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Abstract

Background: The role of surgery in metastatic breast cancer (MBC) is

currently controversial. Several novel statistical and deep learning (DL)

methods promise to infer the suitability of surgery at the individual level.

Objective: The objective of this study was to identify the most applicable DL

model for determining patients with MBC who could benefit from surgery and

the type of surgery required.

Methods: We introduced the deep survival regression with mixture effects

(DSME), a semi‐parametric DL model integrating three causal inference methods.

Six models were trained to make individualized treatment recommendations.

Patients who received treatments in line with the DL models' recommendations
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were compared with those who underwent treatments divergent from the

recommendations. Inverse probability weighting (IPW) was used to minimize

bias. The effects of various features on surgery selection were visualized and

quantified using multivariate linear regression and causal inference.

Results: In total, 5269 female patients with MBC were included. DSME was

an independent protective factor, outperforming other models in recommend-

ing surgery (IPW‐adjusted hazard ratio [HR] = 0.39, 95% confidence interval

[CI]: 0.19–0.78) and type of surgery (IPW‐adjusted HR= 0.66, 95% CI:

0.48–0.93). DSME was superior to other models and traditional guidelines,

suggesting a higher proportion of patients benefiting from surgery, especially

breast‐conserving surgery. The debiased effect of patient characteristics,

including age, tumor size, metastatic sites, lymph node status, and breast

cancer subtypes, on surgery decision was also quantified.

Conclusions: Our findings suggested that DSME could effectively identify

patients with MBC likely to benefit from surgery and the specific type of surgery

needed. This method can facilitate the development of efficient, reliable treatment

recommendation systems and provide quantifiable evidence for decision‐making.
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1 | INTRODUCTION

Metastatic breast cancer (MBC), often largely incurable,
leads to a challenging prognosis for patients, with median
survival typically ranging from 2 to 3 years [1, 2]. Currently,
the treatment strategies for MBC focus on palliation, and
surgical interventions are rare [3–5]. The National Compre-
hensive Cancer Network (NCCN) Guidelines for Breast
Cancer primarily suggest surgery for palliative purposes to
address imminent complications or alleviate local symptoms
[6]. This approach stems from the prevailing belief that
tumor removal may inadvertently accelerate metastatic
growth rather than confer survival benefits [7, 8]. However,
this perspective has been challenged by several retrospective
studies suggesting that surgical removal of primary tumors
may in fact enhance survival in patients with MBC [9, 10].
The rationale lies in the potential reduction of circulating
tumor cells, including cancer stem cells, and overall tumor
burden, which could lead to improved outcomes [11, 12].
For specific groups of patients, such as those with bone‐only
metastasis or hormone receptor–positive or human epider-
mal growth factor receptor‐2 (HER)‐negative tumors,
surgery might offer some survival benefits [13, 14], as
indicated by the European Society for Medical Oncology
(ESMO) Clinical Practice Guidelines [15].

For patients with MBC opting for surgery, mastectomy
and breast‐conserving surgery (BCS) are the main choices
[16]. The trend toward mastectomy is increasingly observed,

often driven by patients' fears of cancer recurrence [17].
Some researchers advocate for BCS wherever feasible, citing
benefits including fewer complications and quicker recovery
[18]. Nonetheless, the superiority of one surgical approach
over another for MBC has not been definitively established
through randomized clinical trials. Thus, the selection of
surgical methods for patients with MBC remains an area of
ongoing investigation. Additionally, advancements in imag-
ing techniques, enabling the detection of smaller metastases,
underscore the need for more precise treatment recommen-
dations [19], taking into account the broader implications for
the management of primary tumors [20].

This population‐based study aimed to identify the most
suitable individualized causal inference model for patients
with MBC, offering personalized surgical recommendations
and determining the appropriate type of surgery. Further-
more, we explored how DL models can discern complex
correlations between an individual's characteristics and the
potential benefits of various treatments.

2 | METHODS

2.1 | Study design and data source

This retrospective cohort study evaluated the efficacy of DL
models in determining the individual treatment effect (ITE)
for patients with MBC. We compared systemic treatments
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alone versus systemic treatments combined with surgery
and also assessed BCS against mastectomy in surgical cases.
The surgeries examined included BCS, nipple‐sparing
mastectomy (NSM), modified radical mastectomy, and
radical mastectomy.

Data were sourced from the Surveillance, Epidemiol-
ogy, and End Results 18 (SEER) database, which covers
18 regions in the United States, representing 27.8% of the
population [21]. Our study adhered to the Strengthening
the Reporting of Observational Studies in Epidemiology
(STROBE) guidelines [22].

2.2 | Study population and eligibility
criteria

This study included female patients initially diagnosed with
metastatic ductal, lobular, or ductal‐lobular carcinoma
between January 1, 2010, and December 31, 2015, and
treated with systemic therapy. Cases were excluded if the
following criteria were met: (1) unknown or ambiguous
demographic information; (2) undefined breast cancer
subtypes; (3) unknown TNM stage or tumor size; (4)
unspecified metastatic sites; (5) indeterminate histological
grades or types; (6) male patients; (7) undetermined
surgery types; (8) absence of systemic treatment; (9)
bilateral or indeterminate laterality; and (10) incomplete
follow‐up or multiple malignancies. The cohort selection
process is illustrated in Figure 1a.

Tumor stages were determined using the 6th edition of
the American Joint Committee on Cancer Staging Manual.
All treatment information and other patient characteristics
included were recorded at the time of the patient's initial
diagnosis. Various curative surgeries were also performed
during initial treatment, including SEER code 20: partial
mastectomy (BCS), 30: subcutaneous mastectomy (NSM),
40: total mastectomy, 50: modified radical mastectomy,
and 60: radical mastectomy. Patients alive as of December
31, 2019, were censored, resulting in a follow‐up period of
4–10 years.

2.3 | Calculation of individual
treatment effect

In real‐world scenarios, only one treatment outcome is
observable per patient, with the alternative remaining
counterfactual. This counterfactual outcome needs to be
predicted.

We defined the outcome as the time it took for the
patient to reach 50% mortality, termed time at risk (TaR)
[23]. ITE was calculated using Equation (1), where i denotes
an individual patient and T denotes different treatments of

interest. The ITE reflects the relative efficacy differences for
each patient.

The calculation of individual treatment effect is
shown in the equation as follows:

TaR TaRITE = − .i i
T

i
T=1 =0 (1)

2.4 | Deep survival regression with
mixture effects and related works

The T‐learner adopts two models to estimate ITE as
Equation (2), where μ1 and μ0 denote models trained on
respective treatment groups [24]. Although T‐learner
mitigates some confounding artifacts, it remains suscep-
tible to inconsistent predictive performance [25] and
biased treatment allocation [26].

The individual treatment effect estimation method of
T‐learner is shown in the equation as follows:

μ x μ xITE = ( ) − ( ).1 0 (2)

The Balanced Individual Treatment Effect for Sur-
vival (BITES) data [26] address these issues using
representation‐based causal inference. Balancing the gener-
ating distributions of treatment groups has been proven to be
effective for both covariate space [27] and latent representa-
tions [28]. Even within the same treatment group, patients
still have variations in risk, limiting the proportional hazard
assumption and increasing the likelihood that confounders
will be present.

In this research, we introduce the deep survival
regression with mixture effects (DSME), a semi‐parametric
deep learning survival regression model that synthesizes T‐
learner, representation‐based, and subclassification causal
inference methods. The architecture of DSME is presented
in Figure 1b. DSME contains a shared network and two
risk‐specific networks. The shared network achieves bal-
anced distributions for generating data by maximizing the p‐
Wasserstein distance between treatment groups using
integral probability metrics (IPM) and calculating smoothed
optimal transport loss [29]. Within the risk networks, DSME
employs a finite mixture of K neural networks, with the
assignment of an individual i to each latent group mediated
by a gating function g (.) [30], facilitating the encoding of
covariate representations xi. DSME then takes each
minibatch output from the shared network as posterior
and maximizes the representations of patients with different
risks separately by the Q (·) function [30], in which Monte
Carlo expectation maximization is used to weigh the
mixture weights and learn the parameters. Because the
priori log hazard ratios (HRs) of patients in each latent
group are similar and maximized, the heterogeneity in each
mixture is subclassified [25]. The risk networks mimic the
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(a)

(b)

FIGURE 1 Diagram of the inclusion procedure and model architecture. (a) Patients inclusion flowchart. (b) The architecture of deep
survival regression with mixture effects.
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T‐leaner architecture, with each handling data from their
respective treatment cohort. The Cox partial log‐likelihood
is independently computed in different risk networks. The
loss function of DSME is formulated as Equation (3), where
q is the fraction of patients in the treatment 0 cohort, E
denotes a failure event, y denotes observed survival times,
and lCox is the negative Cox partial log‐likelihood. The
overall strength of IPM regularization is adjusted by α, and
the hazard function h (·) is deduced from the regularized
latent representation Φ. The algorithms for lIPM [26],
lCox [26], and Q (·) functions [30] are in line with previous
studies. DSME computes treatment‐specific baseline haz-
ards at inference.

The loss function of DSME is shown in the equation
as follows:

l x y E T ql h Φ x Y E

q l h Φ x Y E

αl Φ Φ

Q Φ Q Φ

( , , , ) = ( ( ( )), , )

+ (1 − ) ( ( ( )), , )

+ ( , )

+ ( ) + ( )

.

i i i i
T T T

T T T

T T

T T T T

DSME Cox
=0

0
=0 =0

Cox
=1

1
=1 =1

IPM
=1 =0

=0 =0 =1 =1

p
ϵ

(3)

2.5 | Model development and validation

All patients were randomly assigned to either the
training set (consisting of 80% of the samples) for model
training or the testing set (comprising 20% of the
samples) for assessing the models' performance. During
the training period, we used fivefold cross‐validation to
tune the models' hyperparameters, while the testing set
remained hidden. To maintain consistency across patient
data, the same cohort of patients was used in both the
training and testing sets for the surgery type recommen-
dation models as was used for the initial surgery
recommendation models, with the sole exception being
the exclusion of patients who did not undergo any
surgery. Each model was trained independently for the
two phases of recommendation tasks while sharing the
same architectural framework.

Treatment recommendations of the model can be
obtained using the value of ITE. To explore the protective
effect of the model's recommendation, we divided
patients into the recommended (Consis.) and anti‐
recommended (Inconsis.) groups, on the basis of the
actual treatment's congruence with model advice.

The Cox proportional hazards model (CPH) and
random survival forest (RSF) are commonly used machine
learning models for survival prediction. DeepSurv [31]
contains a core hierarchical structure comprising fully
connected feed‐forward neural networks (five‐layered) and
a single output node. This model calculates patient survival
risks via the negative log‐partial likelihood function.
Contrary to CPH, DeepSurv relaxes the assumptions of

data normality and variance alignment. These three
models mentioned above were implemented as part of a
T‐learner framework, where two base models are indepen-
dently developed across different treatment groups.

The Cox Mixtures with Heterogeneous Effects (CMHE)
model [32] uses a latent variable approach to capture
heterogeneous treatment effects. It presupposes that
individuals may fall into one of several latent clusters,
each characterized by unique response patterns. The
assignment function of an individual to a latent group also
allows the model to learn jointly with the component‐
specific HRs that relax the proportional hazard assumption.

Additionally, we trained and evaluated DSME and
BITES as comparisons. Altogether, six models were
developed and subjected to evaluation.

2.6 | Statistical analysis

Data analysis was performed using R version 4.1.3 and
Python 3.8. Continuous variables are reported as medians
and interquartile ranges (IQRs), and categorical variables
are presented as numbers and percentages (%). Inverse
probability weighting (IPW) and propensity score matching
(PSM) were applied to mitigate confounding and bias in
treatment selection. A marginal structural cause‐specific
Cox proportional hazards model (MSM) [33] was used to
analyze competing risks. The Log‐rank test was used to
compare the Kaplan–Meier (KM) survival curves.

3 | RESULTS

3.1 | Patients

In total, 5269 female patients with MBC with a median
follow‐up time of 37 months (IQR: 16–61 months) were
included. The median interval from diagnosis to the
initiation of treatment was 1 month (IQR: 0–1 month).
Of the total patients, 2465 (46.8%) underwent breast
surgery, with 717 (29.1%) receiving BCS and 1748 (70.9%)
that underwent mastectomy. The overall mortality rate
was 70.8% (95% confidence interval [CI]: 69.5%–72.0%).
The demographic and clinical characteristics of each
treatment group are presented in Table 1.

3.2 | Performance

In our analysis, we had a total of 5269 patients for
surgery recommendation and 2465 patients for surgery
type recommendation, after manually excluding those
who did not undergo surgery. The testing set for
performance evaluation comprised 1054 patients for
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TABLE 1 Study population.

Characteristics
Systemic treatment
(n= 2804)

Systemic treatment plus
surgery (n= 2465)

Breast‐conserving
surgery (n= 717)

Mastectomy
(n= 1748)

Age, median (IQR), years 58.0 (49.0–66.0) 57.0 (47.0–66.0) 58.0 (49.0–66.0) 56.0 (46.0–66.0)

Tumor size, median (IQR), mm 42.0 (27.0–65.0) 60.0 (27.0–68.0) 30.0 (22.0–42.0) 50.0 (30.0–75.0)

Married (%) 1296 (46.2) 1225 (49.7) 381 (53.1) 844 (48.3)

Race—White (%) 2066 (73.7) 1849 (75.0) 559 (78.0) 1290 (73.8)

Income—higher than 70,000$ (%) 939 (33.5) 786 (31.9) 251 (35.0) 535 (30.6)

Grade (%)

I 191 (6.8) 136 (5.5) 51 (7.1) 85 (4.9)

II 1252 (44.7) 897 (36.4) 269 (37.5) 628 (35.9)

III 1342 (47.9) 1420 (57.6) 395 (55.1) 1025 (58.6)

IV 19 (0.7) 12 (4.9) 2 (0.3) 10 (0.6)

Location (%)

Upper outer quadrant 799 (28.5) 695 (28.2) 223 (31.1) 472 (27.0)

Upper inner quadrant 210 (7.5) 181 (7.3) 89 (12.4) 92 (5.3)

Lower outer quadrant 177 (6.3) 167 (6.8) 66 (9.2) 101 (5.8)

Lower inner quadrant 125 (4.5) 110 (4.5) 50 (7.0) 60 (3.4)

Central/overlapping 774 (27.6) 723 (29.3) 176 (24.5) 547 (31.3)

Nipple/axillary tail 27 (1.0) 22 (0.9) 7 (1.0) 5 (0.9)

Other/unknown 692 (24.7) 567 (23.0) 106 (14.8) 461 (26.4)

T stage (%)

T1 367 (13.1) 278 (11.3) 148 (20.6) 130 (7.4)

T2 963 (34.3) 1027 (41.7) 394 (55.0) 633 (36.2)

T3 572 (20.4) 491 (19.9) 80 (11.2) 411 (23.5)

T4 902 (32.2) 669 (27.1) 95 (13.2) 547 (32.8)

N stage (%)

N0 527 (18.8) 354 (14.4) 193 (26.9) 161 (9.2)

N1 1223 (43.6) 826 (33.5) 247 (34.4) 579 (33.1)

N2 182 (6.5) 486 (19.7) 110 (15.3) 376 (21.5)

N3 872 (31.1) 799 (32.4) 167 (23.3) 632 (36.2)

Distant metastasis (%)

Bone 1989 (70.9) 1600 (64.9) 471 (65.7) 1129 (64.6)

Brain 234 (8.3) 98 (4.0) 35 (4.9) 63 (3.6)

Liver 958 (34.2) 559 (22.7) 161 (22.5) 398 (22.8)

Lung 993 (35.4) 618 (25.1) 149 (20.8) 469 (26.8)

ER status—positive 2087 (74.1) 1805 (73.2) 537 (74.9) 1268 (72.5)

PR status—positive 1687 (60.2) 1442 (58.5) 432 (60.3) 1010 (57.8)

Subtypes (%)

HR+/HER2− 1523 (54.3) 1376 (55.8) 414 (57.7) 962 (55.0)

HR−/HER2− 380 (13.6) 378 (15.3) 103 (14.4) 275 (15.7)

HR+/HER2+ 603 (21.5) 461 (18.7) 131 (18.3) 330 (18.9)

HR−/HER2+ 298 (10.6) 250 (10.1) 69 (9.6) 181 (10.4)
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surgery recommendation and 493 for surgery type
recommendation; the results are detailed in Table 2.

To assess model discrimination, we calculated the
integrated Brier score (IBS) for each treatment group, which
is acknowledged as a measure of phenotyping purity [33]. In
the surgery recommendation task, CPH had the best
discrimination (IBS in systemic treatment group (IBSb):
0.17, 95% CI: 0.15–0.18; IBS in systemic treatment plus
surgery group (IBSc): 0.18, 95% CI: 0.16–0.19), with RSF
closely following (IBSb: 0.17, 95% CI: 0.16–0.18; IBSc: 0.18,
95% CI: 0.16–0.19). Both CPH and RSF also showed robust
performance in the surgery type recommendation task.

To investigate the protective effect of adherence to
model recommendations, we calculated various metrics:
HR, difference in restricted mean survival time within
5 years (DRMST), difference in survival probability at
5 years (DSaT), and risk difference (RD). We used IPW to
adjust for all covariates and actual treatment between
Consis. and Inconsis. groups, therefore enhancing objectiv-
ity and reducing bias. We also compared the 2021 ESMO
guidelines for MBC; patients whose actual treatment was
consistent with the guidelines were categorized in the
Consis. group and the rest were in the Inconsis. group.

DSME performed the best in surgery recommendation
(HR= 0.63, 95% CI: 0.54–0.74; IPW‐adjusted HR (HRa)=
0.39, 95% CI: 0.19–0.78; DRMST=7.06, 95% CI: 4.46–9.66;
IPW‐adjusted DRMST (DRMSTa) = 7.85, 95% CI: 5.01–10.23;
DSaT= 31.67%, 95% CI: 15.21%–46.88%; IPW‐adjusted DSaT
(DSaTa) = 33.80%, 95% CI: 19.00%–59.19%; RD=15.20%,
95% CI: 5.30%–17.90%; IPW‐adjusted RD (RDa) = 3.70%, 95%
CI: 7.68%–19.70%), outperforming the ESMO guidelines

(HR=0.67, 95% CI: 0.57–0.78; HRa= 1.00, 95% CI:
0.58–1.73; DRMST=5.56, 95% CI: 2.94–8.18; DRMSTa=
5.60, 95% CI: 2.71–7.97; DSaT= 31.41%, 95% CI:
11.01%–49.89%; DSaTa= 30.66%, 95% CI: 11.01%–49.89%;
RD=14.20%, 95% CI: 7.90%–20.50%; RDa= 11.10%, 95% CI:
4.47%–17.80%), other models, and simply referring all
patients for surgery.

In surgery type recommendations, DSME (HR=0.77,
95% CI: 0.60–0.99; HRa= 0.66, 95% CI: 0.48–0.93;
DRMST= 4.78, 95% CI: 0.99–8.57; DRMSTa= 4.75, 95%
CI: 0.41–8.65; DSaT= 40.13, 95% CI: 8.89%–49.02%; DSa-
Ta = 39.95%, 95% CI: 1.31%–55.43%; RD=8.90%, 95% CI:
0.01%–18.70%; RDa= 5.28%, 95% CI: 3.93%–8.50%) main-
tained its superior performance, being the only model to
consistently show a statistically significant protective effect
across both treatment recommendation tasks.

According to DSME's insights, 97.8% of patients could
have a survival benefit from receiving breast surgery and
73.6% were more suited for BCS over mastectomy.

The protective effect of DSME because of an imbalance
in the surgery proportions in the two groups was also of
interest. Thus, we treated surgery as a mediator and
adjusted for all baseline features to calculate the natural
direct effect (NDE) and natural indirect effect (NIE),
detailed in Figure 2a. Similarly, the type of surgery was
treated as a mediator in the evaluation of the second stage
(Figure 2b). These values are presented as the slope of a
linear regression. NDE measures the direct effect of DSME
on mortality reduction, excluding the effect of actual
treatment. The DSME recommendation was statistically
significant in both the surgery (NDE: −0.12, 95% CI: −0.15

TABLE 1 (Continued)

Characteristics
Systemic treatment
(n= 2804)

Systemic treatment plus
surgery (n= 2465)

Breast‐conserving
surgery (n= 717)

Mastectomy
(n= 1748)

Axillary lymph node status (%)

Positive 1000 (35.7) 1732 (70.3) 391 (54.5) 1341 (76.7)

Negative 40 (1.4) 296 (12.0) 105 (14.6) 191 (10.9)

Not evaluated 1764 (62.9) 437 (17.7) 221 (30.8) 216 (12.4)

Regional lymph node status (%)

Positive 1059 (37.8) 1765 (71.6) 397 (55.4) 1368 (78.3)

Negative 53 (1.9) 324 (13.1) 111 (15.5) 213 (12.2)

Not evaluated 1683 (60.0) 371 (15.1) 207 (28.9) 163 (9.4)

Adjuvant treatment (%)

Radiotherapy 875 (31.2) 1284 (52.1) 413 (57.6) 871 (49.8)

Chemotherapy 2223 (79.3) 1858 (75.4) 500 (69.7) 1358 (77.7)

Follow‐up, median (IQR), months 31 (12–53) 47 (21–69) 52.0 (24.0–76.0) 44.0 (19.8–67.0)

Abbreviations: ER, estrogen receptor; IQR, interquartile range; PR, progesterone receptor.
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to −0.08; NIE: −0.01, 95% CI: −0.04 to −0.03) and the
surgery type (NDE: −0.06, 95% CI: −0.09 to −0.04; NIE:
−0.03, 95% CI: −0.05 to 0.00) tasks.

We also assessed the protective effect of DSME on
various causes of death, as shown in Supporting Information:
Table S1. Accounting for competing risks, when a specific
cause of death was examined, other causes were considered
competing events. The HR with competing risks (HRd) was
calculated using MSM. Adoption of the surgery recommen-
dation led to reduced mortality from breast cancer (HRd=
0.66, 95% CI: 0.61–0.70, p<0.001; IPW‐adjusted HRd= 0.69,
95% CI: 0.59–0.80, p<0.001), miscellaneous malignant
cancer (HRd= 0.57, 95% CI: 0.33–0.98, p<0.001; IPW‐
adjusted HRd=0.30, 95% CI: 0.04–0.97, p=0.032), and liver
diseases (HRd= 1.16, 95% CI: 0.23–3.22, p=0.830; IPW‐
adjusted HRd= 0.42, 95% CI: 0.15–0.97, p=0.042). For
surgery type recommendation, breast cancer (HRd= 0.77,
95% CI: 0.68–0.86, p<0.001; IPW‐adjusted HRd= 0.81, 95%
CI: 0.65–0.92, p=0.044) and adverse effect (HRd=0.96, 95%
CI: 0.30–3.06, p=0.940; IPW‐adjusted HRd= 0.62, 95% CI:
0.29–0.92, p=0.021) mortality also reduced.

3.3 | Average treatment effect and
treatment heterogeneity

The average treatment effect of surgery and mastectomy is
presented in Figure 3a,b. We used IPW and 1:1 PSM to
adjust for age, tumor size, histological grades, N status,

metastatic sites, breast cancer subtypes, tumor locations,
laterality, and radiotherapy. For surgery, the standardized
mean differences (SMDs) of all patients, patients who met
the ESMO guidelines, patients who did not meet the
ESMO guidelines, patients recommended for surgery by
DSME, and patients not recommended for surgery by
DSME are presented in Figure S1a–e. Similarly, for
mastectomy compared with BCS, the SMDs of all patients,
BCS recommended by DSME, and mastectomy recom-
mended by DSME are illustrated in Figure S2a–c.

The KM curves for overall survival (OS) comparing
surgery with non‐surgery and BCS with mastectomy are
displayed in Figure S3a,b. The surgery group demon-
strated significantly improved OS compared with the
non‐surgery group (p< 0.0001; IPW‐adjusted p< 0.0001).
Although mastectomy initially appeared to have a
survival advantage over BCS before IPW correction
(p< 0.0001), this advantage was not maintained after
correction (IPW‐adjusted p= 0.5357).

SMDs indicated that both IPW and PSM effectively
balanced prognostic features, with PSM being much
more effective in certain groups, including patients who
did not meet ESMO guidelines, patients not recom-
mended for surgery by DSME, BCS recommended by
DSME, and mastectomy recommended by DSME.

Analysis revealed that surgery generally served as a
protective factor across all patient groups. However, the
protective benefit was not statistically significant for patients
whose DSME did not recommend surgery (HR= 0.72, 95%

(a)

(b)

FIGURE 2 Causal path of model recommendation. (a) Causal path deep survival regression with mixture effects regarding surgery
recommendation. (b) Causal path deep survival regression with mixture effects regarding surgery type recommendation. BCS, breast‐conserving
surgery; DSME, deep survival regression with mixture effects; NDE, natural direct effect; NIE, natural indirect effect; OS, overall survival;
X denotes patient covariates.
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(a)

(b)

FIGURE 3 Average treatment effect and treatment heterogeneity. (a) Average treatment effect of breast surgery. (b) Average treatment
effect of mastectomy compared with breast‐conserving surgery. BCS, breast‐conserving surgery; ESMO, European Society for Medical
Oncology; HR, multivariate hazard ratio; IPW, inverse probability weighting; PSM, 1:1 propensity score matching.
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CI: 0.24–2.15; IPW‐adjusted HR=0.82, 95% CI: 0.29–2.31;
PSM‐adjusted HR=0.65, 95% CI: 0.22–1.93).

Mastectomy did not demonstrate a significant advantage
over BCS in the overall patient population. In contrast,
within the subgroup recommended for mastectomy by
DSME, mastectomy showed a favorable trend (HR= 0.53,
95% CI: 0.27–1.02; IPW‐adjusted HR=0.51, 95% CI:
0.22–1.19; PSM‐adjusted HR=0.51, 95% CI: 0.24–0.97).
Conversely, in the subgroup where BCS was the recom-
mended treatment, mastectomy was less beneficial (HR=
1.16, 95% CI: 1.02–1.33; IPW‐adjusted HR=1.05, 95% CI:
0.88–1.25; PSM‐adjusted HR=1.28, 95% CI: 1.05–1.55).

3.4 | Therapeutic insights

A multivariate linear regression model was used to predict
ITE from patient covariates. The resulting beta coefficients
suggest that the presence or increase of a feature, with all
other variables held constant, corresponds to an average
change in ITE, indicative of the amount of increase in
surgery efficacy. These beta coefficients are depicted in
Figure 4a.

For each increase in age (−0.73, 95% CI: −0.77 to
−0.69), tumor size (−0.16, 95% CI: −0.17 to −0.15), and
metastatic sites (−3.60, 95% CI: −5.20 to −2.01), the time

(a)

(c) (d)

(b)

FIGURE 4 Therapeutic insights from deep survival regression with mixture effects. (a) The effect of features on continuous changes in
the individual treatment effect. (b) The quantified effect of breast cancer subtypes on surgery selection. (c) The quantified effect of metastatic
sites on surgery selection. (d) The quantified effect of tumor size on surgery selection. ER, estrogen receptor; HER, human epidermal growth
factor receptor‐2; IPW, inverse probability weighting; PR, progesterone receptor; RD, risk difference, indicating the probability that a patient
with this feature was recommended for surgery minus the probability under the condition that the patient was without this feature.
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to 50% mortality was reduced for patients undergoing
surgery compared with those not undergoing surgery.
Right laterality (−1.52, 95% CI: −2.66 to −0.40) was also a
factor that contributed to reduced surgical effectiveness.
Conversely, estrogen receptor (ER) positivity (2.23, 95%
CI: 0.61–5.07), progesterone receptor (PR) positivity (5.65,
95% CI: 3.07–8.24), and lower lymph node involvement
(N0: 4.77, 95% CI: 3.04–6.50; N1: 4.43, 95% CI: 3.06–5.79)
corresponded with improved outcomes.

By considering patient characteristics as key
variables, we transformed the analysis of their effect on
surgery selection into a binary causal inference problem.
Using this methodology, RD and IPW‐adjusted RD,
which include factors such as breast cancer subtypes,
metastatic sites, and tumor size, were computed as
shown in Figure 4b–d. The RD represents the difference
in the probability of being recommended for surgery
attributable to a particular feature, while the IPW‐
adjusted RD provides a more unbiased estimate by
accounting for other variables and their interactions.

Patients with ER positivity, PR positivity, bone‐only
metastases, and smaller tumors were more likely to be
recommended for surgery. In contrast, HER2‐positive
status, brain‐only metastases, and larger tumor size
decreased the likelihood of a surgical recommendation.

3.5 | Model interpretation based on
SurvSHAP(t)

SurvSHAP(t) [34], a pioneering approach offering
time‐dependent explanations for survival regression in
DL models, was used to elucidate DSME's outputs.
Figure 5a,b visualizes the aggregation of the eight most
influential variables, sorted by their aggregated Sharpley
values and rankings over 300 observations in the testing
set, for the surgery and surgery type recommendation
models, respectively.

The horizontal bars graphically represent the number
of observations for which the importance of the variable,
represented as a given color, was ranked as first, second,
and so on. The treatment of interest represented the
usage of different risk networks and baseline hazards.

4 | DISCUSSION

We introduced the DSME, an innovative approach
amalgamating representation‐based, T‐learner, and
subclassification causal inference methods. Upon care-
ful validation and stringent bias mitigation, DSME
exhibited efficacy in extending the survival of patients
with MBC by 8 months over a 5‐year span. This

performance surpasses that of real‐world decisions by
clinicians, contemporary models, ESMO guidelines,
and generic treatment approaches focused on average
outcomes. Despite similarities in recommendation
trends with ESMO guidelines and prior research,
DSME showed superior discernment of potential
treatment heterogeneity, likely from its intricate hand-
ling of complex feature interactions that have been
inadequately addressed in the existing literature. Thus,
DSME represents a promising tool for clinical decision‐
making for MBC patient care.

The debate concerning varied surgical interventions
for MBC has persisted [14, 18, 35, 36]. Harbeck et al.
suggested that patients with MBC should receive more
personalized treatment, considering the great heteroge-
neity within this group [37]. Our findings suggested that
almost all patients with MBC could benefit from surgical
intervention, independent of ESMO guideline adherence.
For patients where DSME does not recommend surgery,
the absence of a significant protective effect suggests
surgery may introduce unnecessary risks and delay
essential systemic therapy, potentially impairing overall
outcomes [38, 39].

The dichotomy between BCS and mastectomy reveals
treatment heterogeneity, with mastectomy demonstrat-
ing a protective effect when recommended and BCS
appearing as the favorable option otherwise. These
distinctions further underscore DSME's utility.

While surgery generally benefits patients with MBC
[13], the extent of such benefits correlates with individual
circumstances and tumor biology. For every 1mm
increase in the size of the patient's tumor [20], the time
to 50% mortality after surgery was shortened by 0.16
months. Similar results were found for age [13], number
of metastatic sites [40], lymph node status [41], and
breast cancer subtypes [18, 20, 42], consistent with
previous studies. The effects of metastatic sites and size
and breast cancer subtypes on surgery selection were also
quantified. The likelihood of surgery selection increases
by 15% for patients with ER‐positive tumors when
isolating this variable.

Despite widespread agreement with prior studies,
certain findings from our study have not been thoroughly
explored. Some novel findings, such as the reduced
effectiveness associated with right laterality, warrant
further investigation. A previous study found that
patients with right‐sided breast cancers were more likely
to have locally advanced disease at initial diagnosis [43],
which may indirectly influence the surgical outcome.
Apart from this, the role of BCS in patients with MBC
remains unclear. Our study discovered that the majority
of patients with MBC are more appropriately suited
for BCS compared with mastectomy, addressing a gap
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(b)

FIGURE 5 Model interpretation based on SurvSHAP(t). (a) Interpretation of deep survival regression with mixture effects of surgery
recommendation. (b) Interpretation of deep survival regression with mixture effects of surgery type recommendation. ER, estrogen receptor;
HER, human epidermal growth factor receptor‐2; PR, progesterone receptor.
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previously unexplored in earlier research. We attribute
this to observations that patients undergoing BCS
typically experience fewer postoperative complications
[18] and a reduced psychosocial burden [44], which
are factors that could contribute to improved survival
rates [45].

The challenge of effective communication among
doctors, patients, and families is exacerbated by the
absence of tools to visually convey survival benefits.
DSME addresses this by offering quantifiable survival
advantage data, thereby facilitating clearer discussions
and decision‐making. Our model appears to be superior
in optimizing patient survival compared with traditional
treatment guidelines, laying the foundation for the future
of precision medicine.

As our research progresses, we aim to refine the DL
model, broadening its applicability to a wider range of
diseases [46, 47]. Moreover, the development of user‐
friendly client software for clinical use is anticipated.
This software would simplify complex numerical data,
making it more accessible for both physicians and
patients. With more extensive studies, the DL model
could either complement or even potentially replace
traditional survival analysis methods, establishing a new
standard for personalized treatment recommendations.

The primary limitations of our study stem from the
omission of certain prognostic factors. Critical clinical
variables, including details of systemic therapy combined
with surgery and the timing of systemic therapy initiation,
were not included. Incorporating these factors could
enhance the precision and focus of model recommendations.
Additionally, other outcome metrics, such as progression‐
free survival, recurrence‐free survival, secondary surgery
rates, and quality of life, should be further investigated to
inform optimal patient treatment strategies. Another limita-
tion is the sourcing of both training and testing datasets from
the same database, potentially affecting the models’ general-
izability. Future studies should aim to validate these models
using diverse, real‐world clinical data. Nevertheless, this
study demonstrates the feasibility of using DL modeling for
such applications.

5 | CONCLUSIONS

To the best of our knowledge, this is the first study to use
DL models for making individualized surgical recom-
mendations for patients with MBC. DSME exhibited
strong performance in both surgery and surgery type
recommendations, offering quantitative therapeutic in-
sights. The DL‐based therapeutic insights align with

current research findings and clinical guidelines, under-
scoring its potential utility in real‐world clinical decision‐
making.
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