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Abstract: Several tools have been used to assess muscular stiffness. Myotonometry stands out as
an accessible, handheld, and easy to use tool. The purpose of this review was to summarize the
psychometric properties and methodological considerations of myotonometry and its applicability in
assessing scapular muscles. Myotonometry seems to be a reliable method to assess several muscles
stiffness, as trapezius. This method has been demonstrated fair to moderate correlation with passive
stiffness measured by shear wave elastography for several muscles, as well as with level of muscle
contraction, pinch and muscle strength, Action Research Arm Test score and muscle or subcutaneous
thickness. Myotonometry can detect scapular muscles stiffness differences between pre- and post-
intervention in painful conditions and, sometimes, between symptomatic and asymptomatic subjects.

Keywords: myotonometry; scapular muscles; muscle mechanics; stiffness

1. Introduction

Muscular stiffness, described as passive or dynamic [1–3], is a mechanical property
that traduce the resistance offered to an action that leads to muscle tissue deformation [1,3].
More specifically, this muscular property derived from muscle structure and intrinsic
material properties [4], namely from tendon [5], myofibrillar cross-bridges [5] (particularly
titin filaments [6,7]) and muscular connective tissue [6]. The passive stiffness, commonly
assessed with elastography methods [2,3], mainly represents the tissue adaptation [3] in it
basal/passive status [8] and the baseline level of the stiffness [5]. The dynamic stiffness,
assessed through myotonometry [9], is based on the free oscillation theory and results from
the natural oscillation of the tissues, in response to a brief mechanical tap on the skin [10].

Both passive and dynamic stiffness are essential for adequate muscle contraction [7]
and performance [11], as well as for adequate joint motor control [12] and integrity [13].
Muscle stiffness has been demonstrated to vary between subjects [14] according to age [12,15,16],
muscle constitution, length, cross-sectional area [4,15] and measured point (myotendinous
junction or muscle belly) [14]. Moreover, muscular stiffness has been demonstrated to
be altered in conditions involving pain [17], injury [11], fatigue and cramps [18]. In pain
conditions, the relevance of muscle stiffness in both movement and joint stability [19–22]
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highlight the possible influence of muscle stiffness deregulation, particularly in joints with
high mobility like shoulder. Shoulder pain stands out for being a prevalent and recurrent of
musculoskeletal condition [23,24] that involves stiffness adaptations in scapular muscles as
upper trapezius (UT) [19,25,26]. These could be expected given the role of scapular muscles
stiffness in shoulder stability [27] and function [28–30].

Muscle mechanical behavior has been studied for a long time [2,18]. In particular, muscular
stiffness has been assessed by different non-invasive and reliable methods [1–4,18,31]:

(1) elastography [magnetic resonance (MR) [2], ultrasound shear wave [2,3] or strain [3]];
(2) tensiomyography [3];
(3) myotonometry [3].

Among the different methods, the ultrasound elastography [shear wave or strain [3,18],
which only perform a qualitative assessment based in a color scale [2,3,32]] and the MR elas-
tography [2,31,33] have the advantage of combining the assessment of passive stiffness [1–3]
with operator visualization of the structures of interest [18,33]. However, these methods
are associated with high costs and requires specialized operator’s knowledge [3,18] and
more assessment time [34]. In turn, tensiomyography assesses muscle stiffness by con-
sidering maximal radial displacement [3,35] in response to a stimulated contraction [3,36]
and requires several tools as electrical stimulator, data acquisition subunit, probe, elec-
trodes, tripod with manipulating hand, and laptop for software interface [35,37]. The
disadvantages of the previously mentioned methods has led to an increased interest in less
expensive [1,3,4], easier to use [1,3,4] and less dependent technical expertise tools [1,3,4]
to assess muscle stiffness in different conditions of muscles contraction. Myotonometry
has been developed to fulfil these needs [3] by assessing the dynamic stiffness [1,18] of
superficial soft tissues [4,9,18,33].

Considering that different methods measure different stiffness related variables [3],
the growing use of myotonometry as a consequence of its advantages and the need of
easily and regularly assess muscle mechanical properties in the rehabilitation settings, a
review of this assessment tool is needed. This is particularly relevant for scapular mus-
cles, once their impairment [38–42] as already been related to the long-term recovery
and recurrence of shoulder pain [41,42]. Moreover, the lack of effectiveness reported by
some studies [29,43–47], regarding scapular therapeutic approaches for shoulder pain,
particularly therapeutic exercises, could be related with the necessity of considering other
outcomes in the patient assessment process. Thus, the present study aims to review the
psychometric properties and methodological considerations of myotonometry to assess
muscular stiffness, particularly of the scapular muscles. To fulfil this purpose, this review
is organized in four sections. In the first section the methodological requirements and limi-
tations of myotonometry is presented. This section is followed by a section presenting the
myotonometry psychometric properties, including validity, reliability, and responsiveness.
The third section review the myotonometry applicability for assessing scapular muscles
stiffness by synthesizing the previous studies. Finally, the conclusion section highlights
the advantages of myotonometry for the assessment of muscular stiffness but warns of the
cautions that should be considered.

2. Guidelines to Myotonometry Measurements of Muscular Stiffness and
Obtained Data

Several requirements and limitations should be considered when using myotonometry,
particularly MyotonPRO digital palpation device (MyotonPro, Myoton AS, Tallinn, Estonia),
to assess muscle stiffness (Figure 1):

a. Equipment:

• Programming the data acquisition:

I. Introducing participant data (as weight, height, gender, and dominant
side) [9]
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II. Planning a “pattern composer”, this is, defining an assessment protocol
regarding the muscles to include and their condition of assessment (rest
or contraction), the subject position and the measurements side, location
and nº of repetitions [9]

III. Uploading the participant and assessment data to the myotonometry tool

• The assessor should guarantee the equipment’s stability and avoid the contact
with external factors (as clothes) to not influence the device’s impulses neither
the tissues oscillations [9];

b. Coefficient of variation (total measurements’ variability according to subject, assessor
and device accuracy): should be lower than 3% [9];

c. Probe function: superficial tissues pre-compression followed by release of mechanical
impulse and, consequently, muscular oscillation recording [1,3,4,9,18,43];

d. Measurement point: superficial reference of the muscles of interest, based not only
in previous studies using myotonometry [48], but also researches using tools as
algometer [25,48] and electromyography [4,48,49]. For repeated measurements, the
same measuring points as well as same muscular and environmental conditions (as
time of the day and subject’s position), must be kept [9];

e. Adjacent tissue: Measurement is only possible if the overlying subcutaneous fat is
not higher than 20 mm [3,9,50];

f. Eligible muscles: Superficial muscles [1,3,9], if bigger than 3 mm thickness and 20 g
mass [9].
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Myotonometry assesses muscle mechanical properties, particularly, muscle dynamic
stiffness traduced as [3,9,18]:

Dynamic stiffness (N/m) = amax·mprobe/∆l

where amax represent the maximum amplitude of the acceleration of oscillation (mG);
mprobe represent probe mass and ∆l represent the maximum displacement of the tissue
(mm) [9] (Figure 2).
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3. Myotonometry Psychometric Properties Regarding the Measure of
Muscular Stiffness
3.1. Validity

There is no gold standard of stiffness measurement in the literature, making compar-
isons to an accepted standard difficult [51,52]. In the absence of a criterion for measuring
stiffness [51,52], the validity of the myotonometry tool has often been determined by con-
struct validity [51]. From these perspectives, myotonometry construct validity was done
by comparison it with several non-stiffness variables as: (a) level of muscle contraction,
for rectus femoris of healthy subjects (r2 = 0.9547) [52]; (b) static and dynamic strength
measures, for soleus and lateral and medial gastrocnemius stiffness of healthy subjects
[r = −0.81 to 0.48 (p < 0.05)] [53]; (c) lateral and palmar pinch strength and Action Research
Arm Test score, for extensor digitorum and flexors carpi radialis and ulnaris of stroke
patients [r = 0.25 to 0.52 (p < 0.05)] [54]; (d) muscle strength and muscle or subcutaneous
thickness, for lower limb muscles of stroke patients [r = −0.84 to 0.46 (p < 0.05)] [55].

In turn, from the previously mentioned methods described to assess muscle stiffness,
to our knowledge, only ultrasound shear wave elastography has been used to assess
myotonometry validity.

The validation of myotonometry, particularly of Myoton as an instrument to measure
muscular stiffness, by the correlation with this method when comparing muscular stiffness
variables [1,4,18,49,56], has been done for several muscles [1,4,18,49,53,56], with different
locations and functions [42,57–61]. In this case, the correlation values ranged from −0.25 [1]
to 0.71 [4] for healthy participants [1,4,18,49,56] (Table 1). Only one study reported no
correlation between the two measures [1]. This study assessed relative changes in upper
trapezius muscle stiffness between pre and post eccentric exercise.
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Table 1. Myotonometry validity data of correlation with shear wave elastography.

Muscle
Correlation Values

Values (p Value) Classification

Upper trapezius r = −0.25 to 0.50 (p > 0.05) [1] Not statistically significant

Infraspinatus r = 0.35 to 0.37 (p < 0.05) [4]
FairRectus femoris r = 0.398 to 0.416 (p < 0.05 and p < 0.01, respectively) [56]

Biceps brachii r = 0.479 to 0.583 (p < 0.05) [49] Fair to Moderate

Gastrocnemius r = 0.463 to 0.71 (p < 0.05 or p < 0.01) [4,18,56] Fair to Good

Erector spinae r = 0.51 to 0.54 (p < 0.05) [4]
ModerateBiceps femoris r = 0.594 to 0.652 (p < 0.01) [56]

Tibialis anterior r = 0.540 to 0.561 (p < 0.01) [56]

Legend: Correlation values classification—no correlation if values <0.25, fair if 0.25–0.5, moderate to good if
0.5–0.75, and good to excellent if >0.75 [4].

Despite the concurrent validity of myotonometry against elastography is the more
frequently adopted approach, the differences between these two methods [1,3] should be
considered in the analysis of the results presented in Table 1. Although both shear wave
elastography and myotonometry use the principle of Young’s modulus, the measured
variable may depend on the method used [4]. The differences between the two methods
are summarized in Table 2. There are variations such as the type of stiffness measured
[dynamic or passive stiffness [1,3,62]], the depth of measurements [1] [superficial muscular
stiffness measured with myotonometry, may not be comparable to the smaller and deeper
measurements provided by shear wave [4]], but also in the related reliability of the variables
measured [3,4,7,25,48,56,63–65].

Table 2. Comparison between myotonometry and shear wave elastography for muscular
stiffness assessment.

Shear Wave Elastography Myotonometry

Instrument characteristics
• Objective [4,18]
• Non-invasive [1,4,18]

Real-time [1,3,64]
Required technical expertise [18]

Less expensive [1,4]
Handheld [1,3,4]
Easy to use [1,3,4,66]

Structures assessed Deep [1,4] Superficial [1,4]

Type of stiffness measured
Passive [1,3]: resistance to elongation or
shortening or, in physical terms, the change in
tension per unit change in length [67]

Dynamic [1,25,68]: resistance to a force that
deforms muscle initial shape [3,25,68]

Measurement mode Elastic [4]/shear [3] modulus, that uses
ultrasound radiation forces [4]

Damped oscillation method following a
dynamic transformation of the muscle in
response to a short-term external mechanical
impulse [69]
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Table 2. Cont.

Shear Wave Elastography Myotonometry

Measurement process

1. Transducer parallel to the muscle
fibers [1,4,18]—wave travel horizontal
(along fibers [15]) to the point of
application through tissue [4]

2. Transducer held stationary for 10 s with
minimal pressure applied on the
skin [1,3,4]—acoustic radiation force to
perturb muscle tissues [70]

3. Measurement estimate based on the
velocity of ultrasound propagation from
an entire defined region of
interest [3,4,18] and based on tissue
density [15]—converted into Kpa values
through Young’s modulus formula for
every pixel [3,71]

1. Probe perpendicular to the skin
surface [1,3]

2. Constant pre-compression force (0.18
N) in the underlying tissues, followed
by a short mechanical impulse (0.4/0.6
N for 15 ms) [1,4,18]

3. Recording of muscle oscillation [4],
reflecting viscoelastic properties of the
tissue [3]

4. Data by computational software,
calculated from the acceleration of the
testing probe during oscillations [3]

Measurement Interpretation
Velocity of shear waves (proportional to shear
modulus [64]) rise with increase in passive
muscle stiffness [1,64]

Higher values of dynamic stiffness imply
more energy to modify the shape of the
tissue [3]

Scapular muscles Assessed

In healthy subjects:

• UT [1,22,64,65,72]
• MT, LT and SA [64]
• Levator scapulae [22,64,72]

In pain conditions:

• UT [1,22];
• Levator scapulae [22]

In healthy subjects:

• UT [1,7,14,21,26,63]

In pain conditions:

• UT [7,14,25,26,66]
• MT and LT [25]

Results SWE vs. Myotonometry

1. Myotonometry presented lower coefficient of variability [4] and similar values of
reliability compared to SWE

2. Myotonometry present high to very high reliability for upper limb, lower limb and spine
muscles [3,4,25,56] in healthy subjects, and low to very high reliability for UT in both
healthy [7,21,25,48,63] or with a musculoskeletal disorder subjects [7]; while SWE present
moderate to very high reliability for upper limb, lower limb and spine
muscles [3,4,56,64,65] in healthy subjects.

3. Myotonometry present ability to discriminate between different muscle contraction
intensities, but the same did not happen always for SWE [4]

Legend: dynamic stiffness (DS); healthy subjects (HS); maximum amplitude of the acceleration of oscillation
(amax); maximum displacement of the tissue (∆l); middle trapezius (MT); lower trapezius (LT); pain conditions
(PC); probe mass (mprobe); shear wave elastography (SWE); upper trapezius (UT).

3.2. Reliability

Myotonometry reliability was already assessed for several muscles of different body
segments [3,4,7,21,25,48,56,63]. Most studies only included healthy subjects [3,4,21,25,48,56,63],
only one study included participants with musculoskeletal disorders in their sample [7].

The reliability values range from 0.229 [25], for UT, to 1 [4], for erector spinae. Specifi-
cally, regarding the scapular muscles and, in this case, the trapezius muscle, high to very
high reliability were found for its three portions [7,21,25,48,63], with the exception of one
study that reported a low to high reliability for the upper trapezius [25]. A more detailed
description of reliability values for different muscles is presented in Table 3.
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Table 3. Myotonometry reliability data.

Muscle Sample
Assessment Conditions Reliability Values

Assessment
Moment Rater Muscle Condition ICC Values Classification

Upper
trapezius

Healthy and
MSKd IS Inter-rater Rest 0.97 [7] Very high

Healthy

IS
Intra-rater Rest

0.86 [48] High

BD 0.229 [25]
to 0.86 [63] Low to very high

IS Inter-rater Rest and contraction
considered together

0.97 [21] Very high
BD Intra-rater 0.97 [21] Very high

Middle
trapezius BD Intra-rater Rest 0.813 to

0.963 [25] High to very high

Lower
trapezius BD Intra-rater Rest 0.820 to

0.926 [25] High to very high

Infraspinatus IS Intra-rater
Rest 0.98 [4] High to very high

Contraction 0.98 [4] High to very high

Erector spinae IS Intra-rater
Rest 1 [4] High to very high

Contraction 0.99 to 1 [4] High to very high

Rectus femoris IS Intra-rater
Rest 0.938 [56] Very high

Contraction 0.872 [56] High

Vastus Lateralis
IS

Intra-rater Rest
0.97 [3] Very high

BD 0.93 [3] Very high

Medial
gastrocnemius IS Intra-rater

Rest 0.904 [56]
to 1 [4] Very high

Contraction 0.856 [56]
to 0.99 [4] High to very high

Biceps femoris IS Intra-rater
Rest 0.884 [56] High

Contraction 0.861 [56] High

Tibialis anterior IS Intra-rater
Rest 0.880 [56] High

Contraction 0.894 [56] High

Legend: BD: between days; IS: intrasession; MSKd: musculoskeletal disorders; Reliability values classification—
little, if any reliability, if values <0.15, low if 0.16–0.49, moderate if 0.50–0.69, high if 0.70–0.89, and very high if
values >0.90 [73].

As can be seen in Table 3, muscle stiffness assessment with myotonometry has been
already studied in two muscular conditions, at rest and during contraction. The inclusion
of these two conditions in muscle stiffness assessment protocols could be important given
the dynamic characteristic of the soft tissues [74] and the influence of muscular length in
the afferent inputs coming from muscle receptors [16]. Moreover, it could be useful to
verify whether, particularly in subjects with conditions as pain, the relation of the muscle
stiffness with the number of activated crossbridges is maintained [75].

3.3. Responsiveness

Responsiveness is a psychometric property traduce as the ability of an instrument to
detect a meaningful change, in a clinical state, over time [54,76]. Regarding myotonometry,
only one study was inferred about this property [54], demonstrating that the extensor
digitorum, the flexor carpi radialis, and the flexor carpi ulnaris dynamic stiffness in stroke
patients improved after intervention (robot-assisted training, mirror therapy, mirror therapy
with mesh-glove electrical stimulation, or conventional rehabilitation). In the mentioned
study [54], great sensitivity for change was found for the affected limb (−0.71 to −0.83) but
not responsiveness for the unaffected limb (−0.42 to −0.48).
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4. Applicability of Myotonometry for Assessing Scapular Muscles Stiffness

Several muscles have been assessed with myotonometry [1,4,7,14,18,25,49,56], how-
ever to our knowledge, among the scapular muscles, only the trapezius muscle has been
assessed [1,7,14,21,25,26,63,66,68,77,78].

The trapezius is a standout muscle for scapular stabilization that act in a strong
relation, mainly, with the major scapular mover—the serratus anterior [79]. In shoulder
pain conditions, both have been reported as possibly altered, namely by decreased and/or
timing changed activation of lower trapezius (LT), middle trapezius (MT) and serratus
anterior (SA) [38,41,79,80] or by increased [38–42,79] or decreased UT activity [81–83].
Impairments in the activity of levator scapulae [19,84,85] and pectoralis minor [84–86]
muscles were also reported.

Previous studies regarding myotonometry, had already presented muscular assess-
ment point references for the trapezius portions [7,12,21,25,87–89] (Table 4 and Figure 3).
However, a study about a 3D model construct through magnetic resonance [90] recom-
mended other superficial references for upper trapezius, which might also be interest
to consider given the possibility of considering some fibers with a more vertical orienta-
tion [79,90,91] compared with the “traditional” reference that possibly represent fibers with
horizontal orientation [91,92] and higher cross-sectional area [91] (Table 4 and Figure 3). In
addition, some studies [1,14,63] that assessed UT stiffness, measured this outcome through
a grid of measurement points covering an extended area of UT muscle. Thus, considering
the distance between C7 spinous process and the acromion several measurement points,
separated by 1/6 [1,14,63] and/or 1/7 [14,63] of the mentioned distance, were defined.
These measurement points include both muscle belly and myotendinous sites once muscle
stiffness could be dependent on the location of the measurement point [1,63] (Figure 4).

Table 4. Description of the trapezius muscle assessment points.

Muscle of Interest Measurement Points

Upper trapezius C5/6 level At the level of C5/C6 about 2 cm lateral from the midline [90]

Upper trapezius C7 level Mid-way between C7 spinous process and the angle of acromion [7,12,21,87–89]

Middle trapezius Mid-way from T4 spinous process to the medial border of spine of the scapulae [25]

Lower Trapezius
Mid-way from T6 spinous process to the medial border of spine of the scapulae [25]
OR
Mid-point of the lateral border of the fibers of lower trapezius [25]

The superficial references for serratus anterior assessment with surface electromyo-
graphy [93–96] could be considered for myotonometry assessment, once studies with
ultrasound or magnetic resonance imaging [97–99] report thickness values similar to the
trapezius muscle [97,98,100–102], from 4.3 mm at rest to 11.8 mm while contracting [99].
Moreover, the studies about muscular thickness reported that lower trapezius is the thinner
scapular muscle, ranging from 3.9 mm at rest [102] to 9.3 mm while contracting [98]. The
fact that the myotonometry probe is placed on the assessment point, for each assessment
repetition, with the patient already in the assessment position, also avoids the bias related
to the proximity of the latissimus dorsi or pectoralis major [93] or to the geometric displace-
ment (given skin movement during upper limb motions) [103] that could happen during
surface electromyography [93]. As in the case of upper trapezius, serratus anterior could
benefit form being assessed in two different portions, the upper/middle [93,94,96] given
its role in the scapular protraction [93] and the lower [93], given its higher participation in
scapular upward rotation [93,103] (Table 5 and Figure 5).
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Table 5. Description of the serratus anterior and levator scapulae assessment points.

Muscle of Interest Measurement Points

Levator scapulae Between the posterior margin of sternocleidomastoid and anterior
margin of the upper trapezius [104–107], at level of C4/5 [90]

SA upper/middle portion Over the fourth rib, at the midpoint between the latissimus dorsi
and the pectoralis major [93,94]

SA lower portion Over the seventh rib, in the midline of the axilla [93], for SA lower
portion (SAlow) [93]
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Figure 5. Serratus anterior and levator assessment points: (e) levator scapulae; (f) SA upper/middle
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In its turn, the assessment of muscular stiffness of levator scapulae and pectoralis
minor, that was already done with shear wave elastography [22,64,72,108,109], may not
have been done with myotonometry given that these muscles are deeper positioned [19,110].
However, considering that a reference to the assessment of levator scapulae has been used
to collect surface electromyography [90,104,105] and that it thickness ranges from 4.15 mm
at rest to 6.38 mm while contracting [101,111], this muscle seem to fulfill the requirements
for myotonometry assessment (Table 5 and Figure 5). However, future studies are required
to confirm this possibility.

Myotonometry Ability for Measuring Differences or Changes in Muscular Stiffness in Pain
Conditions Involving Scapular Muscles

The relevance of scapular muscle stiffness to the shoulder complex and the possible
muscle’s stiffness changes resulting from the scapular position and their influence in
muscular length [64] had led to the development of studies comparing trapezius stiffness,
measured through myotometry, for between group comparisons as well pre and post
intervention comparison [14,26,66,68,77,78].

UT stiffness was compared between subjects, or body sides, with and without pain con-
ditions (Table 6). While two studies [26,77] reported significant differences between groups,
by comparing subjects with different upper trapezius pain levels (0 to 3 in VAS) [26] or by
comparing symptomatic and asymptomatic moderate neck pain subjects [77], 3 other stud-
ies found no differences in UT stiffness both between pain and healthy subjects [14,66,68]
and between the affected and the non-affected extremity of the same subject [66,68].

The trapezius stiffness comparison of pre- and post-intervention moments has already
been made for several rehabilitation techniques (Table 6). Four studies [14,25,68,78] report
significant differences between the assessment moments traduced into a reduction of UT
stiffness after treatment. However, the opposite results were found by Sokk et al. [66] for
UT stiffness and by Kisilewicz et al. [25] considering MT and LT stiffness.
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Table 6. Myotonometry ability to identify differences or changes in scapular muscles stiffness in pain conditions (Xfor p < 0.05; X for p > 0.05) and the respective
groups, muscle assessed and values of muscle stiffness (mean and SD) and p value.

Study Objective Group Muscle Assessed ¯
X SD (N/m) p Value

Mild (until 3 in VAS) UT pain
(20.83 ± 1.12 years old) [26]

BG
c

X

VAS 0
UT

(muscle belly)

170.56 28.45 p < 0.05 *,
for VAS 3 in comparison with

other 3 groups

VAS 1 161.67 16.59
VAS 2 160.48 20.72
VAS 3 191.50 25.74

IE - -

Moderate work-related
neck disorders

(30–55 years old) [77]

BG
c

X
Pain UT

(C5/6 and C7 level)
301.50 23.50 p = 0.006 *

Control 270.90 33.70

IE - -

Unilateral chronic
shoulder pain together with, at

least, 2 sensitive sites (myofascial
trigger points)

(18–70 years old) [68]

BG
c

X

Control (Us, before)
UT

(trigger points)

324.42 11.39

p = 0.057Control (Us, after) 334.68 11.10
Pain (before) 332.32 10.97
Pain (after) 300.66 9.43

IE

X
for Myofascial trigger-point

Release
Pain (before vs. after) p = 0.012 *

Long-standing, nonspecific and
nontraumatic neck-shoulder pain

(20–61 years old) [14]

BG
c

X

Control (MB sites)

UT
(15 adjacent points)

237.80 42.8
p = 0.273,

for comparison of both
measurement sites

Control (Mt sites) 327.50 55.9
Pain (MB sites before) 258.70 41.10

Pain (Mt sites before) 330.40 50.8

IE

X
for Eccentric Training

Pain (MB sites after) 226.80 20.00 p < 0.001 *, for comparison in
both measurement sitesPain (Mt sites after) 287.30 47.80

Subacromial impingement
syndrome (49.20 ± 9.48 to
50.90 ± 9.10 years old) [78]

BG
c

- -

IE

X
for Thoracic

mobilization and/or
Extension exercise

Pain (TM before)

UT
(center of muscle belly)

257.90 29.03 p = 0.001 *
Pain (TM after) 232.50 20.49

Pain (exercise before) 257.70 19.33 p = 0.001 *
Pain (exercise after) 236.10 27.27

Pain (TM plus exercise before) 257.50 25.61 p = 0.001 *
Pain (TM plus exercise after) 223.00 32.83
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Table 6. Cont.

Study Objective Group Muscle Assessed ¯
X SD (N/m) p Value

Stage II or III of unilateral frozen
shoulder syndrome

(38–74 years old) [66]
BG

c

X

Control (Us, before)

UT
(center of muscle belly)

≈235 _

p > 0.05

Control (Us, 1 m after) ≈215 _
Control (Us, 6 m after) ≈200 _

Pain (before) ≈240 _
Pain (1 m after) ≈225 _
Pain (6 m after) ≈220 _

IE
X

for Manual
manipulation

(under anaesthesia)

Pain (before vs. after) p > 0.05, for comparison in each
assessment moments

Unilateral neck or shoulder pain
and active myofascial trigger

points in the trapezius muscle
(19.8 ± 2.4 years old) [25]

BG
c

- -

IE

X
for Ischemic
compression

Pain

UT
(distally of muscle

belly’s center)
232.00 29.70 p = 0.03 *

UT2
(proximally of muscle

belly’s center)
269.00 42.10

MT 405.30 192.10 p = 0.40

LT
(mid-point) 347.50 110.40

p = 0.29LT
(lateral border
mid-point of

muscle fibers)

331.70 89.30

Legend: ≈: when stiffness values were only presented in the original study through a graphic; 1 m: one month; 6 m: six months; After: stiffness values measured after intervention;
Before: stiffness values measured before intervention; BGc: between groups comparison; IE: Intervention effects (comparison between pre and post-intervention moments); LT: lower
trapezius; MB: muscle belly sites; Mt: myotendinous sites; MT: middle trapezius; SD: standard deviation; TM: thoracic mobilization; Us: unaffected side; UT: upper trapezius; VAS:
visual analog scale; X: mean.
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5. Points That Need to Be Addressed in Future Studies

The summary of the information gathered in this review is presented in Figure 6.
However, despite the several studies mentioned in the present review and their different
aims, future studies regarding myotonometry, particularly for scapular muscles are still
needed. Specifically, studies assessing the following issues are required:

• Myotonometry assessment of serratus anterior and levator scapulae muscles are
needed to validate the purposed assessment points, to define the myotonometry
psychometric properties considering these muscles and to increase the knowledge
about these muscles’ mechanical properties.

• The myotonometry psychometric properties should also be researched in subjects with
different conditions, such as pain.

• The use of myotonometry not only at rest condition but also during contraction, could
bring new information that could help to standout adaptations in muscle stiffness
modulation, given the muscular activity required and variation in the range of motion
used in this muscular condition [112–114].

• In studies with the intention to infer about intervention effects, the inclusion of
follow-up moments could help to understand whether stiffness changes will be kept
over time.
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Figure 6. Summary of narrative review information regarding scapular dynamic muscular stiff-
ness assessment through myotonometry and identification of the issues to be considered in future
studies (LS: levator scapulae; LT: lower trapezius; MT: middle trapezius; SA: serratus anterior;
UT: upper trapezius).
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The aspects that should be considered in future studies are summarized in Figure 6.

6. Study Limitations

The present narrative review has limitations. First, for being a narrative review, the
present study could present some possible bias given the absence of predefined hypothesis
and protocol-based (also considering data extraction and synthesis), the lack of necessity
of following guidelines (as the ones purposed by PRISMA) or to the reduced database
consulted during search. Although this review presents the guidelines for the correct use of
myotonometry, it should be considered that these are specific for one equipment. Moreover,
given the equipment limitation regarding the possible interference of subcutaneous fat, it
would be important in future studies consider the measurement of subcutaneous fat in the
specific measurement point of each muscle of interest as a criteria to use myotonometry.

7. Conclusions

The advantages of myotonometry together with the well-defined guidelines, the
mostly high to very high values of reliability, the inferred responsiveness regarding the
affected limb of stroke patients and its possible applicability to assess different scapular
muscles stiffness, seems to support its use as a non-invasive method in the assessment
of muscular mechanical properties as stiffness (N/m), for clinical practice or research.
However, caution should be taken given the variable or no correlation with elastography,
even if this may be justified by differences in the outcome measured.
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