
Hindawi Publishing Corporation
Advances in Virology
Volume 2010, Article ID 649315, 10 pages
doi:10.1155/2010/649315

Review Article

Towards Inhibition of Vif-APOBEC3G Interaction:
Which Protein to Target?

Iris Cadima-Couto and Joao Goncalves

URIA-Centro Patogénese Molecular and Instituto de Medicina Molecular, Faculdade de Farmácia da Universidade Lisboa,
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APOBEC proteins appeared in the cellular battle against HIV-1 as part of intrinsic cellular immunity. The antiretroviral activity of
some of these proteins is overtaken by the action of HIV-1 Viral Infectivity Factor (Vif) protein. Since the discovery of APOBEC3G
(A3G) as an antiviral factor, many advances have been made to understand its mechanism of action in the cell and how Vif acts
in order to counteract its activity. The mainstream concept is that Vif overcomes the innate antiviral activity of A3G by direct
protein binding and promoting its degradation via the cellular ubiquitin/proteasomal pathway. Vif may also inhibit A3G through
mechanisms independent of proteasomal degradation. Binding of Vif to A3G is essential for its degradation since disruption of this
interaction is predicted to stimulate intracellular antiviral immunity. In this paper we will discuss the different binding partners
between both proteins as one of the major challenges for the development of new antiviral drugs.

1. Introduction

Vif is a 23-kDa cytoplasmic protein that is expressed from
a partially spliced mRNA in Rev-dependent manner during
the late phase of HIV-1 replication. The human immunode-
ficiency virus type 1 (HIV-1) Vif protein is essential for virus
replication in primary lymphoid and myeloid cells, but is
dispensable for efficient replication in several transformed
T-cell lines as well as in nonlymphoid cell lines such as
HeLa and 293T [1–3]. Cells that are unable to support the
replication of Vif-defective HIV-1 (HIV-1�Vif) have been
termed “nonpermissive,” while cells that can sustain HIV-
1�Vif replication are termed “permissive.”

These findings were made over 15 years ago but the
molecular mechanisms underlying this cell-specific differ-
ence were maintained a mystery until 1998. The observation
that heterokaryons formed by fusion of nonpermissive and
permissive cells exhibit the nonpermissive phenotype [4,
5] led to the hypothesis that nonpermissive cells express
an inhibitor of HIV-1 replication that is blocked by the
viral Vif protein. Later, in 2002, Sheehy et al. reported
the identification of the apolipoprotein B mRNA-editing

enzyme-catalytic polypeptide-like 3G (APOBEC3G) as the
HIV-1 replication inhibitor [6].

A3G is located in the cytoplasm of the cell and has been
shown to be an exclusive DNA mutator [7]. A3G exists
either as enzymatically active low-molecular-mass (LMM)
forms consistent with enzyme monomers or dimers, or
as an enzymatically inactive high-molecular-mass (HMM)
ribonucleoprotein complex larger than 2 MDa [8]. LMM
A3G is found in resting CD4+ T cells of peripheral blood
and macrophages where it may act as a powerful antiviral
restriction factor for HIV-1 [8]. Conversely, resting CD4+ T
cells in lymphoid tissues are permissive to HIV-1 infection
as A3G is expressed predominantly in HMM complexes due
to the lymphoid microenvironment [9]. It was reported that
in lymphoid tissues, cytokines such as IL-2 and IL-5 are
responsible for the stimulation of HMM complexes, which
in turn may confer the permissive phenotype for HIV-1
infection [9]. Nonetheless, only one research group have
provided data to support a role for APOBEC3G in restriction
of HIV-1 in quiescent CD4+ T cells. Therefore, to date the
primary mechanism of HIV-1 restriction in quiescent CD4+
T cells remains to be elucidated.

mailto:joao.goncalves@ff.ul.pt


2 Advances in Virology

2. The APOBEC3 Family

A3G belongs to a family of polynucleotide cytidine deami-
nases (CDAs), whose members include seven family mem-
bers, named APOBEC3A to H (A3A−H). All of these
genes are clustered on chromosome 22 [10, 11]. During
mammalian evolution APOBEC3 (A3) family members have
evolved from a single gene in mice, located on chromosome
15, to eight genes (A3A−H) in primates [10, 11]. Interest-
ingly, expansion of the A3 gene cluster contrasts with the
decline in retrotransposition activity in primates [10–12].
This observation raises the possibility that APOBEC3 genes
may have evolved to prevent genomic instability caused by
endogenous retroelements [13].

All members of the A3 family contain one (A3A, A3C,
A3H) or two (A3B, A3DE, A3F, A3G) copies of a conserved
zinc-binding motif, His/Cys-X-Glu-X 23−28-Pro-Cys-X2−4-
Cys, that catalyzes the hydrolytic deamination at the C4
position of 2′-deoxycytidine, resulting in a 2′-deoxyuridine
[6, 10, 11, 14–16]. These proteins also contain a key
glutamate required for proton shuttling during catalysis and
two key aromatic residues involved in RNA substrate binding
[16–22].

Proteins of the A3 family protect cells against the invasion
of a variety of viruses [6, 23–25]. Of these, A3G and A3F
are the most extensively studied due to their strong activity
against HIV-1 [26]. Like A3G and A3F, A3B and A3DE
contain two CDAs and have been shown to display moderate
antiviral activity [23, 27–29]. Despite having only one CDA
domain A3A, A3C, and A3H also impair HIV-1 infection
[30–33].

The interplay between HIV-1 proteins and host restric-
tion factors, such as A3G and A3F are potential targets for
the development of new antiviral drugs. Inhibition of this
interplay could allow the host innate defences to control viral
replication. The interaction between Vif and A3G proteins
has been extensively studied in the last decade and several
regions and amino acid residues have been described as
involved in the interaction between these two proteins.

In this paper we will briefly describe the current knowl-
edge on the different binding strategies between Vif and
A3G, and discuss these mechanisms with the purpose of
developing new antiviral drugs.

3. APOBEC3 Restriction of HIV-1 Infection

Expression of A3 proteins in HIV-1 infected cells can
lead to their encapsidation into progeny virions through
recruitment to viral or transposon capsid structures, prob-
ably involving Gag proteins and viral RNA [29, 34–37].
Deaminases will be delivered to the target cell where they
will deaminate cytidines to uridines during the synthesis
of the minus-strand viral cDNA [38, 39]. Consequently,
during the synthesis of the plus-strand DNA, adenosines are
incorporated instead of the original guanines resulting in
G-to-A substitution. This process of deamination that will
result in the loss of genetic integrity and protein function
is commonly referred as hypermutation [40–42]. However,

there is increasing evidence that A3G is able to restrict HIV-1
infection in the absence of deaminase activity [8, 43–45].

A study carried by Newman et al. showed that certain
amino acid substitutions in the C-terminal cytidine deam-
inase “core” domain of A3G (APOBEC3G has two such
domains) originated mutant proteins that were unable to
mutate DNA, yet maintained the antiviral activity [44].
However, cytidine deaminase (CDA) independent effects
cannot be observed when the mutant proteins are expressed
at physiological levels [46], making these nonenzymatic A3G
effects somewhat controversial.

On the other hand, when unstimulated CD4+ T cells
(where A3G is expressed as an active LMM form) were
treated with A3G-specific small interfering RNAs (siRNA),
the early replication block encountered by HIV-1 was greatly
relieved [6]. When HIV-1 reverse transcripts in resting
primary CD4 T cells were examined for evidence of A3G-
induced dG → dA hypermutations, only 8% of the tran-
scripts contained such mutations suggesting an antiretroviral
activity independent of deoxycytidine deaminase activity [8].

Additional studies indicated that initiation of HIV
reverse transcription and/or processivity of reverse transcrip-
tase (RT) could be inhibited by A3G [47–52]. Sequence
analyses of 2-LTR circle junctions from unintegrated DNA
synthesized in the presence of A3G showed that the U5 end
DNA occasionally had additional six RNA bases derived from
the 3′-terminus of tRNALys3 [53]. These results suggest that
A3G causes a defect during tRNA removal that limits plus-
strand transfer and consequently affect viral DNA ends that
will not be able to efficiently integrate into the host cell
genomic DNA [53]. The process of successive inhibition of
reverse transcription mechanisms has a cumulative effect
and could explain end result of reducing viral integration.
However, the decrease in plus-strand DNA transfer may not
explain all the effects on viral cDNA synthesis by A3G [54].
Indeed, A3G could be coimmunoprecipitated with NC and
integrase (IN) in HIV-1 Vif-positive viruses [55]. In addi-
tion, A3F co-immunoprecipitation with virion-associated
integrase (IN) was also observed [55]. Nevertheless, GST-
pull down assays do not show binding between A3G and RT,
suggesting that interactions between A3G and viral proteins
may may inhibit the process of reverse transcription [49].

4. APOBEC3 Restriction by Vif

To overcome the antiviral effect of APOBEC3 proteins, in
particular A3G and A3F, HIV-1 encode the Vif protein.
The mode of action by which Vif counteracts A3G and
A3F-mediated antiviral activity has been extensively studied.
Vif neutralizes the antiviral activity of A3G and A3F by
forming a RING-finger E3 ubiquitin complex with Elongin
B (EloB) and C (EloC), Cullin 5 (Cul5) and Ring-box
protein 2 (Rbx2) (Figure 1(a)). By bringing A3G into contact
with the RING-finger E3 ubiquitin complex, Vif promotes
A3G polyubiquitination and its degradation in the 26S
proteasome [56–63]. A more a recent report suggested that
A3G needs Vif polyubiquitination to be degraded rather than
its own polyubiquitination, [64], but this is still a matter of
debate. Moreover, Vif has also been reported to directly block
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Figure 1: Schematic representation of Vif and A3G domains involved in the interaction of both proteins. (a) Vif binds A3G through specific
residues located in the N-terminal region. Amino acids in Vif that are involved in the interaction with A3G are shown in pink. C-terminal
Vif domains involved in targeting A3G for proteasomal degradation are shown in orange (zinc binding HCCH domain), and light blue
(SLQXLA). The multimerization domain is purple. (b) The catalytic domains (CD1 and CD2) and Vif-binding regions of A3G protein are
represented. Amino acids 126−132 are involved in A3G encapsidation and interaction with Vif and are represented in green and red.
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A3G encapsidation [57, 65, 66], reduce A3G translation [60,
65], and directly inhibit the catalytic activity of A3G [45]. It
is still unknown whether all these mechanisms must operate
in concert to inhibit A3G action. However, independently on
the mode of action, the ultimate goal of Vif is to prevent A3G
encapsidation into budding HIV-1 virions.

5. The Vif-A3G Interaction

Recent advances on the biological role of HIV-1 Vif and
A3 proteins, together with progress in deciphering how Vif
counteracts A3G and A3F opened new opportunities to
develop anti-HIV drugs. However, understanding the mode
of action of Vif and A3G alone can provide a number of
attractive targets for drug development since A3G displays
the most potent activity against HIV-1.

Disruption of Vif-A3G interaction is predicted to res-
cue A3G expression and virion packaging, consequently
stimulating intracellular antiviral activity. Similarly, phar-
macologic studies to suppress A3G proteasome-mediated
degradation have been shown to enhance A3G half life
and consequently inhibit HIV-1 infection [59]. In order
to facilitate the rational design of inhibitors for Vif-A3G
interaction, experimental assays have been devised to define
features of Vif that are involved in the interaction with A3G,
and vice versa.

The N-terminal region of HIV-1 Vif is important for
binding and neutralization of A3G and A3F and also
contributes to species-specific recognition [58, 67–70]. In
the C-terminal region of Vif, the highly conserved cysteine
residues at positions 114 and 133 and the S144LQXLA149

motif (Figure 1(a)) are required for Vif function and HIV-1
replication [71, 72]. Vif associates with the Cul5-EloB-EloC
complex by directly binding to EloC via a BC box motif at
positions 144 to 150 and to Cul5 via hydrophobic residues
at positions 120, 123, and 124 within a zinc-binding region
formed by the highly conserved HCCH motif (Figure 1(a))
[73, 74]. The SLQXLA motif is essential for targeting A3G for
proteasomal degradation. Substitution of the SLQ portion
of the SLQXLA motif has been reported to be sufficient to
prevent A3G degradation [57, 59, 75]. The zinc binding-
motif HCCH is also involved in A3G degradation and
necessary for the specificity of Vif-Cul5 interaction [76, 77].

Several groups have shown that Vif-induced degradation
of A3G requires the physical interaction of the two proteins
and that a single amino acid change in A3G at residue
128 was sufficient to abolish this interaction [78–80].
This assumption led to the conclusion that the Vif-A3G
interaction is species-specific and is determined by aspartic
acid at position 128 in A3G and lysine in African Green
Monkey (AGM) [78–81]. Substitution of human A3G D128
by K128, found in AGM A3G, results in a mutant (D128K-
A3G) protein that is resistant to the effect of Vif. This data
can be explained either because the mutant protein is no
longer able to interact with Vif or due to inhibition of
subsequent downstream steps [68, 78, 79, 81].

Experiments using alanine-scanning and multiple syn-
onym substitutions on A3G residues confirmed the central

role played by the aspartic acid at position 128 and showed
the crucial role of proline-129 and aspartic acid-130, as
important contributory residues (Figure 1(b)) [82].

Specifically, resistance to Vif induced degradation was
conferred by mutating the aspartic acid residue at position
128 or 130 to the positively charged residue lysine, indicating
that the interaction between Vif and A3G is largely deter-
mined by electrostatic interactions involving these residues
[82].However, residue 128 has been shown to be more
sensitive to amino acid alterations than 130, suggesting that
amino acid D128 may play a more prominent role in A3G
interaction with Vif [82].

Substitution of proline in residue 129 of A3G to alanine
or glycine displayed a strong Vif-resistant phenotype indi-
cating that a specific structural interaction is also required
for an efficient inhibition of A3G by Vif [82]. In addition
to electrostatic determinants, one study reported that A3G
residues 54−124 were sufficient to coimmunoprecipitate
Vif, suggesting the role of additional interacting domains
between Vif and A3G [56]. Another study reported that
amino acids 105−156 of A3G were sufficient for its inter-
action with Vif, and amino acids 157−245 were required
for its degradation [83]. Recently, analysis of A3G chimeras
identified amino acids 126−132 as critical determinants
involved in Vif interaction (Figure 1(b)) [84]. Finally, by
using model-guided mutagenesis, four Lys residues in the
CDA of A3G (Lys-297, 301, 303, and 334) were recently
identified as required for Vif-mediated polyubiquitination
and degradation (Figure 1(b)) [85].

Asparagine at position 128 of A3G was shown to interact
with amino acids 15 or 17 of Vif, and mutations in the
D14RMR17 conserved region of Vif can also alter its species-
specific effect [68]. Alteration of DRMR region to SERQ
or SEMQ, which are present in SIVAGM Vif, promotes the
interaction of AGM A3G, rhesus (Rh) A3G, and D128K-
A3G with HIV-1 Vif [68]. The loss of species restriction is
probably caused by an overall increase in the negative charge
of amino acids in the 14−17 region of HIV-1 Vif, which
promotes effective interaction with the positive charge of
lysine present at residue 128 in AGM A3G and Rh A3G. In
addition, the DRMR region was also shown to be critical for
the binding strength between A3G and Vif [68] although,
additional interaction motifs were required for stabilization
of this interaction (Figure 1(a)) [86].

By performing an extensive mutational analysis of Vif,
Russell and Pathak identified the new motif Y40RHHY44,
that was shown to be involved in binding to A3G (amino
acids 126−132) (Figure 1(a)) [86]. Vif Y40RHHY44 motif was
considered a critical domain for binding to A3G while the
D14RMR17 domain could be involved in a secondary step
involving A3G degradation [86].

Nonetheless, other amino acids in Vif may also con-
tribute to A3G binding. Mehle et al. demonstrated that
amino acids 40 to 71 in the N-terminus of Vif contain a
nonlinear binding site for A3G and that His 42/43 are impor-
tant for Vif-A3G binding and Vif-mediated degradation of
A3G in vivo [87]. Another region of Vif comprising amino
acids 52 to 72 was identified as responsible for Vif-mediated
degradation and virion exclusion of A3G (Figure 1(a)) [88].
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Recently, a highly conserved 69YXXL72 motif in Vif was
shown to mediate the binding to human A3G and its
subsequent degradation (Figure 1(a)) [88–90]. Pery et al.
showed that this motif was critical for in vitro direct binding
of recombinant GST-Vif (1−94 a.a) to A3G and by FRET
assay [89]. Additionally, Vif residues 22−26 and Y30 were
also involved in the interaction with APOBEC3 proteins
[91, 92]. In particular, Vif K22 and K26 were shown to
be important for degradation of A3G. Additionally, residue
Y30 was involved in the interaction with both A3G and
A3F raising the hypothesis that alteration of Tyr in position
30 may affect the conformational stability of Vif. Although
alanine-scanning of 23SLV25 region did not reduce the ability
of Vif to bind A3G and/or A3F, the antiviral effect was
abolished [91, 92], reinforcing the idea that Vif binding to
A3G does not necessarily lead to its degradation.

Vif-mediated degradation of A3G is regulated by phos-
phorylation of Vif and A3G at Ser144 and Thr32, respectively
[61, 93]. It was recently documented that phosphorylation of
A3G by protein kinase A (PKA) reduces its binding to Vif
affecting subsequent ubiquitination and degradation [93].
This finding indicates that phosphorylation events may also
play an important role in the interaction between Vif and
APOBEC3 proteins.

The central hydrophilic domain, E88WRKKR93, and the
proline-rich P161PLP164 domain (Figure 1(a)) of Vif have
been implicated in enhancing its steady-state level and
in binding to tyrosine kinases, respectively [94, 95]. It
is conceivable that the E88WRKKR93 motif is involved in
maintaining sufficient intracellular levels of Vif necessary
for A3G inhibition. Mutations in the PPLP motif of Vif
were shown to reduce the infectivity of virions produced in
T cells and inhibit Vif-Vif interaction in vitro [96]. It has
been suggested that multimerization of Vif may be necessary
for A3G binding and PPLP region may be essential for
this behaviour [97]. In addition, this region has also been
identified as part of a novel “SOCS-box” motif implicated
in binding to EloC [61, 62] and involved in the interaction of
Vif with the cellular Hck tyrosine kinase [98, 99]. Recently,
Donahue et al. demonstrated that mutations in PPLP motif
impaired the ability of Vif binding to A3G, but did not affect
EloC and Cullin5 binding [100].

Other additional studies have identified regions in Vif
protein that are responsible for A3G and A3F inhibition
but are not located in the SLQXLA and HCCH motifs.
As an example, Simon et al. reported that any single
amino acid substitutions in Vif sequences isolated from
HIV-1 infected patients were sufficient to prevent A3G
neutralization [67].Moreover, a subset of mutants has been
reported to be functional against A3G but not A3F and vice
versa [86].

6. Conclusion Remarks

To this date, the most successful HIV-1 antiviral drugs in
the market are those that target the HIV enzymes reverse
transcriptase (RT) and protease (PR). Nevertheless, other
strategies have proven to be highly effective such as integrase

inhibitors [101–103], and entry inhibitors like T20 and
Maraviroc [104].

As reviewed above, recent advances in the study of the
biological and biochemical role of Vif and A3G, together with
progress in deciphering how Vif counteracts A3G, opened
new opportunities to develop novel anti-HIV drugs.

Blocking the binding of Vif to A3G in vivo is certainly
one of the most obvious therapeutic strategies. Several
authors reported that Vif may function at multiple levels to
prevent incorporation of A3G into viral particles [45, 60,
61, 105]. Therefore, preventing the binding of Vif to A3G
may have two outcomes: (1) inhibition of A3G proteasomal
degradation and, (2) increasing in the amount of A3G at
viral assembly locations, resulting in a higher level of A3G
incorporation into virions. However, care must be taken
when attempting to increase A3G intracellular levels as A3G
mRNA is highly expressed in some tumour cells [106], and
this may potentially induce tumour formation.

The amount of intracellular Vif can be reduced by
degradation in the proteasome due to direct interaction
with the SCF complex. Consequently, disruption of Vif-A3G
interaction could prevent the proteolytic degradation of A3G
and consequently increase the intracellular levels of Vif by
impeding its destruction. Whether increasing amounts of Vif
may rescue viral replication by other mechanisms besides
A3G degradation is a matter of debate [45].

A detailed knowledge of the protein domains involved
in this interaction is extremely important for the rational
design of new antiviral drugs. To this date, several regions
in Vif and A3G proteins have been mapped, and the effect on
their interaction has been studied. Nevertheless, the three-
dimensional molecular structure of both proteins was not yet
determined, and only their structure homology modelling
was reported [82, 83].

As described above, the most important domains of
A3G responsible for Vif interaction involve the asparagine
at position 128 and its surrounding residues. The charge of
D128 amino acid in A3G markedly influences the interaction
with Vif indicating that the protein binding is dependent
on electrostatic forces [68]. Thus, chemical compounds
targeting this region could be effective in preventing Vif-
A3G interaction. Importantly, molecules targeting amino
acid 128 are not predicted to interfere with A3G enzymatic
activity which is conferred by other domains of the protein
[107, 108].

In addition to this region, other motifs in A3G have
been validated as potential targets for antiviral drugs. As
previously discussed, other domains of A3G are involved
in the mechanism of Vif binding. This conclusion probably
reflects a broad structural interface that stabilizes Vif-A3G
interaction. However, it is not known yet if these regions
converge towards a unique functional structure since we
lack a high-resolution structure of A3G. Therefore, the
development of new drugs targeting D128 residue should
take into account the involvement of multiple adjacent
regions.

The Vif protein is also a potential target for HIV-1 drug
therapy. In contrast to A3G, Vif has a scattered localization
of motifs capable to mediate its interaction with APOBEC3
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proteins. Thus, it is conceivable that the mechanism by which
Vif recognizes A3G may involve multiple and conserved
functional structures in the viral protein. Whether these
structures interact alone or in synergy towards A3G binding
is not yet known.

The N-terminal region of Vif has been implicated in
binding to A3G, whereas the protein motifs that mediate
interaction with Cul5-E3 ligase complex and promote A3G
degradation are concentrated in the C-terminal region of Vif
[58, 67–70]. Specifically, in the context of the 144SLQXLA149

motif, lysine at position 145 is crucial for binding to EloC and
to initiate the process of A3G-targeted degradation. Other
regions, like the zinc-binding HCCH motif, and the Vif
multimerization domain (161PPLP164) are also present in the
C-terminus of Vif and may constitute alternative inhibition
motifs. It has been shown that mutations in the 161PPLP164

motif, reduced Vif binding and degradation of A3G without
affecting the interaction of Vif with Elongin C and Cullin5
[100]. Interestingly, when an anti-viral peptide that mimics
the Vif PPLP dimerization domain was used, the amount of
A3G incorporation into wild-type HIV-1 particles increased
[109]. Thus, small molecules that target this motif could
be developed as antiviral drugs to block the Vif-mediated
inhibition of A3G and A3F activity.

Although the three-dimensional structure of HIV-1
Vif was not yet determined, a close perspective has been
developed by comparative modelling [109]. Using molecular
dynamics simulation, it was shown that mutations of critical
residues led to the disruption of Vif and EloB-EloC interac-
tion, consistent with experimental observations. These novel
homology models of Vif can therefore provide structural
information for investigating critical domains for protein
neutralization.

While a complete and accurate structure is not available,
antiviral drugs that could inhibit Vif and enhance A3G/A3F
activity are emerging as attractive candidates [110–113].
For example, a small Vif antagonist that increases the
intracellular level of A3G and its incorporation into virions
in a Vif-dependent manner has been identified [114]. This
compound was shown to enhance the degradation of Vif in
an A3G-dependent manner without being a general inhibitor
of the proteasome-mediated protein degradation [114].

Nonetheless, developing specific and effective small
chemical inhibitors to directly inhibit Vif-A3G interaction
faces many challenges due to the multiple binding regions
involved. In addition, in vitro binding assays and cell-based
assays that have been used to decipher the dynamic principles
behind protein functional association make it sometimes
difficult to assess the in vivo significance of the results. In
particular, co-immunoprecipitation assays that have been
commonly used to study specific domains involved in Vif-
A3G interaction are questioned. One study has shown that
Vif was able to inhibit virion encapsidation and the antiviral
activity of an A3G degradation resistant mutant (C97A)
[115], suggesting a direct inhibition of A3G by Vif. However,
the authors could not rule out the possibility that Vif-
A3G complexes could have been formed after cell lysis
during co-immunoprecipitation assays. Finally, no one so far
has been able to demonstrate a direct Vif-A3G interaction

with purified components at physiological concentrations.
Therefore, we cannot rule out the need for post-translational
modifications or interactions during synthesis, or the need
for additional components in the interaction complex.

It is plausible that the binding features of Vif-EloC
interaction present mechanistic specificities that would be
optimal for the rational development of a Vif antag-
onist. Moreover, the specific and stable interaction of
144SLQXLA149 domain of Vif with EloC will probably result
in a better approach for drug screening.

However, attention must be taken when designing new
antiviral drugs since incomplete Vif inhibition could result
in increased A3G levels in the cell enough to exert an inter-
mediate level of mutational pressure on the HIV-1 genome
resulting in a “sub-error catastrophe.” This could accelerate
viral evolution instead of inducing a population collapse
resulting in anti-retroviral resistance [116] and immune
escape. Despite some controversy remaining on that subject,
a therapeutic strategy that could amplify this nonmutagenic
phenotype without enhancing cytidine deamination may be
an alternative to suppress viral replication. In addition, A3G
and A3F may also function through other mechanisms that
do not necessarily require deamination [8, 117, 118].

In conclusion, antiviral drugs that could inhibit Vif
and enhance A3G/A3F activity are emerging as attractive
candidates [110–113]. Nevertheless, the potential outcome of
a Vif-based intervention must be examined rigorously both
in vitro and in vivo prior to clinical deployment.
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[24] C. Rösler, J. Köck, M. H. Malim, H. E. Blum, and F.
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