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Systematic analysis of the test 
design and performance of AI/
ML‑based medical devices 
approved for triage/detection/
diagnosis in the USA and Japan
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The development of computer-aided detection (CAD) using artificial intelligence (AI) and machine 
learning (ML) is rapidly evolving. Submission of AI/ML-based CAD devices for regulatory approval 
requires information about clinical trial design and performance criteria, but the requirements vary 
between countries. This study compares the requirements for AI/ML-based CAD devices approved by 
the US Food and Drug Administration (FDA) and the Pharmaceuticals and Medical Devices Agency 
(PMDA) in Japan. A list of 45 FDA-approved and 12 PMDA-approved AI/ML-based CAD devices was 
compiled. In the USA, devices classified as computer-aided simple triage were approved based on 
standalone software testing, whereas devices classified as computer-aided detection/diagnosis were 
approved based on reader study testing. In Japan, however, there was no clear distinction between 
evaluation methods according to the category. In the USA, a prospective randomized controlled trial 
was conducted for AI/ML-based CAD devices used for the detection of colorectal polyps, whereas in 
Japan, such devices were approved based on standalone software testing. This study indicated that 
the different viewpoints of AI/ML-based CAD in the two countries influenced the selection of different 
evaluation methods. This study’s findings may be useful for defining a unified global development and 
approval standard for AI/ML-based CAD.

Software development for medical devices utilizing artificial intelligence (AI) and machine learning (ML) has 
been evolving rapidly. The amount of AI/ML-based software used in medical devices approved by the US Food 
and Drug Administration (FDA) has been increasing every year1,2. An annual survey by the American College 
of Radiology showed that more than 30% of radiologists used AI to improve diagnostic interpretation accuracy3. 
The use of AI/ML for computer-aided detection (CADe), computer-aided diagnosis (CADx), and computer-aided 
simple triage (CAST4) has allowed practitioners to use these computer-aided methods to their full potential. 
However, owing to the rapid progress of AI/ML-based CAD, there is a demand to properly evaluate the efficacy 
and safety of the methods used to acquire approval5–7.

Evaluation methods for AI/ML-based CAD devices can be classified into standalone software testing and 
reader study testing. Standalone software testing is defined as a performance test of the AI-only using test data 
that are collected retrospectively. The advantage is cost and time savings because there is no need to recruit read-
ers for performance evaluation. However, because it cannot be used to evaluate performance in clinical practice, 
it cannot evaluate usability and the affection of AI assistance. Reader study testing is defined as a performance 
test that evaluates the interaction of AI with physicians on diagnostic or detection accuracy. It is necessary to 
recruit readers for testing, which is more costly and time-consuming than standalone software testing. Reader 
study testing can be performed not only prospectively but also retrospectively using previously collected images.
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A recent prospective randomized controlled trial (RCT) for evaluating the performance of AI/ML-based 
CAD for cataract detection failed to demonstrate diagnostic accuracy comparable to that of the pilot study. 
This study indicated the need to evaluate the influence of physician intervention in clinical practice8. The most 
recent reader study testing9,10, in which 45 clinicians from 9 clinical institutions participated in the evaluation 
of a product intended to detect breast cancer, compared the results with and without AI assistance and reported 
that AI assistance improved clinicians’ accuracy. Hence, evaluations differ depending on the test design and 
domain. Therefore, it would be beneficial to developers of AI/ML-based CAD to know whether the criteria for 
diagnostic accuracy can be evaluated by standalone software testing or should be evaluated by reader study test-
ing that includes the influence of physicians on diagnostic accuracy.

In this study, we investigate the AI/ML-based CAD devices approved by the FDA and the Pharmaceuticals 
and Medical Devices Agency (PMDA) in Japan and analyzed their requirements in terms of target and study 
design to provide insights into the global development of AI/ML-based CAD.

Results
AI/ML‑based medical devices in the USA.  We identified 45 FDA-approved AI/ML-based medical 
devices using the FDA Product Code Classification Database11 (Fig. 1). There were 45 devices for a variety of 
targets categorized as follows: 16 (35.6%) for triage intracranial hemorrhage or large vessel occlusion detection, 
11 (24.4%) for breast cancer detection/diagnosis, 9 (20.0%) for triage pulmonary embolism, pneumothorax, 
pleural effusion, or intra-abdominal free gas, 5 (11.1%) for wrist fracture, cervical spine bone fracture, vertebral 
compression fracture, or rib fracture diagnosis, 3 (6.7%) for diabetic retinopathy diagnosis, and 1 (2.2%) for 
colorectal polyp detection. In terms of the study design of the 45 devices, 35 (77.8%) were approved based on 
standalone software testing (Table 1). The other 10 (22.2%) devices were approved based on reader study test-
ing (Table 2). In terms of sources of clinical data, three studies (6.7%) were conducted prospectively, while 42 
(93.3%) studies used previously collected clinical data to evaluate efficacy (Fig. 2).

AI/ML‑based medical devices in Japan.  We identified 12 PMDA-approved AI/ML-based medical 
devices using the database of the Japan Association for the Advancement of Medical Equipment Search (JAAME 
Search)12 (Fig. 1). The target of the devices was as follows: 6 (50%) for colorectal lesion detection, 3 (25%) for 
detection of covid-19 infection, 2 (16.7%) for detection of pulmonary nodules, and 1 (8.3%) for cerebral aneu-
rysm detection. In terms of the study design of the 12 devices, 9 (75%) were approved based on standalone soft-
ware testing (Table 3), and three (25%) were approved based on reader study testing (Table 4). No prospective 
studies have been conducted to acquire market approval (Fig. 2).

Endoscope imaging.  As a targeting device for colorectal lesions, GI Genius (Medtronic) was approved 
by the FDA based on the data of a prospective RCT. A total of 685 patients were enrolled and divided into two 
groups. The adenoma detection rate (ADR) was compared between participants diagnosed using traditional 
endoscopy methods and those diagnosed using CADe. The efficacy of CAD was demonstrated by the fact that 
the detection rate by CADe exceeded that of traditional endoscopy methods without CADe (54.8% vs. 40.4%)13.

In Japan, six devices14–19 were approved for colorectal lesions, and all devices were evaluated using retrospec-
tive data and standalone software testing. Of the six devices, three were used for analyzing images captured with 
an endocytoscope (1 for differentiating the degree of inflammation of ulcerative colitis, and 2 for differentiating 
the degree of tumor malignancy), and 3 were used for analyzing images captured by the endoscope.

The average number of images used for the evaluation of the devices designed for endocytoscope was 383.3 
(minimum 50, maximum 1000). The average sensitivity, specificity, and accuracy rates were 94.6% (minimum 

Figure 1.   Flowchart for extraction of AI/ML-based CAD devices approved in the USA and Japan.
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Device
Intended use/
summary CAD Imaging modality Test Case

Sensitivity/
specificity AUC​

Approved 
pathway Approved date Manufacture

Chest and abdomen imaging

BriefCase forPul-
monary Embolism 
triage

Triage and notifi-
cation of pulmo-
nary embolism

CAST CT 184 90.6/89.9 510(k) April 2019 Aidoc Medical Ltd

HealthPNX
Triage and 
notification of 
pneumothorax

CAST X-ray 588 93.1/92.9 0.98 510(k) May 2019 Zebra Medical 
Vision Ltd

Critical Care Suite
Triage and 
notification of 
pneumothorax

CAST X-ray 804 84.3/93.5 0.96 510(k) August 2019 GE Medical 
Systems LLC

HealthCXR
Triage and notifi-
cation of pleural 
effusion

CAST X-ray 554 96.7/93.1 0.98 510(k) November 2019 Zebra Medical 
Vision Ltd

Red Dot
Triage and 
notification of 
pneumothorax

CAST X-ray 888 94.6/87.9 0.97 510(k) February 2020 Behold. AI Tech-
nologies Limited

AIMI-Triage CXR 
PTX

Triage and 
notification of 
pneumothorax

CAST X-ray 300 92/90 0.96 510(k) April 2020 RADLogics Inc

BriefCase for 
Intra-abdominal 
Free Gas triage

Triage and 
notification of 
intra-abdominal 
free gas

CAST CT 184 91/88.9 510(k) June 2020 Aidoc Medical Ltd

BriefCase for inci-
dental Pulmonary 
Embolism triage

Triage and noti-
fication of inciden-
tal pulmonary 
embolism

CAST CT 268 90.5/88.7 510(k) August 2020 Aidoc Medical Ltd

CINA CHEST

Triage and 
notification of pul-
monary embolism 
(PE) and aortic 
dissection (AD)

CAST
Chest CTA/
thoraco-abdomi-
nal CTA​

PE: 396
AD: 298

91.1/91/8
96.4/97.5 510(k) May 2021 Avicenna.AIt

Head imaging

ContaCT
Triage and noti-
fication of large 
vessel occlusion

CAST CTA​ 300 87.8/89.6 0.91 de novo February 2018 Viz.AI Inc

BriefCase for 
Intracranial Hem-
orrhage triage

Triage and notifi-
cation of intracra-
nial hemorrhage

CAST CT 198 93.6/92.3 510(k) August 2018 Aidoc Medical Ltd

Accipiolx
Triage and notifi-
cation of intracra-
nial hemorrhage

CAST CT 360 92/86 510(k) October 2018 MaxQ-AI Ltd

HealthICH
Triage and notifi-
cation of intracra-
nial hemorrhage

CAST CT 427 94.4/92.5 510(k) June 2019 Zebra Medical 
Vision Ltd

DeepCT
Triage and notifi-
cation of intracra-
nial hemorrhage

CAST CT 260 93.8/92.3 510(k) July 2019 Deep01 Limited

BriefCase for Large 
Vessel Occlusion 
triage

Triage and noti-
fication of large 
vessel occlusion

CAST CTA​ 383 88.8/87.2 510(k) December 2019 Aidoc Medical Ltd

Viz ICH
Triage and notifi-
cation of intracra-
nial hemorrhage

CAST CT 261 93/90 0.96 510(k) March 2020 Viz ai Inc

Rapid ICH
Triage and notifi-
cation of intracra-
nial hemorrhage

CAST CT 336 89.9/94.3 510(k) March 2020 iSchemaView Inc

CuraRad-ICH
Triage and notifi-
cation of intracra-
nial hemorrhage

CAST CT 388 90.6/93.1 510(k) April 2020 CuraCloud Corp

NineAI

Triage and notifi-
cation of intracra-
nial hemorrhage 
(ICH) and mass 
effect (ME)

CAST CT ICH:89.9/97.4
ME:96.4/91.1 510(k) April 2020 Nines Inc

qER

Triage and notifi-
cation of intracra-
nial hemorrhage 
(ICH), mass effect 
(ME), midline 
shift (MS) and 
cranial fracture 
(CF)

CAST CT

Total:1320
ICH:629
ME:471
MS:414
CF:248

98.5/91.2
96.9/93/9
96.3/96
97.3/95.3
96.7/92.7

0.98
0.99
0.99
0.97

510(k) June 2020 Qure. ai Technolo-
gies

Continued
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91.8, maximum 96.9), 94.1% (minimum 91, maximum 97.3), and 95% (minimum 92, maximum 98). AUC was 
not reported.

For devices designed for endoscopic detection of polyps, video data were used instead of images for perfor-
mance evaluation. The efficacy of EndoBRAIN-EYE (CYBERNET)16 was evaluated using 12 h of videos including 
300 lesions. The efficacy of WISE VISION (NEC)18 was evaluated using videos including 350 lesions, and the 
number of continuous frames in which the lesions were identified was the index of performance. EW1-EC02 
(FUJIFILM)19 has both CADe and CADx functions. The CADe performance was evaluated based on the suc-
cessful continuous detection of polyps. The CADx performance was evaluated based on the correct identification 
of a lesion as a tumor or non-tumor lesion20.

Table 1.   Characteristics of the 35 FDA approved AI/ML-based CAD evaluated by standalone software testing.

Device
Intended use/
summary CAD Imaging modality Test Case

Sensitivity/
specificity AUC​

Approved 
pathway Approved date Manufacture

CINA

Triage and notifi-
cation of intracra-
nial hemorrhage 
(ICH) and large 
vessel occlusion 
(LVO)

CAST CT/CTA​ ICH:814
LVO:476

91.4/97.5
97.9/97.6

0.94
0.98 510(k) June 2020 AVICENNA. AI

Rapid LVO
Triage and noti-
fication of large 
vessel occlusion

CAST CTA​ 97/95.6 0.99 510(k) July 2020 iSchemaView Inc

Accipiolx
Improve perfor-
mance by chang-
ing algorithm

CAST CT 360 97/93 N/A 510(k) August 2020 MaxQ AI Ltd

HALO
Triage and noti-
fication of large 
vessel occlusion

CAST CTA​ 364 91.1/87 0.97 510(k) November 2020 NiCo-Lab BV

Viz ICH
Addition of GE’s 
non-contrast 
CT as supported 
systems

CAST CT 387 95/96 0.97 510(k) March 2021 Viz ai Inc

Fracture imaging

BriefCase for 
C-Spine fracture 
triage

Triage and 
notification of 
cervical spine 
bone fracture

CAST CT 186 91.7/88.6 510(k) May 2019 Aidoc Medical Ltd

HealthVCF
Triage and notifi-
cation of vertebral 
compression 
fractures

CAST CT 611 90.2/86.9 0.95 510(k) May 2020 Zebra Medical 
Vision Ltd

uAI Easy Triage-
Rib

Triage and notifi-
cation of multiple 
(3 or more) acute 
rib fracture

CAST CT 200 92.7/84.7 0.93 510(k) January 2021
Shanghai United 
Imaging Intel-
ligence Co., Ltd

Breast imaging

cmTriage
Triage and noti-
fication of breast 
cancer

CAST Mammogram 1255 86.9/88.5 0.95 510(k) March 2019 CureMetrix Inc

ProFound AI 
Software V2.1

Application to add 
Siemens Modali-
ties as supported 
systems

CADe/
CADx

Digital breast 
tomosynthesis 694 510(k) October 2019 iCAD Inc

Transpara V1.5
Addition of Fuji-
film’s mammo-
gram as supported 
systems

CADe/
CADx Mammogram 510(k) December 2019 ScreenPoint Medi-

cal BV

HealthMammo
Triage and noti-
fication of breast 
cancer

CAST Mammogram 835 89.9/90.7 0.96 510(k) July 2020 Zebra Medical 
Vision Ltd

Saige-Q
Triage and noti-
fication of breast 
cancer

CAST
Mammogram/
Digital breast 
tomosynthesis

Mammogram: 
1333
DBT: 1528

92.2/91.2
98.3/95.7

0.96
0.98 510(k) April 2021 DeepHealth, Inc

Transpara V1.7
Addition of Fuji-
film’s digital breast 
tomosynthesis as 
supported systems

CADe/
CADx

Mammogram/
Digital breast 
tomosynthesis

510(k) June 2021 ScreenPoint Medi-
cal B.V

Ophthalmology imaging

IDx-DR
Addition of Train-
ing mode, and 
change the user 
interface

CADe/
CADx Fundus camera 510(k) June 2021 Digital Diagnos-

tics Inc
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Chest and abdominal imaging.  In the USA, nine medical devices21–29 aimed at triaging pulmonary 
embolism, pneumothorax, pleural effusion, or intra-abdominal free gas, all categorized as CAST, were approved 
through evaluation of standalone software testing. An average of 496 images (minimum 184, maximum 888) 
were used for performance evaluation. The sensitivity and specificity reported by all nine studies had averages of 
92.0% (minimum 84.3, maximum 96.4) and 91.4% (minimum 87.9, maximum 97.5). AUC was only reported by 
5 studies and the average was 0.97 (minimum 0.96, maximum 0.98).

In Japan, two devices30,31 for lung nodule detection were categorized as CADe and approved based on read-
ing study testing. An average of 178 images (minimum 36, maximum 320) were used for testing. The reported 
averages of sensitivity and specificity were 59.1% (minimum 56.9, maximum 61.4) and 63.9% (minimum 37.1, 
maximum 90.7), respectively. AUC was not reported by either study.

Head imaging.  In the USA, 16 devices32–47 designed for the triage of intercranial hemorrhage and/or large 
vessel occlusion were labeled as CAST devices and approved after analysis of performance evaluation results. An 

Table 2.   Characteristics of the 10 FDA approved AI/ML-based CAD evaluated by reader study testing. 
Sensitivity/specificity and AUC are shown as with AI (without AI).

Device
Intended use/
summary CAD

Imaging 
modality Study design Test case Reader

Sensitivity/
specificity AUC​

Approved 
pathway

Approved 
date Manufacture

Endoscope imaging

GI Genius
Detection 
of colonic 
mucosal 
lesions

CADe Endoscopy Prospective,
RCT​ 685 6 ADR: 54.8

(40.4) de novo April 2021
Cosmo 
Artificial 
Intelligence—
AI, LTD

Ophthalmology imaging

IDx-DR

Detection and 
diagnosis of 
more than 
mild diabetic 
retinopathy

CADe/CADx Fundus 
camera Prospective 900 87/90 de novo April 2018 IDx LLC

EyeArt

Detection and 
diagnosis of 
more than 
mild diabetic 
retinopathy 
and vision-
threatening 
diabetic 
retinopathy

CADe/CADx Fundus 
camera Prospective 942 95.5/86.5 510(k) August 2020 Eyenuk Inc

Fracture imaging

OsteoDetect

Detection and 
diagnosis of 
distal radius 
fractures of 
adult wrists

CADe X-ray
Retrospective,
MRMC,
Fully-crossed

200 24 80/91
(74/88)

0.88
(0.84) de novo May 2018 Imagen Tech-

nologies Inc

FractureDetect

Detection and 
diagnosis of 
12 fractures 
(ankle, clavicle, 
elbow, femur, 
forearm, hip, 
humerus, 
knee, pelvis, 
shoulder, tibia/
fibula, wrist)

CADe X-ray
Retrospective,
MRMC,
Fully-crossed

175 24 90/91.8
(82/89)

0.95
(0.91) 510(k) July 2020 Imagen Tech-

nologies Inc

Breast imaging

Transpara 
V1.3

Detection and 
diagnosis of 
breast cancer

CADe/CADx Mammogram
Retrospective,
MRMC,
Fully-crossed

240 14 0.88
(0.86) 510(k) November 

2018
ScreenPoint 
Medical BV

ProFound AI 
Software V2.0

Detection and 
diagnosis of 
breast cancer

CADe/CADx Digital breast 
tomosynthesis

Retrospective,
MRMC,
Fully-crossed

260 24 85/69
(77/62)

0.85
(0.79) 510(k) December 

2018 iCAD Inc

Transpara 
V1.6

Addiction of 
digital breast 
tomosynthesis 
as supported 
systems

CADe/CADx
Mammogram/
Digital breast 
tomosynthesis

Retrospective,
MRMC,
Fully-crossed

240 18 0.86
(0.83) 510(k) March 2020 ScreenPoint 

Medical BV

MammoScreen
Detection and 
diagnosis of 
breast cancer

CADe/CADx Mammogram Retrospective,
MRMC 240 14 0.8

(0.77) 510(k) March 2020 Therapixel

Genius AI 
Detection

Detection and 
diagnosis of 
breast cancer

CADe/CADx Digital breast 
tomosynthesis

Retrospective,
MRMC 390 17 75.9/25.8

(66.8/23.4)
0.82
(0.79) 510(k) November 

2020 Hologic Inc
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Figure 2.   Number of approved AI/ML-based CAD devices in the USA and Japan.

Table 3.   Characteristics of the 9 PMDA approved AI/ML-based CAD evaluated by standalone software 
testing.

Device
Intended use/
summary CAD Imaging modality Test case

Sensitivity/
specificity AUC​ Accuracy Approved date Manufacture

Endoscope imaging

EndoBRAIN
Diagnosis of 
neoplastic or non-
neoplastic

CADx Endocytoscopy 100 96.9 98 December 2018 CYBERNET

EndoBRAIN-UC
Diagnosis of inflam-
mation for Ulcera-
tive colitis

CADx Endocytoscopy 1000 95.1/90.7 91.9 April 2020 CYBERNET

EndoBRAIN-EYE Detection of colonic 
mucosal lesions CADe Endoscopy 300 96.3/93.7 January 2020 CYBERNET

EndoBRAIN-Plus
Diagnosis of non-
neoplastic, adenoma 
or invasive cancer

CADx Endocytoscopy 50 91.8/97.3 July 2020 CYBERNET

EW10-EC02
Detection and 
diagnosis of colonic 
mucosal lesions

CADe/CADx Endoscopy
WLI: 912
LCI: 943
BLI: 296
WLI: 308

94.5
96

94.9
93.2 September 2020 FUJIFILM

WISE VISION Detection of colonic 
mucosal lesions CADe Endoscopy 350 83/89 November 2020 NEC

COVID-19 detection

InferRead CT Pneu-
monia

Detection of 
pneumonia cause by 
covid-19

CADe CT 190 77.1/90.7 June 2020 CES decartes

Ali-M3
Detection of 
pneumonia cause by 
covid-19

CADe CT 704 89.6/37.1 June 2020 MIC Medical Corp

FS-AI693
Detection of 
pneumonia cause by 
covid-19

CADe CT 217 87.5/37.1 0.74 May 2021 FUJIFILM

Table 4.   Characteristics of the 3 PMDA approved AI/ML-based CAD evaluated by Reader Study Testing. 
Sensitivity/specificity and AUC are shown as with AI (without AI).

Device
Intended use/
summary CAD Imaging modality Test case Reader

Sensitivity/
specificity AUC​ Accuracy Approved date Manufacture

Chest and abdomen imaging

FS-AI688 Detection of lung 
nodule CADe CT 36 10 61.4 (49) May 2020 FUJIFILM

EIRL X-Ray Lung 
nodule

Detection of lung 
nodule CADe CT 320 18 56.9/96.7 (45.4/96.3) 0.76

(0.70)
88.4
(85.6) August 2020 LPIXEL

Head imaging

EIRL aneurysm
Detection of 
Unruptured cerebral 
aneurysm

CADe MRA 200 20 77.2/72.1 (68.2/79.4) 0.75
(0.71) September 2019 LPIXEL
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average of 414.6 images (minimum 198, maximum 1320) were used for evaluation. The averages of the sensitiv-
ity and specificity reported by all studies were 93.6 (minimum 87.7, maximum 98.5) and 92.8 (minimum 86, 
maximum 97.6), respectively. The average AUC (reported by only 7 studies) was 0.97 (minimum 0.91, maximum 
0.99).

The Accipilox (MaxQ AI Ltd.), a medical device targeting the detection of intercranial hemorrhage, was first 
approved by the FDA in 201834. However, after changing the original algorithm from an ML-based to a convolu-
tional neural network (CNN)-based algorithm in 202045, application for re-approval became necessary. With this 
change, the sensitivity increased from 92 to 97%, and the specificity increased from 86 to 93%. Both tests were 
performed using 360 images. Similarly, the Viz ICH (Viz ai Inc.)38,47, another device for intracranial hemorrhage 
detection, was granted FDA clearance after the development of an add-on allowing for AI automatic detection on 
non-contrast CT scans acquired on scanners manufactured by general electric (GE). Device sensitivity increased 
from 93 to 95%, specificity increased from 90 to 96%, and AUC increased from 0.96 to 0.97.

In Japan, a CADe device that analyzes head magnetic resonance angiography images to detect unruptured 
cerebral aneurysms48 was approved based on reader study testing. A total of 200 images were used for the testing. 
The reported sensitivity and specificity were 77.2% and 72.1%, respectively. AUC was not reported.

Ophthalmology imaging.  In the USA, two devices49,50 for diabetic retinopathy diagnosis were approved 
using data from a prospective study. The average number of images used for performance evaluation was 921 
(minimum 900, maximum 942). Sensitivity and specificity were 91.2% (minimum 87, maximum 95.5) and 
88.6% (minimum 86.5, maximum 90), respectively. AUC was not reported. Notably, the percentage of images 
that could be correctly evaluated through AI was calculated using an imageability factor, and the reported aver-
age was 97.3% (minimum 96, maximum 98.6). Both devices were used in primary care facilities in the USA and 
were developed to help caregivers decide whether to encourage patients to see specialists based on the results of 
AI analysis.

Regarding IDx-DR (Digital Diagnosis Inc.), a second application for the addition of a training mode and 
alterations to the user interface were approved51. However, additional performance evaluation was not conducted 
at the time of the second application. AI/ML-based CAD for the diagnosis of diabetic retinopathy has not yet 
been approved by Japanese agencies.

Fracture imaging.  Of the five devices52–56 aimed at fracture detection that received FDA approval, three 
were evaluated by standalone software testing54–56. These three devices were categorized as CAST for cervical 
spine fracture, vertebral compression fracture, and rib fracture, and CT images were used for analyses. The other 
two devices were developed for wrist fracture detection52 and 12 types of fracture detection on X-ray images53. 
These two devices were approved based on reader study testing and an improvement in diagnostic accuracy 
using X-ray images was demonstrated with the assistance of the software. Standalone software testing was con-
ducted using an average of 332.3 images (minimum 186, maximum 611). The average sensitivity, specificity, and 
AUC were 91.5% (minimum 90.2, maximum 92.7), 86.7% (minimum 84.7, maximum 88.6), and 0.94 (minimum 
0.93, maximum 0.95), respectively. AUC was only reported for two of the three devices (not reported for the 
cervical spine fracture triage device).

Reader study testing was performed using an average of 187.5 images (minimum 175, maximum 200). Aver-
age sensitivity, specificity, and AUC were 85% (minimum 80, maximum 90), 91.4% (minimum 91, maximum 
91.8), and 0.91 (minimum 0.88, maximum 0.95), respectively. AI/ML devices aimed at detecting fractures are 
yet to be approved in Japan.

Breast imaging.  Among the 11 devices57–67 for detection and diagnosis of breast cancer approved in the 
USA, six were evaluated based on standalone software testing57,58,60,62–64. Five devices categorized as CADe/
CADx, which were designed to detect suspected breast cancer sites and malignancy levels, were approved based 
on reader study testing59,61,65–67.

Among the devices evaluated through standalone software testing, ProFound AI Software V2.1 (iCAD Inc.)58, 
Transpara V1.5 (ScreenPoint Medical BV)60, and Transpara V1.7 (ScreenPoint Medical BV)62 were classified as 
CADe/CADx devices. However, all three devices were upgraded versions of devices that had been approved based 
on reader study testing, with the addition of mammography or digital breast tomosynthesis. For the Transpara 
V1.6 (ScreenPoint Medical BV)61, a second reader study test was conducted at the time of the upgrade from the 
previous version because it added digital breast tomosynthesis as usable data input.

For standalone software testing, an average of 1411 images were used (minimum 694, maximum 1528), with 
an average sensitivity of 91.8% (minimum 86.9, maximum 98.3), specificity of 91.5 (minimum 88.5, maximum 
95.7), and AUC of 0.96 (minimum 0.95, maximum 0.98). For reader study testing, an average of 274 images were 
used for the evaluation (minimum 240, maximum 390), with an average sensitivity of 80.4% (minimum 75.9, 
maximum 85), specificity of 47.4% (minimum 25.8, maximum 69), and AUC of 0.84 (minimum 0.8, maximum 
0.88). Currently, no AI/ML medical devices for breast cancer detection and diagnostics have been approved in 
Japan.

SARS‑Cov‑2(COVID‑19) detection.  In Japan, three medical devices68–70 aimed at detecting COVID-19 
infection have been approved based on standalone software testing. In response to the rapid spread of COVID-
19, all devices were fast-tracked for evaluation and approved within two months of application. The average 
number of images used to evaluate the performance of these devices was 370.3 (minimum 190, maximum 704) 
with an average sensitivity and specificity of 84.9% (minimum 77.7, maximum 89.6) and 54.7 (minimum 37.1, 
maximum 90.7) respectively. AUC was not reported in any study.
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Discussion
In this study, we extracted AI/ML-based CAD devices approved in the USA and Japan and thoroughly assessed 
the performance evaluation methods. The main findings are as follows: (1) In the USA, devices classified as CAST 
were approved based on standalone software testing, and all devices classified as CADe/CADx were approved 
based on reader study testing. However, in Japan, there is no clear classification. (2) AI/ML-based CAD in the 
field of endoscopy for the detection of colorectal polyps was approved based on the data of a prospective RCT in 
the USA. In Japan, it was approved based on the evaluation of the software alone. This difference was influenced 
by the fact that the use of colonoscopy in the medical healthcare system in the two countries is quite different, as 
discussed in “Necessity of prospective testing” section. (3) In the USA, a wider variety of devices are available, 
compared to the devices available in Japan. To the best of our knowledge, this is the first comprehensive system-
atic comparative analysis of evaluation methods for AL/ML-based CAD devices approved in the USA and Japan.

Different methodological approaches to standalone software testing and a reader study test-
ing.  There are two major testing methods for evaluating AI/ML-based CAD devices: standalone software 
testing and reader study testing. The 31 devices approved as CAST in the USA were all evaluated by software 
alone. On the other hand, all the devices classified as CADe/CADx were subjected to reader study testing, except 
for post-market improvements.

CAST is said to have been introduced by Goldenberg et al. in 20114,71. In the USA, devices classified as having 
CAST functions are intended for use in urgent situations, such as intracerebral hemorrhage or cerebrovascular 
obstruction, where the devices assist non-specialists in promptly determining the best course of action to take. 
As the devices may contribute to the clinical decision-making process, software test results are required to dem-
onstrate sensitivity and specificity of 90% or higher. The mean values of sensitivity, specificity, and AUC for all 
approved CAST devices in the USA were high—92.9% (minimum 84.3, maximum 98.3), 91.7% (minimum 83.5, 
maximum 97.6), 0.96 (minimum 0.91, maximum 0.99), respectively.

The FDA has issued guidance on the standalone evaluation of software and recommends AUC, sensitivity, 
and specificity as evaluation indexes72. Probably owing to this guidance, these indices were evaluated for many 
devices. These evaluation indexes would contribute to a reasonable evaluation of the performances of newly 
developed devices.

Furthermore, in the USA, all devices were tested using the multiple reader multiple case (MRMC) method. 
The reported average number of doctors who participated in the test was 19.2 (minimum 14, maximum 24). Of 
the devices approved based on reader study testing, five were conducted using “Fully-Crossed design” following 
the FDA recommendation due to its greater statistical power. The test design is recommended by the FDA when 
the output results are displayed concurrently (2020 revision)73.

Despite the extensive testing procedures that were performed before approval, there were instances where 
the clinical performance of approved devices did not measure up to expectations74–76. This was the case with 
BriefCase for CSF Triage (Aidoc Medical Ltd.) and Health VCF (Zebra Medical Vision Ltd.). Such cases underline 
the necessity of analyzing the generalizations contained within the current evaluation methods for increasingly 
diverse devices.

There are currently no approved CAST devices in Japan; hence, it was not possible to find any information 
on an evaluation method for CAD devices that fall under this category. The data indicates that, in Japan, the 
method used to evaluate the performance of a device is not reliant on the category the device is classified by, be 
it CAST or CADe/CADx. We believe that the reason there were no PMDA-approved CAST devices in Japan lies 
in the medical environment differences when compared to the USA. For instance, according to data reported 
by the Organization for Economic Co-operation and Development in a survey on the distribution of medical 
equipment77, Japan ranked highest in the CT scanner category with 111 scanners for every 1,000,000 people; The 
USA ranked 11th with only 43 (27 in hospitals and 16 ambulatories) scanners per 1,000,000 people. However, 
the reported number of CT examinations per 1000 individuals for both countries was comparable: 200–250 
exams per 1000 individuals. Thus, it is evident that, over an identical period, the data volume outputted by a 
single CT scanner in the USA would be far greater than that in Japan. Therefore, the need for prompt screening 
of high-risk patients may be greater in the USA than in Japan, which may be the reason why CAST devices are 
widely developed in the USA.

In Japan, there is no guidance on the evaluation of devices by standalone software testing or by reader study 
testing. Establishing such guidance along with evaluation indexes may be necessary if Japan hopes to continue 
promoting research and development of AI/ML-based medical devices.

Necessity of prospective testing.  Of the 57 AI/ML-based CAD devices selected and analyzed in the 
present study, three devices conducted prospective studies: IDx-DR (IDx) and EyeArt (Eyenuk, Inc), for the 
detection of diabetic retinopathy, and GI Genious (Cosmo Artificial Intelligence-AI, LTD) for the detection of 
colorectal polyps. The common denominator between these three devices is that the quality of the image used 
as input data into the software greatly depends on the skill of the surgeon. Hence, the performance of the AI/
ML-based CAD device is considerably dependent on the dexterity of the user, and a less skilled professional may 
not be able to realize the full potential of the device. Moreover, the dependence of such devices on the user’s 
skills leads to a higher likelihood than some of their counterparts to misdiagnose. Although many studies have 
been reported on AI/ML-based CAD devices for ultrasonography used to detect breast tumors78, it has not yet 
been granted regulatory approval. It was speculated that this is because the imaging skill of the operator had a 
significant impact on the performance of the software.

We believe that the difference between CAD-assisted colorectal polyp detection in the USA and Japan is due 
to the significant differences in the clinical positioning of colonoscopy in the healthcare system.
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In the USA, colonoscopy is recognized as the “gold-standard” screening test for colorectal cancer preven-
tion. Most practitioners choose to remove all polyps found during a colonoscopy. Therefore, there is a concern 
that the use of AI/ML-based CAD devices will inevitably increase the number of polyps detected, including 
benign ones, thereby increasing the burden of the procedure on the patients. Furthermore, for colonoscopy, 
rather than sensitivity and specificity, the best indicator for performance evaluation is the adenoma detection 
rate (ADR)79,80. Indeed, the ADR index has been confirmed to be directly correlated with the mortality rate of 
colorectal cancer81,82.

In Japan, when a polyp is found during colonoscopy, the physician makes a qualitative diagnosis using a 
magnifying endoscope and makes a judgment on its malignancy level. The term “semi-clean colon” refers to a 
colon with a small adenoma judged as benign (also known as microadenomas, less than 5 mm wide), for which 
a follow-up is performed without excision83. This indicates that not all polyps are extracted during a procedure 
in Japan, contrary to the procedure in the USA. Therefore, the impact of colonoscopy on treatment strategy 
differs between Japan and the USA, which might have resulted in the approval of the CADe device based on the 
evaluation of the standalone software testing in Japan.

Furthermore, to evaluate the performance of the CAD system for detecting colorectal polyps, video frames 
were used as test data and the performance was evaluated in an actual clinical practice manner. It can be said 
that the PMDA has made a reasonable evaluation of CAD for colorectal polyp detection in line with the clinical 
scenario in Japan.

IDx-DR and EyeArt devices designed for the detection of diabetic retinopathy are used in primary care facili-
ties. These devices, using the results of AI analysis, are intended to help caregivers decide whether to encourage 
patients to see specialists. These devices are intended to be operated by non-expert practitioners. Therefore, it is 
necessary for manufacturers to properly train operators to be able to use the device to achieve its full potential 
and create an appropriate imaging protocol. This explains why imageability was also used as an evaluation factor 
when reviewing the performance of such devices84.

Comparison of diversity of AI/ML‑based CAD.  A comprehensive analysis of AI/ML-based CAD 
devices approved by the regulatory agencies revealed that the FDA approved a wider variety of devices than 
the PMDA. In the USA, AI/ML-based CAD for intracerebral hemorrhage, cerebrovascular obstruction, breast 
cancer, pneumothorax, pulmonary embolism, and pleural effusion diagnosis is a field that remains on the cut-
ting edge of the healthcare industry. The constantly updated and improved head CT, mammogram, and chest CT 
databases may be one of the reasons for such technological advances. Indeed, digital databases such as the Digi-
tal Database for Screening Mammography (DDSM)85, or ChexPert86 are known for their large-scale database 
and are frequently used in studies on image analysis algorithm development. Furthermore, the National Insti-
tute of Health created the ChestNet-1487 dataset available through Kaggle (an online community periodically 
organizing data science competitions). ChestNet-14 comprises 112,000 images of 14 different types of lesions. 
Similarly, the Radiological Society of North America published 25,312 head CT images on Kaggle88. As can be 
seen from these instances, there is a constant push for the further development of AI/ML-based CAD-assisted 
diagnostic/detection devices.

Historically, the USA pioneered the application of CAD to the medical field, with the FDA approving the 
world’s first CAD device in 1998 (“Image Checker”89, by R2, now manufactured by Hologic). This is assumed 
to be one of the reasons why medical AI/ML research and development is at an advanced stage as compared to 
other countries.

The most advanced AI/ML-based CAD sector in Japan targets the colonoscopy market. Currently, the Japa-
nese company, Olympus, accounts for 70% of the endoscopes’ global market shares90. It is speculated that this 
may be a factor for the use of AI in the analysis of endoscopic images, and lesion detection is more advanced as 
compared to the other areas. In Japan, research teams at Showa University and Nagoya University have published 
a database (SUN91) containing 49,799 colorectal polyps. Therefore, further research and development focusing 
on this area are required.

Future work.  Because the European Union’s European Medicines Agency (EMA) is another important reg-
ulatory agency, including AI/ML-based medical devices approved by the EMA would result in a more complete 
analysis of the current state of global device approval procedures. However, the EMA does not appear to have a 
comprehensive database accessible to the public. If the EMA makes its data publicly available, we will incorpo-
rate it in a future study, generating results of higher quality and consistency.

Limitations.  The present study had two limitations. First, the devices that were approved in the USA or 
Japan were extracted using their general names or product codes. Therefore, there may be relevant devices that 
we have not identified. Second, this systematic analysis was limited to AI/ML-based CAD devices. Nevertheless, 
we believe that our comprehensive analysis and comparison of evaluation methods of AL/ML-based medical 
devices in terms of target and study design between the USA and Japan provide valuable knowledge on the 
global development of AI/ML-based CAD.

Conclusions
To the best of our knowledge, the present study is the first systematic comprehensive comparative analysis to 
clarify differences in performance evaluation methods of AI/ML-based CAD devices approved in the USA and 
Japan.

In the USA, there are two prevalent methods for performance evaluation: standalone software testing and 
reader study testing. Which one is used depends on whether the device is CAST or CADe/CADx. In contrast, 
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Japan does not make such a clear distinction, as illustrated by the indiscriminate use of either standalone software 
testing or reader study testing for performance evaluation of devices belonging to the same class label (CADe/
CADx). In addition to this, the present study indicated that the AI/ML CAD devices approved in the USA were 
much more diverse than those approved in Japan. As a regulatory agency, the FDA has issued clear guidance 
specifying and describing points to keep in mind when conducting standalone software testing or reader study 
testing. The authors believe that the active publication of such guidance and extensive comprehensive documen-
tation by regulatory agencies encourages the development of AI/ML medical devices. Finally, from the perspec-
tive of mutual acceptance of AI/ML-based CAD devices developed in both countries, it would seem relevant 
to address the issue of international harmonization of AI/ML-based CAD evaluation to obtain consensus on 
reliable evaluation methods for these devices.

Methods
Extraction of AI/ML‑based medical devices in the USA.  AI/ML medical devices were extracted from 
the FDA product code database11. Product Code is a “3-character unique product identifier”. As of June 22, 2021 
(the date at which devices were selected), 6701 product codes were listed. Two independent authors performed 
a keyword search and determined whether the AI-based CAD met the inclusion criteria and resolved discrepan-
cies by joint review and consensus. When using search keywords such as “artificial intelligence,” “machine learn-
ing,” and “deep learning,” 18 product codes were identified (8 for artificial intelligence, 9 for machine learning, 
and 1 for deep learning). Among the 18 product codes, seven duplicates were removed, and five other product 
codes were excluded after screening (excluding codes that did not correspond to triage, notification, detection, or 
diagnosis). The final six product codes encompassed a total of 48 devices. Of these 48 devices, four were granted 
de novo clearance and 44 had been granted 510(k) clearance [no premarket approval (PMA)]. Two devices were 
excluded from this study because of insufficient information in the 510(k) summary; one was excluded because 
of minor changes in the target user. The final number of US-approved devices used in the present study was 45. 
Details of the screening and selection processes are shown in Fig. 1.

Information on de novo classification requests, decision summaries, and a 510(k) summary of AI/ML-based 
CAD approved in the USA was collected. Information on (1) device name; (2) manufacturer; (3) approval date; 
(4) intended use; (5) test method; (6) target disease; (7) test data volume; and (8) performance [sensitivity, 
specificity, area under the curve (AUC), and accuracy rate] was retrieved.

Extraction of AI/ML‑based medical devices in Japan.  Japanese PMDA-approved AI/ML medical 
devices were extracted from the database of the Japan Association for the Advancement of Medical Equipment 
using its search service (JAAME Search)12. The JAAME database comprehensively stores the general names of 
medical devices and information on approved or certified medical devices. First, since this study focuses on 
AI/ML medical devices used to diagnose specific diseases, the initial search was performed using a “disease 
diagnostic program.” The search results showed 165 device categories with generic names (equivalent to FDA 
product codes). These 165 categories comprised a combined total of 349 approved/certified medical devices (as 
of June 22, 2021).

Since the first AI/ML medical device approved in Japan was EndoBRAIN (CYBERNET), for which approval 
was issued in December 201814, the search was refined to devices approved between December 2018 and June 
2021. This reduced the number of devices that matched all selected characteristics to 57. After excluding devices 
for genome analysis or other non-image-based tasks, 32 devices remained. The final data assessment checked 
whether using AI/ML from the press release information and package inserts of the devices, yielding 12 devices 
for study.

Classification of AI/ML‑based CAD.  Identified AI/ML-based CAD devices were classified based on the 
definitions of CADe, CADx, and CAST described in the guidance document by the FDA72. Taking the example 
of lesion detection, a device that outputs the mark or emphasis is a CADe, a device that identifies the malignancy 
level of the lesion is a CADx, and a device whose output is meant to reduce or eliminate the burden of doctors 
is a CAST.

Data analysis.  After grouping the identified devices according to their target area, we further divided them 
into subgroups according to the evaluation method used for approval (standalone software testing or reader 
study testing). Known data averages for the test cases, sensitivity, specificity, and AUC results were calculated 
(minimum–maximum) using Microsoft Excel.

Research involving human participants.  This study is a systematic review and do not involve human 
participants.

Data availability
The authors declare that all the data included in this study are available within the paper.

Received: 22 December 2021; Accepted: 27 September 2022

References
	 1.	 Benjamens, S., Dhunnoo, P. & Meskó, B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: 

An online database. NPJ. Digit. Med. 3, 118. https://​doi.​org/​10.​1038/​s41746-​020-​00324-0 (2020).

https://doi.org/10.1038/s41746-020-00324-0


11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16874  | https://doi.org/10.1038/s41598-022-21426-7

www.nature.com/scientificreports/

	 2.	 Muehlematter, U. J., Daniore, P. & Vokinger, K. N. Approval of artificial intelligence and machine learning-based medical devices in 
the USA and Europe (2015–20): A comparative analysis. Lancet Digit. Health 3, e195–e203. https://​doi.​org/​10.​1016/​s2589-​7500(20)​
30292-2 (2021).

	 3.	 Allen, B., Agarwal, S., Coombs, L., Wald, C. & Dreyer, K. ACR data science institute artificial intelligence survey. J. Am. Coll. Radiol. 
https://​doi.​org/​10.​1016/j.​jacr.​2021.​04.​002 (2020).

	 4.	 Goldenberg, R. & Peled, N. Computer-aided simple triage. Int. J. Comput. Assist. Radiol. Surg. 6, 705–711. https://​doi.​org/​10.​1007/​
s11548-​011-​0552-x (2011).

	 5.	 Kohli, A., Mahajan, V., Seals, K., Kohli, A. & Jha, S. Concepts in U.S. Food and Drug Administration regulation of artificial intel-
ligence for medical imaging. AJR Am. J. Roentgenol. 213, 886–888. https://​doi.​org/​10.​2214/​AJR.​18.​20410 (2019).

	 6.	 Ferryman, K. Addressing health disparities in the Food and Drug Administration’s artificial intelligence and machine learning 
regulatory framework. J. Am. Med. Inform. Assoc. 27, 2016–2019. https://​doi.​org/​10.​1093/​jamia/​ocaa1​33 (2020).

	 7.	 Hernandez-Boussard, T., Lundgren, M. P. & Shah, N. Conflicting information from the Food and Drug Administration: Missed 
opportunity to lead standards for safe and effective medical artificial intelligence solutions. J. Am. Med. Inform. Assoc. 28, 1353–
1355. https://​doi.​org/​10.​1093/​jamia/​ocab0​35 (2021).

	 8.	 Lin, H. et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood 
cataracts in eye clinics: A multicentre randomized controlled trial. EClinicalMedicine 9, 52–59. https://​doi.​org/​10.​1016/j.​eclinm.​
2019.​03.​001 (2019).

	 9.	 Calisto, F. M., Santiago, C., Nunes, N. & Nascimento, J. C. BreastScreening-AI: Evaluating medical intelligent agents for human-AI 
interactions. Artif. Intell. Med. 127, 102285. https://​doi.​org/​10.​1016/j.​artmed.​2022.​102285 (2022).

	10.	 Calisto, F. M., Santiago, C., Nunes, N. & Nascimento, J. C. Introduction of human-centric AI assistant to aid radiologists for mul-
timodal breast image classification. Int. J. Hum. Comput. https://​doi.​org/​10.​1016/j.​ijhcs.​2021.​102607 (2021).

	11.	 FDA. Product Code Classification Database. https://​www.​fda.​gov/​medic​al-​devic​es/​class​ify-​your-​medic​al-​device/​produ​ct-​code-​
class​ifica​tion-​datab​ase.

	12.	 JAAME. Search. http://​www.​jaame.​or.​jp/.
	13.	 Repici, A. et al. Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial. Gastroenterology 159, 

512-520.e517. https://​doi.​org/​10.​1053/j.​gastro.​2020.​04.​062 (2020).
	14.	 CYBERNET. EndoBRAIN. https://​www.​pmda.​go.​jp/​PmdaS​earch/​kikiD​etail/​Resul​tData​SetPDF/​331289_​23000​BZX00​372000_​1_​

01_​01 (2020).
	15.	 CYBERNET. EndoBRAIN-UC. https://​www.​pmda.​go.​jp/​PmdaS​earch/​kikiD​etail/​Resul​tData​SetPDF/​331289_​30200​BZX00​136000_​

1_​01_​01 (2020).
	16.	 CYBERNET. EndoBRAIN-EYE. https://​www.​pmda.​go.​jp/​PmdaS​earch/​kikiD​etail/​Resul​tData​SetPDF/​331289_​30200​BZX00​208000_​

1_​01_​01 (2021).
	17.	 CYBERNET. EndoBRAIN-Plus. https://​www.​pmda.​go.​jp/​PmdaS​earch/​kikiD​etail/​Resul​tData​SetPDF/​331289_​30200​BZX00​235000_​

1_​01_​01 (2020).
	18.	 NEC. WISE VISION. https://​www.​pmda.​go.​jp/​PmdaS​earch/​kikiD​etail/​Resul​tData​SetPDF/​581038_​30200​BZX00​382000_​A_​01_​

01 (2020).
	19.	 FUJIFILM. EW10-EC02. https://​www.​pmda.​go.​jp/​PmdaS​earch/​kikiD​etail/​Resul​tData​SetPDF/​671001_​30200​BZX00​288000_​A_​

01_​02 (2020).
	20.	 Weigt, J. et al. Performance of a new integrated computer-assisted system (CADe/CADx) for detection and characterization of 

colorectal neoplasia. Endoscopy https://​doi.​org/​10.​1055/a-​1372-​0419 (2021).
	21.	 FDA. 510(k) Summary for Briefcase for PE. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1900​72.​pdf (2019).
	22.	 FDA. 510(k) Summary for HealthPNX. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1903​62.​pdf (2019).
	23.	 FDA. 510(k) Summary for Critical Care Suite. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf18/​K1831​82.​pdf (2019).
	24.	 FDA. 510(k) Summary for HealthCXR. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1923​20.​pdf (2019).
	25.	 FDA. 510(k) Summary for red dot. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1915​56.​pdf (2020).
	26.	 FDA. 510(k) Summary for AIMI-Triage CXR PTX. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1933​00.​pdf (2020).
	27.	 FDA. 510(k) Summary for BriefCase for iPE Triage. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf20/​K2010​20.​pdf (2020).
	28.	 FDA. 510(k) Summary for CINA CHEST. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf21/​K2102​37.​pdf (2020).
	29.	 FDA. 510(k) Summary for BriefCase for Free Gas. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1932​98.​pdf (2020).
	30.	 FUJIFILM. FS-AI688. https://​www.​pmda.​go.​jp/​PmdaS​earch/​kikiD​etail/​Resul​tData​SetPDF/​671001_​30200​BZX00​150000_​A_​01_​

03 (2020).
	31.	 LPIXEL. EIRL X-ray Lung nodule. https://​www.​pmda.​go.​jp/​PmdaS​earch/​kikiD​etail/​Resul​tData​SetPDF/​171955_​30200​BZX00​

269000_​B_​00_​02 (2020).
	32.	 FDA. Evaluation of automatic class III designation for contact decision summary. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​revie​

ws/​DEN17​0073.​pdf (2018).
	33.	 FDA. 510(k) Summary for BriefCase for ICH https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf18/​K1806​47.​pdf (2018).
	34.	 FDA. 510(k) Summary for Accipiolx. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf18/​K1821​77.​pdf (2018).
	35.	 FDA. 510(k) Summary for HealthICH. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1904​24.​pdf (2019).
	36.	 FDA. 510(k) Summary for DeepCT. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf18/​K1828​75.​pdf (2019).
	37.	 FDA. 510(k) Summary for BriefCase for LVO. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1923​83.​pdf (2019).
	38.	 FDA. 510(k) Summary for Viz ICH. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1936​58.​pdf (2020).
	39.	 FDA. 510(k) Summary for RAPID ICH. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1930​87.​pdf (2020).
	40.	 FDA. 510(k) Summary for CuraRad-ICH. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1921​67.​pdf (2020).
	41.	 FDA. 510(k) Summary for NinesAI. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1933​51.​pdf (2020).
	42.	 FDA. 510(k) Summary for qER. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf20/​K2009​21.​pdf (2020).
	43.	 FDA. 510(k) Summary for CINA. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf20/​K2008​55.​pdf (2020).
	44.	 FDA. 510(k) Summary for Rapid LVO 1.0. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf20/​K2009​41.​pdf (2020).
	45.	 FDA. 510(k) Summary for Accipiolx. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf20/​K2013​10.​pdf (2020).
	46.	 FDA. 510(k) Summary for HALO. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf20/​K2008​73.​pdf (2020).
	47.	 FDA. 510(k) Summary for Viz ICH. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf21/​K2102​09.​pdf (2021).
	48.	 LPIXEL. EIRL aneurysm. https://​www.​info.​pmda.​go.​jp/​downf​iles/​md/​PDF/​171955/​171955_​30100​BZX00​142000_​A_​00_​03.​pdf 

(2019).
	49.	 FDA. DE NOVO CLASSIFICATION REQUEST FOR IDx-DR. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​revie​ws/​DEN18​0001.​

pdf (2018).
	50.	 FDA. 510(k) Summary for EyeArt. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf20/​K2006​67.​pdf (2020).
	51.	 FDA. 510(k) Summary for IDx-DR. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf20/​K2036​29.​pdf (2021).
	52.	 FDA. Evaluation of automatic class III designation for osteodetect. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​revie​ws/​DEN18​

0005.​pdf (2018).
	53.	 FDA. 510(k) Summary for FractureDetect. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1934​17.​pdf (2020).
	54.	 FDA. 510(k) Summary for BriefCase for C-spine. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1908​96.​pdf (2019).
	55.	 FDA. 510(k) Summary for HealthVCF. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1929​01.​pdf (2020).

https://doi.org/10.1016/s2589-7500(20)30292-2
https://doi.org/10.1016/s2589-7500(20)30292-2
https://doi.org/10.1016/j.jacr.2021.04.002
https://doi.org/10.1007/s11548-011-0552-x
https://doi.org/10.1007/s11548-011-0552-x
https://doi.org/10.2214/AJR.18.20410
https://doi.org/10.1093/jamia/ocaa133
https://doi.org/10.1093/jamia/ocab035
https://doi.org/10.1016/j.eclinm.2019.03.001
https://doi.org/10.1016/j.eclinm.2019.03.001
https://doi.org/10.1016/j.artmed.2022.102285
https://doi.org/10.1016/j.ijhcs.2021.102607
https://www.fda.gov/medical-devices/classify-your-medical-device/product-code-classification-database
https://www.fda.gov/medical-devices/classify-your-medical-device/product-code-classification-database
http://www.jaame.or.jp/
https://doi.org/10.1053/j.gastro.2020.04.062
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/331289_23000BZX00372000_1_01_01
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/331289_23000BZX00372000_1_01_01
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/331289_30200BZX00136000_1_01_01
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/331289_30200BZX00136000_1_01_01
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/331289_30200BZX00208000_1_01_01
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/331289_30200BZX00208000_1_01_01
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/331289_30200BZX00235000_1_01_01
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/331289_30200BZX00235000_1_01_01
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/581038_30200BZX00382000_A_01_01
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/581038_30200BZX00382000_A_01_01
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/671001_30200BZX00288000_A_01_02
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/671001_30200BZX00288000_A_01_02
https://doi.org/10.1055/a-1372-0419
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K190072.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K190362.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/K183182.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K192320.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K191556.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193300.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K201020.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf21/K210237.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193298.pdf
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/671001_30200BZX00150000_A_01_03
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/671001_30200BZX00150000_A_01_03
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/171955_30200BZX00269000_B_00_02
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/171955_30200BZX00269000_B_00_02
https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN170073.pdf
https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN170073.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/K180647.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/K182177.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K190424.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/K182875.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K192383.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193658.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193087.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K192167.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193351.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K200921.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K200855.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K200941.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K201310.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K200873.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf21/K210209.pdf
https://www.info.pmda.go.jp/downfiles/md/PDF/171955/171955_30100BZX00142000_A_00_03.pdf
https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN180001.pdf
https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN180001.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K200667.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K203629.pdf
https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN180005.pdf
https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN180005.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193417.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K190896.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K192901.pdf


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16874  | https://doi.org/10.1038/s41598-022-21426-7

www.nature.com/scientificreports/

	56.	 FDA. 510(k) Summary for uAI EasyTriage-Rib. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1932​71.​pdf (2021).
	57.	 FDA. 510(k) Summary for cmTriage. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf18/​K1832​85.​pdf (2019).
	58.	 FDA. 510(k) Summary for ProFound AI Software V2.1. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1919​94.​pdf (2019).
	59.	 FDA. 510(k) Summary for Transpara, https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf18/​K1817​04.​pdf. (2018).
	60.	 FDA. 510(k) Summary for Transpara 1.5. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1922​87.​pdf (2019).
	61.	 FDA. 510(k) Summary for Transpara 1.6. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1932​29.​pdf (2020).
	62.	 FDA. 510(k) Summary for Transpara 1.7. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf21/​K2104​04.​pdf (2021).
	63.	 FDA. 510(k) Summary for HealthMammo. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf20/​K2009​05.​pdf (2020).
	64.	 FDA. 510(k) Summary for Saige-Q. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf20/​K2035​17.​pdf (2021).
	65.	 FDA. 510(k) Summary for PowerLook Tomo Detection V2 Software. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf18/​K1823​73.​

pdf (2018).
	66.	 FDA. 510(k) Summary for MammoScreen. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf19/​K1928​54.​pdf (2020).
	67.	 FDA. 510(k) Summary for Genius AI Detection. https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf20/​K2010​19.​pdf (2020).
	68.	 CESdecartes. InferRead CT Pneumonia. https://​www.​pmda.​go.​jp/​files/​00023​5941.​pdf (2020).
	69.	 Corp, M. M. Ali-M3. https://​www.​pmda.​go.​jp/​files/​00023​5943.​pdf (2020).
	70.	 FUJIFILM. FS-AI693. https://​www.​pmda.​go.​jp/​PmdaS​earch/​kikiD​etail/​Resul​tData​SetPDF/​671001_​30300​BZX00​145000_​A_​01_​

01 (2021).
	71.	 Goldenberg, R. et al. Computer-aided simple triage (CAST) for coronary CT angiography (CCTA). Int. J. Comput. Assist. Radiol. 

Surg. 7, 819–827. https://​doi.​org/​10.​1007/​s11548-​012-​0684-7 (2012).
	72.	 FDA. Computer assisted detection devices applied to radiology images and radiology device data. https://​www.​fda.​gov/​media/​

77635/​downl​oad (2012).
	73.	 FDA. Clinical performance asessment considerations for computer-assisted detection devices applied to radiology images and 

radiology device data. https://​www.​fda.​gov/​media/​77642/​downl​oad (2020).
	74.	 Small, J. E., Osler, P., Paul, A. B. & Kunst, M. CT cervical spine fracture detection using a convolutional neural network. AJNR Am. 

J. Neuroradiol. 42, 1341–1347. https://​doi.​org/​10.​3174/​ajnr.​A7094 (2021).
	75.	 Voter, A. F., Larson, M. E., Garrett, J. W. & Yu, J. J. Diagnostic accuracy and failure mode analysis of a deep learning algorithm for 

the detection of cervical spine fractures. AJNR Am. J. Neuroradiol. 42, 1550–1556. https://​doi.​org/​10.​3174/​ajnr.​A7179 (2021).
	76.	 Kolanu, N. et al. Clinical utility of computer-aided diagnosis of vertebral fractures from computed tomography images. J. Bone 

Miner. Res. 35, 2307–2312. https://​doi.​org/​10.​1002/​jbmr.​4146 (2020).
	77.	 OECD. Health Statistics 2019 Frequently Requested Data. https://​www.​oecd.​org/​els/​health-​syste​ms/​health-​data.​htm (2019).
	78.	 Aggarwal, R. et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Digit. 

Med. 4, 65. https://​doi.​org/​10.​1038/​s41746-​021-​00438-z (2021).
	79.	 Abdelfatah, M. M., Elhanafi, S., Zuckerman, M. J. & Othman, M. O. Correlation between adenoma detection rate and novel quality 

indicators for screening colonoscopy. A proposal for quality measures tool kit. Scand. J. Gastroenterol. 52, 1148–1157. https://​doi.​
org/​10.​1080/​00365​521.​2017.​13398​27 (2017).

	80.	 Lee, T. J. et al. Colonoscopy quality measures: Experience from the NHS Bowel Cancer Screening Programme. Gut 61, 1050–1057. 
https://​doi.​org/​10.​1136/​gutjnl-​2011-​300651 (2012).

	81.	 Kaminski, M. F. et al. Increased rate of adenoma detection associates with reduced risk of colorectal cancer and death. Gastroen-
terology 153, 98–105. https://​doi.​org/​10.​1053/j.​gastro.​2017.​04.​006 (2017).

	82.	 Meester, R. G. et al. Variation in adenoma detection rate and the lifetime benefits and cost of colorectal cancer screening: A 
microsimulation model. JAMA 313, 2349–2358. https://​doi.​org/​10.​1001/​jama.​2015.​6251 (2015).

	83.	 Lieberman, D. A. et al. Guidelines for colonoscopy surveillance after screening and polypectomy: A consensus update by the US 
Multi-Society Task Force on Colorectal Cancer. Gastroenterology 143, 844–857. https://​doi.​org/​10.​1053/j.​gastro.​2012.​06.​001 (2012).

	84.	 Abramoff, M. D., Lavin, P. T., Birch, M., Shah, N. & Folk, J. C. Pivotal trial of an autonomous AI-based diagnostic system for detec-
tion of diabetic retinopathy in primary care offices. NPJ Digit. Med. 1, 39. https://​doi.​org/​10.​1038/​s41746-​018-​0040-6 (2018).

	85.	 Sun, L. et al. Breast mass detection in mammography based on image template matching and CNN. Sensors (Basel) https://​doi.​
org/​10.​3390/​s2108​2855 (2021).

	86.	 Irvin, J. et al. CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison. http://​arxiv.​org/​abs/​1901.​
07031 (2019).

	87.	 Rajpurkar, P. et al. CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. https://​arxiv.​org/​abs/​
1711.​05225​v3 (2017).

	88.	 Flanders, A. E. et al. Construction of a machine learning dataset through collaboration: The RSNA 2019 Brain CT Hemorrhage 
Challenge. Radiol. Artif. Intell. 2, e190211. https://​doi.​org/​10.​1148/​ryai.​20201​90211 (2020).

	89.	 HOLOGIC. ImageChecker2D CAD Technology (accessed 3 January 2022). https://​www.​3dime​nsion​smamm​ograp​hy.​eu/​scree​
ning-​portf​olio/​image​check​er-​2d-​cad-​techn​ology/#.

	90.	 CreditSuiss. Olympus. https://​resea​rch-​doc.​credit-​suisse.​com/​docVi​ew?​sourc​eid=​em&​docum​ent_​id=​x7232​96&​seria​lid=​W7IBk​
VKcu8%​2bhr5​IOVul​yTtnD​vAUx6​q9n97​6C6C%​2bkc08%​3d (2016).

	91.	 Brown, J. R. G. & Berzin, T. M. EndoBRAIN-EYE and the SUN database: Important steps forward for computer-aided polyp 
detection. Gastrointest. Endosc. 93, 968–970. https://​doi.​org/​10.​1016/j.​gie.​2020.​09.​016 (2021).

Acknowledgements
This study was supported in part as a research project at the Institute for Medical Regulatory Science, Waseda 
University. The authors would like to thank L. Guinot for constructive criticism and participation in the writing 
of this paper.

Author contributions
M.Y. conceptualized, investigated, analyzed, and wrote the original draft, K.I.; conceptualized, designed study, 
interpreted, critically revised the original draft, and supervised.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.I.

Reprints and permissions information is available at www.nature.com/reprints.

https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193271.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/K183285.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K191994.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/K181704.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K192287.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193229.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf21/K210404.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K200905.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K203517.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/K182373.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/K182373.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K192854.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K201019.pdf
https://www.pmda.go.jp/files/000235941.pdf
https://www.pmda.go.jp/files/000235943.pdf
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/671001_30300BZX00145000_A_01_01
https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/671001_30300BZX00145000_A_01_01
https://doi.org/10.1007/s11548-012-0684-7
https://www.fda.gov/media/77635/download
https://www.fda.gov/media/77635/download
https://www.fda.gov/media/77642/download
https://doi.org/10.3174/ajnr.A7094
https://doi.org/10.3174/ajnr.A7179
https://doi.org/10.1002/jbmr.4146
https://www.oecd.org/els/health-systems/health-data.htm
https://doi.org/10.1038/s41746-021-00438-z
https://doi.org/10.1080/00365521.2017.1339827
https://doi.org/10.1080/00365521.2017.1339827
https://doi.org/10.1136/gutjnl-2011-300651
https://doi.org/10.1053/j.gastro.2017.04.006
https://doi.org/10.1001/jama.2015.6251
https://doi.org/10.1053/j.gastro.2012.06.001
https://doi.org/10.1038/s41746-018-0040-6
https://doi.org/10.3390/s21082855
https://doi.org/10.3390/s21082855
http://arxiv.org/abs/1901.07031
http://arxiv.org/abs/1901.07031
https://arxiv.org/abs/1711.05225v3
https://arxiv.org/abs/1711.05225v3
https://doi.org/10.1148/ryai.2020190211
https://www.3dimensionsmammography.eu/screening-portfolio/imagechecker-2d-cad-technology/#
https://www.3dimensionsmammography.eu/screening-portfolio/imagechecker-2d-cad-technology/#
https://research-doc.credit-suisse.com/docView?sourceid=em&document_id=x723296&serialid=W7IBkVKcu8%2bhr5IOVulyTtnDvAUx6q9n976C6C%2bkc08%3d
https://research-doc.credit-suisse.com/docView?sourceid=em&document_id=x723296&serialid=W7IBkVKcu8%2bhr5IOVulyTtnDvAUx6q9n976C6C%2bkc08%3d
https://doi.org/10.1016/j.gie.2020.09.016
www.nature.com/reprints


13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16874  | https://doi.org/10.1038/s41598-022-21426-7

www.nature.com/scientificreports/

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	Systematic analysis of the test design and performance of AIML-based medical devices approved for triagedetectiondiagnosis in the USA and Japan
	Results
	AIML-based medical devices in the USA. 
	AIML-based medical devices in Japan. 
	Endoscope imaging. 
	Chest and abdominal imaging. 
	Head imaging. 
	Ophthalmology imaging. 
	Fracture imaging. 
	Breast imaging. 
	SARS-Cov-2(COVID-19) detection. 

	Discussion
	Different methodological approaches to standalone software testing and a reader study testing. 
	Necessity of prospective testing. 
	Comparison of diversity of AIML-based CAD. 
	Future work. 
	Limitations. 

	Conclusions
	Methods
	Extraction of AIML-based medical devices in the USA. 
	Extraction of AIML-based medical devices in Japan. 
	Classification of AIML-based CAD. 
	Data analysis. 
	Research involving human participants. 

	References
	Acknowledgements


