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Abstract

Estrogen receptor alpha (ERα, ESR1) is a pivotal transcriptional regulator of breast cancer 

physiology and is targeted by endocrine therapies. Loss of ERα activity or expression is an 

indication of endocrine resistance and is associated with increased risk of tumor recurrence and 

worse prognosis. In this study we sought to investigate whether elements of the tumor 

microenvironment, namely macrophages, would impact on ERα and we found that macrophage-

derived factors caused loss of ERα expression in breast cancer cells. Conditioned media from 

macrophages caused activation of several intracellular pathways in breast cancer cells of which c-

Src, PKC and MAPK were essential for loss of ERα expression. Moreover, a prolonged hyper-

activation of MAPK was observed. The activation of this kinase cascade resulted in recruitment of 

Extracellular signal Regulated Kinase 2 (ERK2) directly to chromatin at the ESR1 gene locus in a 

process that was dependent upon activation and recruitment of the c-Jun transcription factor. Thus, 

we identify a novel mechanism for loss of ERα expression in breast cancer cells via macrophage 

activation of kinase cascades in the cancer cells causing transcriptional repression of the ESR1 

gene by a direct chromatin action of a c-Jun/ERK2 complex. The findings in this study support an 

alternative mechanism, not intrinsic to the tumor cell but derived from the cross-talk with the 

tumor microenvironment, that could lead to endocrine resistance and might be targeted 

therapeutically to prevent loss of ERα expression in breast tumors.

Keywords

Estrogen Receptor; Macrophages; MAPK; Breast Cancer; Jun

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
*To whom correspondence should be addressed: Dr. Benita S. Katzenellenbogen, Department of Molecular and Integrative 
Physiology, University of Illinois, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, IL 61801-3704, Phone: 217-333-9769; Fax: 
217-244-9906, katzenel@illinois.edu. 

Conflict of Interest:
F. S., Z. M. E, and B. S. K. have nothing to declare.

HHS Public Access
Author manuscript
Oncogene. Author manuscript; available in PMC 2012 October 05.

Published in final edited form as:
Oncogene. 2012 April 5; 31(14): 1825–1834. doi:10.1038/onc.2011.370.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Breast cancer is the second leading cause of death among US women and is a major cause of 

morbidity and death world-wide (Jemal et al., 2009). One of the most important prognostic 

factors and therapeutic targets in breast cancer is the estrogen receptor alpha (ERα), a 

member of the nuclear receptor super-family of ligand-dependent transcription factors. ERα 

positive (ER+) breast tumors, which comprise ca. 70% of primary breast cancers, have 

better prognosis and are targeted by endocrine therapies like Selective Estrogen Receptor 

Modulators (SERMs, e.g. tamoxifen, raloxifene), aromatase inhibitors (e.g. letrozole) and 

Selective Estrogen Receptor Down-regulators (SERDs, e.g. fulvestrant) which have been 

designed to oppose estrogen receptor action (Jordan & O’Malley, 2007; Musgrove & 

Sutherland, 2009).

However, the most aggressive breast tumors, for which effective treatments are lacking, tend 

to be resistant to endocrine therapies and are generally ERα negative (ER-). This group of 

malignancies represents ca. 30% of the total number of breast cancer cases. Moreover, up to 

half of ER+ primary tumors lose ERα expression in case of recurrence and ca. 30% of 

metastatic tumors that initially respond to tamoxifen therapy develop resistance by losing 

ERα expression (Cheung et al., 1997; Johnston, 1997; Johnston et al., 1995). Apart from 

ER-related mechanisms, several additional factors have been shown to cause endocrine 

resistance including deregulation of transcription factors and tyrosine kinase receptors, and 

alterations of intracellular signaling pathways (Brinkman & El-Ashry, 2009; Musgrove & 

Sutherland, 2009). For these reasons, understanding the mechanisms that cause loss of ERα 

expression is of paramount importance, while the development of novel strategies to prevent 

receptor loss or restore its level and activity are of therapeutic potential.

Macrophages are functionally dynamic elements of the immune system that are present in 

the tumor microenvironment and have been correlated with breast cancer progression, ER 

status and prognosis (Beck et al., 2009; Leek et al., 1999; Leek et al., 1996; Pupa et al., 

1996; Shabo et al., 2008; Sharma et al., 2009). Their functional profile is highly susceptible 

to dynamic changes in response to environmental cues (Benoit et al., 2008; Lewis & Pollard, 

2006; Martinez et al., 2008; Sica et al., 2008b; Watkins et al., 2007) and it ranges from the 

M1 (pro-inflammatory) to the M2 (anti-inflammatory) states that can be elicited by 

lipopolysaccharides (LPS) and/or interferon gamma (IFNG) or IL-4 and IL-13, respectively 

(Allavena et al., 2008a; Allavena et al., 2008b; Mantovani et al., 2004; Mantovani et al., 

2002; Martinez et al., 2006; Qian & Pollard, 2010; Sica et al., 2008a; Sica et al., 2008b; 

Sica et al., 2006; Yuan et al., 2008). The macrophage population that is present at the tumor 

site is usually referred to as tumor-associated macrophages (TAMs) and mostly has M2-like 

properties (Allavena et al., 2008a; Movahedi et al., 2010; Sica et al., 2008b; Sica et al., 

2006). TAMs have been shown to promote tumor growth, invasion and metastasis in some 

types of cancer, while showing anti-tumor activities in others (Chen et al., 2005; Lewis & 

Pollard, 2006; Ma et al., ; Ohri et al., 2009; Redente et al.).

In this study, we investigated whether macrophages and their polarization (i.e. M1 vs. M2) 

would impact estrogen receptor activity in breast cancer cells. For this purpose, we 

generated and characterized an in vitro model of macrophage polarization using the 
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monocytic THP-1 cell line and have found that conditioned media (CM) from differentiated 

and polarized THP-1 cells caused loss of ERα expression in MCF-7 breast cancer cells. We 

then analyzed in detail the molecular mechanisms underlying this phenomenon and found 

that the macrophage-elicited ERα down-regulation was dependent on activation of the c-Src, 

MAPK and PKC pathways which lead to recruitment of ERK2 and c-Jun to the ESR1 

genomic locus. Thus, we demonstrate a previously unknown cross-talk between 

macrophages and breast cancer cells involving macrophage activation of kinase cascades in 

the breast cancer cells that leads to loss of ERα via a direct transcriptional repression 

mechanism involving the recruitment to chromatin of ERK2 and c-Jun. These findings 

support an alternative mechanism, not intrinsic to the tumor cell but derived from the cross-

talk with the tumor microenvironment, that could lead to endocrine resistance and might be 

targeted therapeutically to prevent loss of ERα expression in breast tumors.

RESULTS

THP-1 monocytic cells can be polarized into M1 vs. M2-like macrophage phenotypes

In order to study the cross-talk between macrophages and breast cancer cells, we generated 

and characterized a human macrophage-like model that is easy to manipulate and that 

recapitulates the macrophage phenotypes ranging from the M1 pro-inflammatory to the M2 

anti-inflammatory. We chose for this study the monocytic (abbreviated “Mn” in Fig.1A) 

human THP-1 cell line which was shown, upon differentiation, to have characteristics 

similar to human macrophages (Auwerx, 1991; Daigneault et al., 2010; Tsuchiya et al., 

1982). We then adapted a differentiation and polarization protocol (Fig.1A) that was shown 

to be effective for primary human macrophages (Martinez et al., 2006). THP-1 cells were 

differentiated with the phorbol ester PMA for 24 hours followed by a resting period of 6 

days at the end of which fully differentiated macrophages were generated (denoted as “M0” 

in Fig.1). At this stage, differentiated THP-1 cells were treated with either interferon gamma 

(IFNG) or interleukin-4 (IL-4) for 24 hours to obtain M1- and M2-like phenotypes, 

respectively (denoted as “M1” and “M2”, Fig.1).

To validate that this protocol was efficient in eliciting M1 and M2-like polarization in the 

THP-1 cells, we measured, by q-PCR, the expression level of selected genes that have been 

shown to discriminate between M1 and M2 in primary human macrophages (Martinez et al., 

2006), and we found that the THP-1 cell system was comparable as shown by data 

represented as the M1/M2 ratio (Fig.1B) and by expression of representative stimulus-

specific genes (Fig.1C). Thus, these data demonstrate that, based on gene expression 

profiles, we were able to generate M1 and M2 polarized macrophage-like populations that 

we could utilize in studying the cross-talk with breast cancer cells.

Conditioned medium from polarized THP-1 cells causes down-regulation of ERα

To analyze the cross-talk between estrogen receptor signaling in breast cancer cells and 

polarized macrophages, we first examined ERα mRNA and protein expression by q-PCR 

and Western blot, respectively, in MCF-7 breast cancer cells. Starting after 8 hours of 

treatment with conditioned media from polarized macrophages (e.g. M1-like, interferon 

gamma treated (CM1)), we observed down-regulation of ERα (Fig.2A–B). We also found 
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that loss of ERα was occurring after treatment with conditioned media from both resting 

macrophages (CM0) and polarized ones (M1-like (CM1) or M2-like (CM2)), but that the 

M1-like (CM1) showed more profound and sustained effects over time, as observed in 

mRNA and protein time-course experiments (Fig.2A–B).

We also checked if ERα down-regulation was due to direct action of the cytokines used to 

polarize THP-1 cells (e.g. IL-4 or IFNG) and we found this not to be the case (Fig.2A). 

Moreover, we examined if the effect of CM1 was due to transcriptional repression by 

monitoring RNA polymerase II levels at the ERα gene (ESR1) promoter A which has been 

previously shown to be the most active of the characterized ESR1 promoters in MCF-7 cells 

(Kos et al., 2001). As shown in Fig.2C, treatment of MCF-7 cells for 45 min with CM1 

caused RNA polymerase II dismissal from the ESR1 promoter A, indicating that the 

reduction of ERα mRNA is primarily due to transcriptional repression.

Activation of MAPK, c-Src and PKC is required for macrophage-mediated down-regulation 
of ERa in breast cancer cells

We next investigated which intracellular pathways might be activated by THP-1 CM1 and 

which ones would be necessary for down-regulating ERα expression. To do this, we utilized 

a combined approach with small molecule pathway inhibitors and phospho-specific 

antibodies to probe selected intracellular pathways (e.g. MAPK, PKC). After 15 min of 

treatment, conditioned media from M1-like THP-1 cells (CM1) caused phosphorylation of 

several kinases, including c-Src, MAPK, p38MAPK, p90RSK, SAPK/JNK, PKC, Akt and 

GSK3β (Fig.3A). To elucidate which of these pathways was essential for ERα mRNA 

down-regulation, we pre-treated MCF-7 cells with small molecule inhibitors followed by 

treatment with CM1. In examining the effect of the small molecule pathway inhibitors on 

ERα mRNA, we found that the c-Src (PP2), MEK1 (U0126) and PKC (Gö6976) inhibitors 

were all able to prevent the CM1-mediated reduction of ERα mRNA (Fig.3B). This was 

observed also at the protein level as shown by Western blot after 24 h treatment with the 

MAPK (U0126), c-Src (PP2) and PKC (Gö6976) inhibitors (Fig.3C). These experiments 

thus highlighted the role of c-Src, MAPK and PKC as essential pathways involved in CM-

mediated ERα down-regulation. To understand the hierarchical activation of intracellular 

pathways by THP-1 conditioned media, we combined small molecule inhibitors with 

activation of the pathways by using phospho-specific antibodies. After 15 min of treatment, 

the c-Src inhibitor PP2 was able to prevent activation of all the pathways involved in ERα 

down-regulation, demonstrating c-Src to be the most upstream kinase which then regulates 

the activation of two parallel downstream pathways (PKC and MAPK) (Fig.3D–E).

Because one of the most downstream kinases activated by the conditioned media was the 

MAPK and its constitutive activation has been shown to be involved in generation of ERα 

negative tumors (Bayliss et al., 2007; Creighton et al., 2006; Oh et al., 2001), we wanted to 

verify if its activation would be transient or sustained. As shown in Fig.3F, time-course 

analysis evidenced a strong and sustained phosphorylation of MAPK up to 48 h of treatment 

with CM1. These observations regarding the activation of c-Src and MAPK by macrophage-

derived factors may be very relevant to breast cancer biology because hyper-activation of 
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both pathways has been linked to loss of ERα in primary breast tumors and breast cancer 

cell lines (Bayliss et al., 2007; Chu et al., 2007; Creighton et al., 2006).

ERK2 is recruited to the ESR1 genomic locus and is required for loss of ERa expression

Our next step was to ask which transcription factors and coregulators might be involved in 

the transcriptional repression of ERα. Because of the strong and persistent activation of 

MAPK we observed upon exposure to THP-1 conditioned media and based on our 

identification of genome-wide ERK2 binding sites via ChIP-chip technology (Madak-

Erdogan et al., 2011), we were able to identify five putative ERK2 interacting regions in the 

ESR1 genomic locus (Fig.4A). We first verified by conventional ChIP assay if these regions 

would recruit ERK2 upon treatment of MCF-7 cells for 45 min with CM1. We detected an 

increase in ERK2 recruitment at three of the five putative ERK2 binding sites (sites 245, 246 

and 248, Fig.4B). To confirm the role of ERK2 in ERα down-regulation, we performed 

RNAi experiments to reduce endogenous ERK2 levels. In Fig.4C, we transfected MCF-7 

cells for 72 h with ERK2 or GL3 control siRNAs and then treated the cells with conditioned 

media from THP-1 cells for 8 h (mRNA) or 24 h (protein) and observed an almost complete 

recovery of ERα mRNA and protein, confirming the central role of ERK2 in the loss of ERα 

(Fig.4C). The knockdown efficiency of ERK2 siRNA was ca. 80% as measured by both 

mRNA and protein (Fig.4C).

The transcription factor c-Jun is activated and recruited to the ESR1 genomic locus where 
it plays a key role in the loss of ERα expression

To find candidate transcription factors that the kinase ERK2 might be using to tether to 

chromatin, we performed bioinformatics analysis of the ERK2 binding sites at the ESR1 

locus using available programs (e.g. JASPAR, Match, PhastCons). Among the transcription 

factors whose motif was present in the ERK2 binding sites, we focused on c-Jun, a central 

part of the AP-1 transcription factor, because its over-expression in MCF-7 cells has been 

shown to lead to loss of ER expression and its activity is elevated in tamoxifen resistant 

tumors (Dumont et al., 1996; Johnston et al., 1999; Smith et al., 1999). To examine the role 

of c-Jun in the loss of ERα expression, we first monitored if c-Jun was being activated by 

treatment with THP-1 conditioned media. As shown in Fig.5A, c-Jun was activated by CM1, 

detected as an increase in phosphorylation of serine 73, in a biphasic and prolonged manner 

with a first peak at 15 min and then a second more prolonged peak after 1 h of treatment. 

Interestingly, we were also able to prevent c-Jun phosphorylation at serine 73 by pre-treating 

MCF-7 cells with the MAPK, c-Src and PKC inhibitors that also blocked ERα down-

regulation (Fig.5B).

We then wanted to check if c-Jun was present and/or recruited to the ERK2 binding sites at 

the ESR1 locus upon treatment with CM1. By ChIP analysis, we observed that c-Jun was 

recruited uniquely at the ERK2_246 site while being detected (but not affected by treatment) 

at three other ERK2 binding sites (Fig.5C). To further confirm the importance of c-Jun in 

regulating ERα expression, we performed c-Jun knock-down in MCF-7 cells. After 72 h of 

siRNA and 8 h (mRNA) or 24 h (protein) treatment with conditioned media, we were able to 

prevent much of the loss of ERα mRNA and protein despite only a ca. 50% knock-down 

efficiency, suggesting a central role for c-Jun in ERα down-regulation (Fig.5D).
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The transcription factor c-Jun is required for ERK2 recruitment to the ESR1 locus

To determine if c-Jun was indeed the main factor affecting ERK2 recruitment at the ESR1 

locus, we first performed ChIP-reChIP analysis which showed that ERK2 and c-Jun were 

present on chromatin in the same complex exclusively at the ERK2_246 binding site (Fig.

6A). Secondly, we transfected MCF-7 cells with control GL3 or c-Jun siRNA and then 

performed ChIP assays using an ERK2 specific antibody. As shown in Fig.6B, reduction of 

c-Jun levels resulted in the inability of ERK2 to be recruited to chromatin, indicating that c-

Jun is an important transcription factor involved in the recruitment of ERK2 to the ESR1 

locus.

DISCUSSION

The estrogen receptor alpha (ERα) is a master regulator of breast cancer physiology, 

critically defining differences in the gene expression programs and the phenotypic properties 

of ER+ versus ER- breast cancers and, as such, ERα is also the main therapeutic target in ca. 

70% of breast cancer patients. Unfortunately, the most aggressive and poor prognostic 

tumors either lack expression of ERα or have become resistant to endocrine therapies. 

Understanding the mechanisms underlying the loss of ERα expression and the development 

of endocrine resistance should enable promising avenues in the search for novel therapeutic 

approaches to treat these aggressive breast tumors for which efficient therapies are currently 

lacking.

The role of the tumor microenvironment as a causative effector of endocrine resistance has 

been largely understudied. In keeping with our findings here, studies in prostate cancer have 

shown important cross-talk between macrophages and tumor cells. In prostate cancer, this 

cross-talk was able to switch the action of SARMs (Selective Androgen Receptor 

Modulators) from antagonists to agonists of the androgen receptor, indicating that the tumor 

microenvironment can greatly impact on the nature of therapeutic drugs by altering the 

status of activation of intracellular pathways (Zhu et al., 2006).

Macrophages are central elements of the tumor microenvironment as they can form up to 

50% of the tumor mass. Interest in tumor-associated macrophages (TAMs) stems from the 

fact that they are very dynamic cells that can have functions ranging from pro-inflammatory 

(M1-like population) to anti-inflammatory (M2-like population) depending largely on the 

nature of the microenvironmental cues (Allavena et al., 2008a; Mantovani et al., 2002; 

Martinez et al., 2008; Sica et al., 2008b; Sica et al., 2006). Moreover, they have been shown 

to be very attractive targets for immunotherapy and also drug delivery strategies.

In this study, we generated and characterized an easily manipulable in vitro system that 

would allow us to study the cross-talk between sub-populations of polarized macrophages 

and breast cancer cells. Using THP-1 cells (a human monocytic cell line) and a protocol we 

devised for their differentiation and polarization into M1- and M2-like populations (Fig.1A), 

and through the use of conditioned media from polarized macrophage-like populations, we 

found that soluble factors secreted from THP-1 cells elicited loss of ERα expression in 

breast cancer cells. The discovery and characterization of such factors and receptors through 

detailed proteomic analysis will be undertaken in future work. In this study, as depicted in 
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the model in Fig.6C, we have uncovered a new mechanism for transcriptional repression of 

the ESR1 gene which occurs through hierarchical activation of multiple kinases (i.e. c-Src, 

PKC and MAPK) that results in recruitment to chromatin of an ERK2 and c-Jun containing 

complex that appears to be responsible for the loss of ERα expression. The mechanism 

described in this study fits very well with data from primary breast tumors where hyper-

activation of MAPK and c-SRC, and high content of tumor associated macrophages (TAMs) 

are inversely correlated with ERα expression (Chu et al., 2007; Creighton et al., 2006; Leek 

et al., 1996; Oh et al., 2001). In keeping with the importance of ERK2 activation also in our 

system, we found that ERK2 was not recruited to the ESR1 genomic locus when the MEK1 

inhibitor U0126, which blocks ERK2 activation, was used (data not shown).

Moreover, we have established for the first time a direct action of activated ERK2 at the 

ESR1 genomic locus where this kinase works at the chromatin level, tethered by the AP-1 

transcription factor, to actively contribute to transcriptional repression of the ESR1 gene. 

Recently, we reported on an extensive genome-wide collaboration between ERα and ERK2 

at the chromatin level that is important for estrogen regulation of gene expression and 

proliferation of breast cancer cells (Madak-Erdogan et al., 2011). These findings are in 

keeping with other cell systems where nuclear MAPK has been shown to contribute to both 

transcriptional stimulation and repression, depending on the environmental cues (Lawrence 

et al., 2009).

Thus, we demonstrate a previously unknown cross-talk between macrophages and breast 

cancer cells involving macrophage activation of kinase cascades in the breast cancer cells 

that leads to loss of ERα via a direct transcriptional repression mechanism involving the 

recruitment to chromatin of ERK2 and c-Jun. These findings support an alternative 

mechanism, not intrinsic to the tumor cell but derived from the cross-talk with the tumor 

microenvironment, that could lead to endocrine resistance and might be targeted 

therapeutically to prevent loss of ERα expression in breast tumors.

MATERIALS AND METHODS

Cell Culture, Treatments, RNA Extraction and Real-time Quantitative PCR

MCF-7 and THP-1 cells were obtained from ATCC (Manassas, VA) and cultured in DMEM 

(Sigma Chemical Co., St.Louis, MO) supplemented with 10% heat-inactivated calf serum 

(Hyclone, Logan, UT) and 1% antibiotics and RPMI supplemented with 10% heat-

inactivated foetal bovine serum, 1% antibiotics, sodium bicarbonate and β-mercaptoethanol, 

respectively. Before experiments, the cells were cultured in phenol red-free DMEM 

containing 10% charcoal stripped calf serum. THP-1 monocytic cells were differentiated 

with phorbol-12-myristate-13-acetate (PMA, 100ng/ml, EMD-Calbiochem, La Jolla, CA) 

for 24 h, with media changed the next day and then every 2 days for 6 days prior to 

polarization. Polarization of these resting differentiated macrophages (“M0” cells) was 

performed as in (Martinez et al., 2006) using 20 ng/ml of interferon gamma (IFNG, R&D 

Systems, Minneapolis, MN) for M1 polarization or 30 ng/ml of IL-4 (R&D Systems, 

Minneapolis, MN) for M2 polarization. Conditioned media from differentially polarized 

THP-1 cells was harvested after 24 h and centrifuged for 10 min at maximum speed prior to 

addition to MCF-7 cells or was frozen at −80C (Figure 1A).
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For pathway inhibitor experiments, MCF-7 cells were pre-treated with inhibitors for 1 h 

before addition of conditioned media. The inhibitors used were purchased from EMD-

Calbiochem (MEK1 inhibitor (U0126, 20μM), c-Src inhibitor (PP2, 1μM), PKC inhibitor 

(Gö6976, 1μM), p38MAPK inhibitor (SB203580, 10μM), JAK/STAT inhibitor (panJAK 

inhibitor, 5μM); Sigma (NFkB inhibitor, (parthenolide, 10μM), and Cayman Chemical (JNK 

inhibitor (SP600125, 10μM).

Total RNA was isolated using Trizol® reagent (Invitrogen, Carlsbad, CA) following 

manufacturer’s instructions. Quantitative real-time PCR (q-PCR) was performed as 

previously described (Stossi et al., 2004). All PCR primer sequences are available upon 

request.

Chromatin Immunoprecipitation (ChIP) and reChIP Assays

ChIP assays were performed as described (Metivier et al., 2003). The antibodies used were 

from Santa Cruz Biotechnology (ERK2 (D-2), c-Jun (H-79), RNA polymerase II (N-20)). 

ChIP/reChIP experiments were performed as in (Stossi et al., 2009). After the first pull-

down, immunoprecipitated material was recovered with 10mM DTT in IP buffer at 37C for 

30 min, diluted and submitted to a second round of immunoprecipitation.

RNA Interference and Western Immunoblotting

MCF-7 cells were transfected with c-Jun or ERK2 SMARTpool or GL3 luciferase control 

siRNAs (Dharmacon) following the manufacturer’s instructions. After 72 h, cells were 

treated with THP-1 conditioned media for 8 or 24 h. Total RNA was harvested, prepared and 

analyzed as described in the previous section.

Western immunoblotting were performed on whole cell extracts following standard 

protocols. The antibodies used were purchased from Santa Cruz Biotechnology (ERα 

(F-10), ERK2 (D-2), c-Jun (H-79)), Cell Signaling Technology (PathScanR Multiplex 

Western Blot Cocktails I, II, III; Src antibody sampler kit, phospho-PKC sampler kit, 

phospho Akt pathway antibody sampler kit, phospho-c-Jun (ser 73). Imaging and 

quantitation of the Western blots used an Odyssey instrument (LI-COR Biosciences, 

Lincoln, NE) following manufacturer’s instructions.
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ER estrogen receptor

E2 17β-estradiol

IFNG interferon gamma

IL-4 interleukin 4
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PMA phorbol-12-myristate-13-acetate

CM conditioned media

TAMs tumor-associated macrophages
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Fig.1. Polarization of the monocytic THP-1 cell line into M1- or M2-like macrophages
A) Schematic of experimental protocol (for details see Material and Methods) B) 

Comparison between q-PCR data obtained with the protocol used in panel A with data from 

expression cDNA microarrays in primary human macrophages (Martinez et al., 2006). Data 

are represented as M1/M2 ratio and are average +/− SEM of 6 independent experiments. C) 

q-PCR data for selected genes that are specific for M1- vs. M2- like macrophages in THP-1 

cells.
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Fig.2. Conditioned Media (CMs) from polarized THP-1 cells, but not cytokines alone, cause loss 
of ERα mRNA and protein in a time-dependent manner in MCF-7 cells
A-B) MCF-7 cells were treated with THP-1 CMs or cytokines for the times indicated and 

ERα mRNA and protein levels were assessed by q-PCR and Western blot. Panel B shows 

quantification of Western blot data for ERα protein from four independent experiments. C) 

ChIP assay was performed in MCF-7 cells after treatment with vehicle or CM1 for 45 min 

using RNA polymerase II or IgG control antibodies. Recovered DNA was used to assess the 

ESR1 promoter A. All experiments were performed a minimum of three times. Data are 

average +/− SEM. CM0: CM from vehicle treated THP-1 cells; CM1: CM from IFNG 

treated THP-1 cells; CM2: CM from IL4 treated THP-1 cells.
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Fig.3. MAPK, c-Src and PKC pathways are required for loss of ERα elicited by polarized THP-1 
cell conditioned media
A) MCF-7 cells were treated with conditioned media from IFNG-treated THP-1 cells (CM1) 

for 15 min and activation of various pathways was tested by Western blot using phospho-

specific antibodies. B) MCF-7 cells were pre-treated for 1 h with the indicated pathway 

inhibitors and then treated with CM1 for 8 h. ERα mRNA was quantified by q-PCR. Data 

are average +/− SEM of three independent experiments. C) MCF-7 cells were pre-treated for 

1 h with the indicated pathway inhibitors and then treated with CM1 for 24 h. ERα protein 

was then quantified by Western blot. Values for CM1 treated samples are expressed relative 

to control vehicle treated samples which are set at 1x. D–E) MCF-7 cells were pretreated for 

1 h with PKC (Gö6976), c-Src (PP-2) or MEK1 (U0126) inhibitors prior to 15 min of CM1 

or IFNG 20ng/ml treatment. Activated pathways were probed with phospho-specific 

antibodies via Western blot. F) Time-course of MAPK activation in MCF-7 cells after 

treatment with CM1.
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Fig.4. ERK2 is recruited to the ERα promoter and its knock-down prevents loss of ERα after 
CM1 treatment
A) UCSC Genome Browser schematics of the ESR1 locus; the location of ERK2 binding 

sites (black boxes, 244–248) is based on (Madak-Erdogan et al., 2011). B) ChIP assay was 

performed in MCF-7 cells treated with vehicle or CM1 for 45 min; the isolated chromatin 

was probed with antibodies for ERK2 or IgG as control. C) MCF-7 cells were transfected 

with GL3 siRNA or ERK2 siRNA for 48 h prior to 8 h of CM1 treatment. ERα and ERK2 

levels were analyzed via q-PCR and Western blot. Fold change values are expressed relative 

to that of vehicle control GL3 siRNA treated samples which are set at 1x. Data are average 

+/− SEM of three independent experiments.
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Fig.5. c-Jun is activated in a PKC-, c-Src- and MAPK-dependent manner, and is recruited to the 
ESR1 promoter and required for ERα loss upon CM1 treatment
A) Activation of c-Jun was monitored by Western blot after 15 min of CM1 treatment in 

MCF-7 cells using phospho-specific antibody. B) MCF-7 cells were treated as in (A) except 

that they were pretreated for 1 h with the indicated pathway inhibitors. C) MCF-7 cells were 

treated with CM1 for 45 min and then ChIP was performed using c-Jun specific antibody. 

D) MCF-7 cells were transfected with GL3 or c-Jun siRNA for 48 h prior to CM1 treatment 

for 8 h (for mRNA) or 24 h (for protein). ERK2 was used as a loading control. Fold change 

values are expressed relative to that of vehicle control GL3 siRNA treated samples which 

are set at 1x. Data are average +/− SEM of three independent experiments.
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Fig.6. c-Jun is required for ERK2 recruitment to the ESR1 locus
A) MCF-7 cells were treated with vehicle or CM1 for 45 min and then ChIP-reChIP was 

performed with the indicated antibodies. B) MCF-7 cells were transfected with GL3 control 

or cJun siRNA for 72 h prior to 45 min of vehicle or CM1 treatment. ERK2 ChIP was then 

performed. In both panels A and B, DNA was quantitated by q-PCR and the data are mean 

+/− SEM of 3 experiments. C) Proposed model for ERα down-regulation in breast cancer 

cells by macrophage-breast cancer cell interrelationships involving hyper-activation of 

MAPK and recruitment of c-Jun and ERK2 to the ESR1 genomic locus.
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