fewer differences 
is connected to form clusters of subclones that are assumed to 
belong to the same lineage. Finally, the largest cluster (lineage) 
for each V–J combination was selected. The same procedure was 
followed at the peptide level. Since these three clusters did not 
include the most abundant subclone, we also selected the second 
largest cluster from the V3.7-J4 subclones. The results of this pro-
cedure are shown in Table 2. Note that the number of differences 
between pairs of not connected reads within a cluster (lineage) 
may be larger than 2. These clusters of reads could in principle be 
subjected to further phylogenetic analysis to determine a lineage 
tree establishing their relationships (48).

3. resUlTs

First, we confirm that the computational model produces the 
dynamics of a typical GC response that currently is not very well 
defined as discussed in the method section. We performed 15 
repeated simulations with subclones defined at the nucleotide 
level. In agreement with previous work, the GC response peaks 

around day 8 (Figure 5A) (41, 44, 45). The size of the GC reaches 
approximately 14,000 cells, which is in agreement with estima-
tions from histological sections of two GCs (49). The CB to CC 
ratio (not shown) after day 8 remains between 1.4 and 2.0 and is 
in agreement with data obtained from intravital microscopy (50). 
The maximum number of SHMs in subclones emerging from our 
simulation ranges from 4 (day 10) to 11 (day 21) and is in good 
agreement with the 9 somatic mutations found in a single Ab after 
affinity maturation (51); with the 8 to 18 mutations found in an 
analysis of BCR sequences obtained from cells from GC sections 
derived from human lymph nodes (49); and with the 4 to 9 muta-
tions observed in B cells from single GCs obtained from mice 
lymph nodes (52). Monoclonal expansion of the 3 founder cells 
results in many low-affinity subclones at the initial GC stage, but 
gradually higher-affinity clones start to appear and outcompete 
lower affinity subclones. As expected from affinity maturation, 
and in agreement with other computational models [e.g., Ref. 
(17, 20)], the subclone population evolves to higher affinities 
(Figure 5B). The drop in the CB cell count after day 4 is caused by 
the initiation of SHM and the subsequent differentiation to CCs 
that may go into apoptosis. Since we do not model GC shutdown, 
the cell counts remain relatively stable after 14 days. These results 
show that our computational model adequately captures the 
dynamics of a typical GCR.

3.1. subclonal Diversity
Figure  6 shows the dynamics of individual subclones during 
the GCR at the nucleotide and peptide level. Initially, 3 founder 
clones expand monoclonally until day 4 after which SHM is 
initiated and new subclones with higher affinities start to be 
produced. The three low-affinity founder subclones reach high 
cell counts since, during monoclonal expansion, no lethal SHM 
occurs and S{d,a} assumes a large value (0.9) resulting in a very low 
rate of CB differentiation and CC apoptosis. New (higher-affinity) 
subclones realize much lower cell counts because they start as 
single proliferating cells but are also reduced in count due to new 
mutation events and apoptosis as a result of competition with 
higher-affinity subclones. Interestingly, although the population 
of subclones evolves to higher affinities (Figure  5B) there is 
neither a single nor a small set of subclones that dominates this 
population during the later stages of the GCR. In fact, the number 
of unique subclones (Figure 6A) remains around 550 during the 
second half of the GCR.

From sample LN25 we identified 112 nucleotide-level defined 
subclones (i.e., unique sequence reads) corresponding to 300 
reads in the three largest lineages (Table  2). Since multiple 
sequence reads may originate from a single B-cell it is not pos-
sible to scale these numbers to 14,000 GC cells but obviously 
300 reads do not represent this many GC cells. Therefore, these 
112 subclones underestimate the true number of subclones in a 
single GC. Although this number does not provide a validation 
for the 550 subclones observed in our simulations, it does show 
that the diversity of subclones in the experiment and the simula-
tions is high. Using multiphoton microscopy and sequencing, it 
was recently shown that efficient affinity maturation can occur 
without homogenizing selection, and that loss of clonal diversity 
during the GCR varies widely from one GC to the other (52). Note 
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FigUre 6 | Dynamics of individual subclones from a representative simulations. (a) Subclones defined at the nucleotide level. (B) Subclones defined at the 
peptide level. Only subclones with (a) CC cell counts ≥4 and (B) CC cell counts ≥11 at any time point are shown. During the course of the GCR, new subclones of 
higher affinity emerge (indicated by the coloring scheme). The light blue lines represent the 3 founder subclones of low affinity. The dotted blue line shows the 
number of unique subclones.

FigUre 5 | Overall gc dynamics emerging from the model. CB and CC with cell counts >0 are plotted. (a) Dynamics of CB and CC cell counts during the 
GCR. Top curve shows the total cell count. Each point represents the average cell count of 15 simulations at time intervals of 6 h (1 CB division). The vertical lines 
denote the SDs. (B) Evolution of absolute affinities during the GCR. Each colored line corresponds to an affinity class for which we summed the cell counts of the 
corresponding subclones.
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FigUre 7 | subclones measured in a lymph node sample (ln25) from 
a healthy individual. The blue points show the read counts for all 4,454 
subclones measured in this sample (34 expanded subclones). The expansion 
threshold (T = 14) is determined from the all LN25 subclones and indicated 
by the dashed line. Subclones of the three most abundant V–J combinations 
are shown in orange, green, and purple. The red dots indicate the subclones 
of the largest clusters and, for V3.7-J4, also the second largest cluster. Read 
counts of the expanded subclones are shown. The numbers in the 
parenthesis show the number of expanded subclones in the selected V–J 
subsets.
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that when comparing Figure 6A (nucleotide level) to Figure 6B 
(peptide level), the overall dynamic behavior is similar but the 
cell counts of higher-affinity peptide-level subclones are about 
five times larger. An increase in cell count is expected since, in 
this scenario, neutral and synonymous somatic mutations do not 
result in new subclones and, hence, no reduction of cell counts 
occurs. The number of unique subclones is still in the same order 
of magnitude as the previous simulation but counterintuitively 
increased compared to previous situation since a decrease is 
expected due to the fewer mutations imposed on these subclones. 
The observed increase is, however, a result of plotting and sum-
ming only the subclones with CC cell counts ≥1. Including cell 
counts <1 shows that the number of subclones indeed decreases 
(data not shown).

3.2. subclonal expansion
Expanded subclones are derived from experimental data on the 
basis of their peptide-level definition and relative abundance. 
Basically, this definition neglects any mutation in the V and J 
region and any synonymous mutations in the CDR3. We identi-
fied expanded subclones from the experimental data (Figure 7). 
First, the expansion threshold was determined using all subclones 
from the LN25 sample resulting in 34 expanded subclones. Using 
this threshold (T  =  14), a total of 3 and 9 subclones from the 
V3.7-J4 and V3.23-J4 subclones, respectively, are expanded. For 
each V–J family, Figure 7 also shows the subclones corresponding 
to the largest cluster (read counts ranging from 1 to 11), and for 
V3.7-J4, the subclones corresponding to the second largest cluster 
(read counts ranging from 1 to 261). This shows that subclones 
within a B-cell lineage may exhibit a wide range of read counts, 
which is in agreement with our simulated data. It also shows that 
the most abundant subclones do not necessarily belong to the 
largest cluster within a V–J family.

The clonal size (number of reads of a subclone divided by total 
number of reads) of the expanded LN25 subclones varies from 
0.2 to 3.4%. Together, these represent 0.8% (34 out of 4,454) of 
all subclones. This is similar to the amount of expansion found 
in one of our previous studies where clonal sizes ≥0.5% were 
found to represent expanded subclones representing 0.3 and 
1.9% of the subclones in peripheral blood and synovial tissue of 
RA patients, respectively (10). Since our computational model 
does not explicitly consider V and J segments, and because we 
cannot distinguish CDR3 from CDR1 and CDR2 mutations, we 
cannot group subclones resulting from our simulation in a way 
similar to the experimental data. However, by neglecting neutral 
and silent FWR/CDR mutations we can simulate subclones at 
the peptide level. The resulting subclones differ only in their 
CDR regions. The expanded peptide-level subclones in our 
simulation represent clonal sizes ranging from 0.3 to 8.7% rep-
resenting 0.3 to 1.0% of the subclones. This degree of expansion 
is in the same order of magnitude as expansion observed in our 
experimental data.

3.3. Bcr affinity of (Un)expanded 
subclones
Repertoire sequencing provides only information about the 
relative abundance of B-cell subclones in a sample. In contrast, 
our computational model provides also information about 
the (relative) affinity of each subclone, which we use to gain 
insight in the affinity distributions among expanded and 
unexpanded subclones. High absolute affinity was defined by 
setting a threshold at the 75th percentile of absolute affini-
ties of all subclones produced during the course of the GCR 
(range 1.53–10.6; 75th percentile is 3.00). Figure  8 shows 
the number of high- and low-affinity subclones among (un)
expanded subclones for each of the 15 simulations. In these 
simulations we defined the subclones at the peptide level. In 
these 15 simulations, the percentage of low-affinity subclones 
among high-abundant subclones varies from 17 to 70%. The 
percentage of high-affinity subclones among the low abundant 
subclones is about 25% in each of the simulations. In 14 out of 15 
simulations, the affinity of most abundant subclones belongs to 
the highest 25% of affinities (Figure 9A), but the most abundant 
subclones never correspond to the highest affinity subclone 
(Figure 9B). Figure 9B shows that the affinity tends to increase 
with subclone abundance (spearman rank correlation is 0.6) 
but that the largest affinities correspond to the low abundant 
subclones. Increasing the affinity threshold to 95% results in 
more low-affinity subclones among the expanded subclones 
(data not shown).

Although the affinity distribution depends on the expansion 
and affinity thresholds, the results demonstrate that lower affin-
ity cells will be among the expanded subclones and vice  versa. 
However, in a repertoire sequencing experiment one might not 
detect the very low abundant (high-affinity) subclones. The high-
affinity cells in the unexpanded fraction are either new subclones 
that have undergone significant affinity improvement but did 
not yet have sufficient time to proliferate or are high-affinity 
subclones previously expanded but now being outcompeted by 
new subclones.
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FigUre 8 | numbers of high (dark gray) and low (light gray) affinity subclones among expanded (a) and unexpanded (B) subclones in 15 simulations 
(x-axis). Subclones were defined at the peptide level. There are many more unexpanded subclones compared to expanded subclones. Subclones with CC cell 
counts >0 were included. The numbers at the x-axis denote the thresholds for expansion (T) and absolute affinity (75th percentile).
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4. DiscUssiOn

The identification of autoreactive B cells is important for 
understanding the pathogenesis of autoimmune diseases and 
developing therapies that target specific B cells to improve clinical 
outcome. However, for many autoimmune disorders the Ags 
are unknown, which makes screening approaches challenging. 
Repertoire sequencing strategies have been developed as an 
alternative Ag-agnostic approach to identify autoreactive B 
cells while relying on the assumption that expanded B cells 
measured in blood or tissue are involved in the pathogenesis 
of the disease. B-cell subclones identified by sequencing can be 
cloned and functionally characterized and used to identity the 
autoantigen. In previous work we demonstrated that expanded 
clones identified by repertoire sequencing of synovium samples 
from RA patients point to putative autoreactive B cells (10). This 

potentially provides the opportunity to develop novel therapeutic 
approaches targeting these cells.

(Deep) Repertoire sequencing is successfully used for the 
identification of antigen-specific B cells involved in immune 
disorders or infection. Since clonal expansion is a general fea-
ture of an immune response, the selection of highly abundant 
subclones to identify the Ag-specific B cells has been suggested 
and used by several groups (10, 12–15). Selected subclones can 
subsequently be characterized or can facilitate the identification 
of the Ag (11, 53). However, repertoire sequencing itself provides 
no information about affinity. Therefore, we developed a com-
putational model to investigate the relation between subclone 
abundance and affinity. Although our computational model was 
not expected to provide precise quantitative results, we showed 
that the fraction of low-affinity cells among expanded subclones 
and the fraction of high-affinity subclones among unexpanded B 
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FigUre 9 | (a) Distribution of high-affinity subclones (red) among all subclones for 15 simulations. (B) Density plot of CC cell counts and absolute affinity for 
simulation 1. Inset shows only the low abundant subclones. Data points show a selection of subclones imposed on the density plot. Green points denote the 
expanded subclones. Purple points indicate a selection of low abundant subclones. The red line shows a lowess regression to indicate the overall relation between 
abundance and affinity.
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cells are substantial (Figure 8). There exists a moderate positive 
correlation between subclone abundance and affinity, but we also 
showed that the highest affinity subclones are of very low abun-
dance (Figure 9). We performed a sensitivity analysis to assess 
the robustness of the model for changes in model parameters (see 
Supplementary Material). This analysis showed that changes in 
parameter values have mostly small to moderate effects on the 
output of the model but do not change the main results of the 
simulations. Therefore, based on our simulations, we conclude 
that selection of highly abundant subclones may not necessarily 
lead to the high(est) affinity B cells. We realize that this conclu-
sion will need further experimental validation by simultaneous 
measurement of abundance and affinity although this will remain 
difficult for clinical samples. Evolving experimental technologies 
and approaches may make this less labor intensive in the future. 
Using a tractable immunization mouse model and a well-defined 

Ag might be a first step toward validation. In this case, a single 
cell strategy is required to sequence both the heavy and light 
Ig chains. Subsequently, the Igs must be cloned and expressed 
followed by measuring antibody–antigen binding kinetics using 
surface plasmon resonance (54).

However, to support the results from the simulations we 
analyzed a lymph node sample (LN25) to determine (i) the 
variability of subclone frequencies within a lineage, (ii) the 
number of expanded subclones, and (iii) the subclonal diversity. 
Although each of these analyses supported the simulation, the 
LN25 sample could have contained plasma cells (PCs) that 
express as much more RNA than GC B cells (55) thereby distort-
ing the relationship between sequence read counts and cellular 
abundances. We could not verify this experimentally since no 
sample was left available. In addition, we did not account for 
possible sequencing and PCR errors using molecular barcodes or 
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other methods (56–60). Such errors may result in (low abundant) 
artificial subclones that potentially affect the interpretation of 
the data analysis. PCs and sequencing/PCR errors can affect the 
variation subclone frequencies that we observe in the data, but it 
is unlikely that all variability is explained by these artifacts as it 
is an intrinsic characteristic of affinity maturation. The number 
of expanded subclones can be inflated by PCs, but it is unlikely 
that all subclones above our threshold are PCs and, hence, the 
percentages of expanded clones determined from the data and 
simulations would probably stay comparable if PCs would be 
removed. Sequencing/PCR errors artificially increase subclonal 
diversity but naively extrapolating the number of subclones 
observed in the selected LN25 VJ families to 14,000 GC cells 
in the simulation demonstrates that removing these errors would 
in fact bring the observed variability closer to the simulation 
results. Moreover, it is unlikely that the creation of these artificial 
low abundant subclones largely effect the frequencies of the 
expanded subclones from which they could have originated. 
Thus, we expect that sample LN25 after accounting for PCs and/
or sequencing/PCR errors, would still support the simulation 
results. Moreover, note that we do not use the sample to directly 
verify the relationship between cell count and affinity, which is 
solely derived from the simulations. However, to further validate 
our simulations we selected and analyzed a public BCR repertoire 
data set obtained from a cervical lymph node from a chronic 
multiple sclerosis patient (61). In this sample no CD188+ PCs 
were observed. Results from this analysis are similar as those 
obtained from the LN25 sample and also support our simulation 
results (see Supplementary Material).

In addition to merely selecting highly abundant subclones 
from B-cell repertoires, there exist alternative selection strate-
gies that can be used to identify the Ag-specific B cells (6). For 
example, it has been shown that representative Abs selected 
from clonal families, reconstructed by phylogenetic analysis, 
neutralize influenza more effectively than “singleton” Abs that 
use heavy-chain V(D)J and/or light-chain VJ gene segments 
that are not used in any other Ab in the repertoire (5). This 
study showed that Abs from clonal families have significantly 
higher affinities than did singleton antibodies. Such strategy 
could be combined with subclone abundance. In previous 
work we have shown that the identification of pathogenic 
subclones in RA benefits from the selection of high-abundant 
subclones that are present in multiple joints within a patient 
(10, 22). It would be interesting to determine the affinity of 
these overlapping subclones in comparison to high-abundant 
non-overlapping clones. Marcatili and coworkers (62) used 
BCR repertoires from a large number of CLL patients to cluster 
the receptors into groups with similar sequence properties 
that potentially can be used for prognostics. Alternatively, one 
can compare repertoires across patients to identify consistent 
Ab sequence features (63). One might be tempted to identify 
high-affinity clones by selecting the clone with the highest 
number of somatic mutations since multiple rounds of pro-
liferation, SHM, and selection increases the overall affinity of 
the GC B-cell population, but such correlation between affinity 
and number of mutations is not observed in our simulation 
results (data not shown). In addition, mutation and affinity 

measurements the study of Tan and coworkers did also not 
reveal such correlation (5).

Surprisingly, our model shows that the number of unique 
subclones in a single GC remains remarkably constant through-
out the GCR and does not evolve to a single or few high-affinity 
dominating subclones although the affinity of the population as 
a whole increases as has been shown in previous studies (17, 20). 
Moreover, the cell counts of individual subclones remain very 
low. Adding additional mechanistic detail (e.g., GC shutdown) is 
unlikely to change this observation. Moreover, this observation is 
in agreement with repertoire sequencing data and also seems in 
agreement with a recent study that showed that many clones may 
mature in parallel, and sporadic clonal bursts generates many 
SHM variants of a clone (52).

The parameters used in the model (Table  1) and mutation 
probabilities in the decision tree (Figure 2) are not all based on 
recent experiments and data. Moreover, we have taken param-
eters and other information (e.g., the typical GC response) mostly 
from mouse studies since human data are often not available. It 
might therefore be necessary to use more up-to-date experimen-
tal approaches and/or (public) data to revisit these parameters 
and probabilities in order to establish them with more precision, 
under a variety of different conditions, and for different organ-
isms. For example, the immunogenetics community made large 
progress in establishing comprehensive immunoglobulin V-gene 
databases. Recent work based on these data showed that there 
exist large differences between different mouse strains, and that 
mouse repertoire is more germline-focused than the human 
repertoire suggesting that affinity maturation is less important 
for mouse than it is for human (64, 65). Therefore, a typical GC 
response for human might be different from mouse. It also sug-
gests that our mutation probabilities that were based on limited 
mouse data generated prior to 1998 (18) need to be updated as 
part of future work.

Our model can be improved in several ways. Given the current 
results it would be interesting to investigate if our results hold 
with more detailed GC models since with the current model it is 
very difficult to control the amount of expansion by changing the 
sigmoid functions without distorting the overall GC dynamics 
(although this might happen also in vivo). It would be interesting 
to investigate what exactly controls selection pressures and how 
this affects subclonal expansion and the BCR affinity distribution. 
Nevertheless, as we have shown, the current magnitude of expan-
sion observed from the model is in the same order of magnitude as 
observed in experimental data from LN25. However, the amount 
of expansion shown in sample M5 (Supplementary Material) can 
currently not be reproduced with the model. To allow a better 
comparison to the experimental data we plan to include an 
explicit representation of the BCR as a nucleotide sequence in 
our future model. This would allow to distinguish between the 
different CDR regions, to account for multiple (back) mutations 
at identical positions, and to more precisely specify subclones at 
both the nucleotide and protein level. In analogy to Ref. (7, 66), 
this would allow to explore the clonal composition and subclonal 
dynamics in a system where the BCR sequence with the highest 
Ag affinity is known and can be reached in few (key) mutations 
such as in the response against (4-hydroxy-3-nitrophenyl)acetyl. 
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However, in general, the incorporation of realistic affinities in GC 
models will remain a challenge until these really can be measured 
on a large scale. Another interesting extension would include the 
egress of B cells to investigate the (sub)clonal composition in 
blood and to compare this to repertoire sequencing data obtained 
from blood samples. Finally, we did not model GC shutdown since 
its mechanism is unknown, although mechanisms have been 
hypothesized such as Ab feedback (67). It is difficult to predict 
how GC shutdown would affect the results presented in this paper 
since this would depend on the timing that such mechanism 
would affect the different cell types and how it would differentiate 
between subclones with different abundancy and affinity.
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