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Protein S-nitrosylation plays a very important role in a wide variety of cellular biological activities. Hitherto, accurate prediction of
S-nitrosylation sites is still of great challenge. In this paper, we presented a framework to computationally predict S-nitrosylation
sites based on kernel sparse representation classification and minimum Redundancy Maximum Relevance algorithm. As much
as 666 features derived from five categories of amino acid properties and one protein structure feature are used for numerical
representation of proteins. A total of 529 protein sequences collected from the open-access databases and published literatures are
used to train and test our predictor. Computational results show that our predictor achieves Matthews’ correlation coefficients of
0.1634 and 0.2919 for the training set and the testing set, respectively, which are better than those of k-nearest neighbor algorithm,
random forest algorithm, and sparse representation classification algorithm.The experimental results also indicate that 134 optimal
features can better represent the peptides of protein S-nitrosylation than the original 666 redundant features. Furthermore, we
constructed an independent testing set of 113 protein sequences to evaluate the robustness of our predictor. Experimental result
showed that our predictor also yielded good performance on the independent testing set with Matthews’ correlation coefficients of
0.2239.

1. Introduction

Nitric oxide (NO) has been reported to be an important
signaling molecule which involves physiological and patho-
physiological regulations of some cellular processes, such
as cardiovascular, respiratory, gastrointestinal, reproductive,
and host defense [1–4]. Protein S-nitrosylation which is
covalently modified by NO has recently been discovered to

play important roles in regulating diverse pathways [5–7] and
other biological activities [8], such as chromatin remodeling
[9], transcriptional regulation [10], cellular trafficking [11],
and apoptosis [12]. Also, it has been reported that aberrant
S-nitrosylation might contribute to some diseases such as
neurodegenerative disorders [1, 13] and cancers [14]. Several
biochemical approaches have been developed to identify S-
nitrosylation sites; for example, Forrester et al. [15] used RAC
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(resin-associated capture) method to isolate SNO protein,
and Foster et al. [16] utilized an approach based on protein
microarray to screen S-nitrosylation sites.

In contrast to time-consuming and labor-intensive exper-
iments, computational approach is fast and cost-effective. It is
reported that there have been at least 170 databases and com-
putational tools concerned with posttranslational modifica-
tion including protein S-nitrosylationmodification [17].With
regard to predicting S-nitrosylationmodification sites, Xue et
al. [17] developed a software tool named GPS-SNO 1.0; Hao
et al. [18] applied support vector machine (SVM), Lee et al.
[19] used the maximal dependence decomposition- (MDD-)
clustered SVMs, and Li et al. [20] utilized k-nearest neighbor
algorithm to deal with the problem. Although computational
approach is becoming more and more attractive, prediction
of S-nitrosylation sites still remains a great challenge due to
the complications of effectively protein encoding.

In the paper, we presented a new computational frame-
work based on kernel sparse representation theory to pre-
dict S-nitrosylation sites. The framework consists of two
steps: feature extraction and feature selection. Firstly, 666 fea-
tures were extracted from five categories of amino acid pro-
perties, that is, sequence conservation, amino acid factor,
secondary structure, solvent accessibility, and amino acid
occurrence frequency, and one protein structure feature, the
residual disorder. Then, a two-stage feature selection pro-
cedure was applied to select an optimal subset from the 666
redundant features. Finally, a webserver for the prediction
of S-nitrosylation sites based on kernel sparse representa-
tion classification and minimum Redundancy Maximum
Relevance algorithm is available at http://www.zhni.net/
snopred/index.html.

2. Materials

The training and testing sets adopted in the paper were
constructed as follows. A total of 645 protein sequences (see
Supplementary Material S1 available online at http://dx.doi
.org/10.1155/2014/438341) containing S-nitrosylation sites
(see Supplementary Material S2) were first collected from
open-access databases and the published literatures. Among
the 645 protein sequences, 25 were from Uniprot database
(version 2011 7) [21], 327 were from a research done by Xue
et al. [17], and the other 293 protein sequences were from
three recent reviews [22–24] on S-nitrosylation identification.
The S-nitrosylation sites on the 645 protein sequences are
all verified by experiments. Then, the sequence-clustering
program CD-HIT [25] was applied to screen the 645 protein
sequences. The cutoff value of CD-HIT was 0.4, meaning
that the protein sequences having pairwise sequence identity
greater than 40% to one another were removed. Finally,
529 protein sequences were left for analysis. Samples were
then collected by taking peptides composed of 21 continuous
residues with the central residue as cysteine; that is, peptides
including a central cysteine and with each 10 residues in
the upstream and downstream of the cysteine were picked
out. For peptides with cysteine but which were less than 21
residuals, labels “X” were appended to end of the peptides.
Thus, there were totally 2516 peptides obtained from the

529 proteins. 827 peptides with S-nitrosylation modification
sites were labeled as positive samples and the remaining
1689 peptides were labeled as negative ones. More detailed
information about collecting data can be found in our
previous work [20]. The 2516 samples were grouped into
training dataset and testing dataset at the ratio of 4 : 1; that
is, we used 80% of the samples as the training samples,
because sufficient samples were needed to train the predictor.
Meanwhile, to evaluate the robustness, 20% of the samples
were left for the testing. During sample grouping, positive
samples and negative samples are distributed in a way so that
the ratios of positive-to-negative samples in the training and
testing datasets remained the same as that of thewhole dataset
which is about 1 : 2 (positive-to-negative ratio was 827 : 1689
in the whole date set). Consequently, the training set was
composed of 662 positive and 1351 negative samples, and the
testing set was composed of 165 positive and 338 negative
samples (see Supplementary Materials S3 and S4).

Besides the training and testing sets mainly collected
from published literatures, we also constructed an indepen-
dent testing set with the Uniprot database of the latest version
(version 2014 05). We searched the Uniprot database for
those protein sequences with S-nitrosylation identification.
Then, by deleting the proteins which had been used in the
training and testing sets, totally 113 sequences containing S-
nitrosylation siteswere obtained.The 113 sequenceswere used
as the independent testing set (see Supplementary Material
S6). Thus, we could do comparison between different meth-
ods based on the independent testing set.

3. Methods

3.1. Feature Extraction. All features were derived from five
categories of amino acid properties and one protein structure
feature: (1) evolutionary conservation, (2) physicochemical
or biochemical properties, (3) solvent accessibilities, (4) fre-
quency aroundnitrosylated cysteine, (5) secondary structural
properties, and (6) disorder status.

The evolutionary conservation of amino acid is very
important, which is generally represented as the probability
that it would mutate into other 20 kinds of amino acid. By
using PSI-BLAST program [26], a 21×20 = 420 dimensional
vector describing conservation of each peptide was obtained.

Physicochemical or biochemical properties of amino
acid were characterized quantitatively as a 5-dimensional
vector using amino acid index database [27], whose ele-
ments represent properties of polarity, secondary structure,
molecular volume, codon diversity, and electrostatic charge,
respectively. Except the cysteine, 20 amino acids in a peptide
were represented as a 100-dimensional vector.

Disorder status of amino acid was quantified as a disorder
score by the predictor of protein disorder [28], and thus,
for a peptide, its disorder status was represented by a 21-
dimensional vector.

Secondary structural properties, that is, “helix,” “strand,”
and “others,” and the solvent accessibility, that is, “buried” and
“exposed,” of an amino acid were calculated by the predicting
software of protein structure and structural feature [29],
resulting in a 5-dimensional encoding vector consisting of
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0 or 1. A 21 × 5 = 105 dimensional vector represented the
secondary structural and solvent accessibility properties of a
peptide.

Frequency of the twenty amino acids around nitrosylated
cysteine (nitrosylation site was excluded) was also taken into
consideration.

Hence, each sample could be represented as a numerical
vector containing as many as 666 (420 + 100 + 21 + 105 +

20) features. Table 1 shows the distribution of features. Details
of feature construction could be found in our previous work
[20].

3.2. Feature Selection. A two-stage feature selection proce-
dure is used to select optimal feature subset from the feature
space.Thepredictor constructed by the optimal feature subset
is our final S-nitrosylation sites predictor. The procedure is
described as follows.

Stage 1. All features are evaluated by the minimum Redun-
dancy Maximum Relevance (mRMR) algorithm [30] and
then ranked according to their mRMR scores.

Stage 2. Based on the mRMR evaluation, incremental fea-
ture selection procedure [31, 32] is adopted to search for
the optimal feature subset with the help of kernel sparse
representation classification (KSRC) algorithm.

3.2.1. mRMR Algorithm. The mRMR algorithm proposed by
Peng et al. [30] is a feature evaluation method based on
mutual information. Mutual information is able to quantify
the dependency between two variables.The larger themutual
information is, the more the dependency between the two
variables is. Mutual information between two random vari-
ables 𝑋 and 𝑌 is defined as follows:

MI (𝑋, 𝑌) = ∬𝑝 (𝑥, 𝑦) log
𝑝 (𝑥, 𝑦)

𝑝 (𝑥) 𝑝 (𝑦)
𝑑𝑥 𝑑𝑦, (1)

where function 𝑝 denotes probabilistic or joint probabilistic
density.
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(2)

The mRMR algorithm aims to evaluate feature subsets
𝑆 and then selects the optimal feature subset that meets the
minimal redundancy and maximal relevance criteria, that
is, the minimal dependency to the entire feature space and

Table 1: Distribution of feature type for a sample.

Feature category Number of features from each
category

Evolutionary conservation 21 × 20
Amino acid factor 20 × 5
Secondary structure 21 × 3
Solvent accessibility 21 × 2
Amino acid frequency 20 × 1
Disorder 21 × 1
Number of features of a
sample 666

the maximal dependency to the target variable 𝑌. Minimal
redundancy to the entire feature space can be calculated by
the following equation:

min
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Maximal dependency to the target variable 𝑌 can be calcu-
lated by the following equation:
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Thus, the mRMR evaluation can be quantified as score by
integrating (3) and (4) into the following equation:
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3.2.2. Incremental Feature Selection. In the implementation,
the mRMR criterion is hard to satisfy, especially when the
feature space is large. Hence, to attain an optimal feature sub-
set of minimal redundancy and maximal relevance, a heuris-
tic strategy named incremental feature selection [31, 32] is
adopted for the search of feature subset.

Firstly, all the features are scored by (5), by shrinking
feature subset 𝑆 to contain only one feature. Secondly, arrange
all the features according to their mRMR scores. Thirdly,
search for optimal feature subset by an increment means as
follows.

Suppose all the features in the feature space Ω have
been arranged in the order from high mRMR score to low
mRMR score. Beginning from the feature of the highest
mRMR score, move features from the scored feature space to
the selected feature subset sequentially. When one feature is
added, evaluate the classification performance of the feature
subset by predictors which are constructed by the KSRC
algorithm (see Section 3.2.4 for details). Finally, the feature
subset of the highest classification performance is selected as
the optimal feature subset and the predictor constructed by
the optimal feature subset is the final predictor. In this study,
the method used to evaluate the classification performance is
presented in Section 3.2.3.
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3.2.3. Evaluation Metrics. Four indicators, sensitivity (SN),
specificity (SP), accuracy (ACC), and Matthews’ correlation
coefficient (MCC), are used to evaluate the performance
of predictors when new features are added. Consider the
following:

SN =
TP

(TP + FN)
,

SP =
TN

(TN + FP)
,

ACC =
(TP + TN)

(TP + FN + FP + TN)
,

MCC =
(TP × TN − FN × FP)

√(TP + FN) (TP + FP) (TN + FP) (TN + FN)

.

(6)

TP and TN represent the numbers of true positive and true
negative, respectively. FP and FN represent the numbers of
false positive and false negative, respectively. Among the four
indicators, MCC is the most significant indicator, which is
used to optimize the procedure of feature selection in this
study.

3.2.4. KSRC Algorithm. In this paper, KSRC algorithm is
applied to construct predictor. The KSRC algorithm inte-
grates the sparse representation classification (SRC) algo-
rithm and the kernel function technique to fulfill classifica-
tion task [33, 34]. In the following section, we will introduce
the SRC algorithm and the kernel function technique, respec-
tively, and then illustrate how to integrate the two techniques.

In the recent years, the SRC algorithm has been suc-
cessfully applied in these fields of signal recovery, signal
encoding, and signal classification [33–41]. The principle
underlying the SRC algorithm is that testing samples can be
represented as linear combination of training samples if the
testing and training samples belong to the same category so
that the representation coefficient of a testing sample under
all training samples might supply sufficient information to
determine the category of the testing samples.

Suppose there are 𝑐 distinct classes, each with 𝑛
𝑘
samples,

𝑘 = 1, 2, . . . , 𝑐. And 𝑋
𝑘

= (𝑥
𝑘

1
, 𝑥
𝑘

2
, . . . , 𝑥

𝑘

𝑛𝑘
) is a matrix con-

sisting of samples from the 𝑘th class, where 𝑥
𝑘
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𝑘
)

is a column vector, representing the 𝑗th sample in the class 𝑘.
All training samples are concatenated to form a matrix 𝑋 =

[𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑐
]. Computing the sparsest coefficient vector 𝛼

of a test sample 𝑦 under the matrix𝑋 is modeled as follows:

min ‖𝛼‖0, subject to 𝑦 = 𝑋𝛼 (7)

or
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2
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a vector, respectively.
Since the pursuit of exact solution of (7) and (8) is an NP-

hard problem [42], the orthogonal matching pursuit (OMP)

[43, 44] algorithm is used to seek an approximate solu-
tion to (7) and (8) in our works. The OMP is an iterative
greedymethod. Each step of iteration inOMP algorithm con-
tains three operations: (1) computing residual referring to dif-
ference between original signal and recovery one, (2) select-
ing the column with the highest correlation to the current
residual, and (3) projecting original signal into the linear sub-
space spanned by these already selected columns. For con-
venient description, the following symbols were used. The
symbol 𝑋 specified a matrix, 𝑋

𝑡
referred to the column 𝑡 in

thematrix, and𝑋
Θ
consisted of columns of thematrix𝑋with

the indicesΘ. The OMP algorithm is described in Algorithm
1.

Once a coefficient vector 𝛼 was gained by the OMP
algorithm, the category of the corresponding testing sample
was determined by the following rule:

𝐾 = arg min
𝑘=1,2,...,𝑐

󵄩󵄩󵄩󵄩
𝑦 − 𝑋𝛼

𝑘
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whose entries were all zero except 𝛼
𝑘

𝑖
(1 ≤ 𝑖 ≤ 𝑛

𝑘
) which

corresponds to the samples from the class 𝑘 and is equal to
the corresponding element from 𝛼. The details of the SRC
algorithm were shown in Algorithm 2.

Nevertheless, the performance of the SRC algorithm
might be limited, if the testing samples are not linearly
representable in the space of training sample [34]. Therefore,
in our work, kernel function technique is applied to project
testing sample into higher-dimensional space so as to alter
the distributed structures of the samples.

Kernel function technique is a widely used technique
that is able to map data from low-dimensional space to
higher-dimensional space [34]. A well-chosen kernel func-
tion enables original linearly inseparable samples to become
linearly separable in the high-dimensional feature space. In
our work, the Laplacian kernel function Ψ(𝑥, 𝑦) = 𝑒

−|𝑥−𝑦|/𝛿

was employed.
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Input: the matrix 𝑋, the sparsity 𝑘, the testing sample 𝑦

Output: the coefficient vector 𝛼
(1) initialize residual 𝑒 = 𝑦, Θ = Φ, 𝑖 = 0

(2) normalize columns of the matrix 𝑋 with the 𝑙
2
norm

(3) while 𝑖 < 𝑘

𝑗 = argmax
𝑡∉Θ

{𝑋
󸀠

𝑡
𝑒}

Θ = Θ ∪ {𝑗}

𝑃 = 𝑋
Θ
(𝑋
󸀠

Θ
𝑋
Θ
)
−1
𝑋
󸀠

Θ
//compute the projection

𝑒 = (𝑦 − 𝑃𝑦) //update the residual
𝑖 = 𝑖 + 1 //update the loop index

(4) 𝛼 = 𝑃𝑦

Algorithm 1: OMP algorithm.

Input: the training set with 𝑐 distinct classes, the test sample 𝑦

Output: the category of the testing sample 𝑦

(1) Concatenate all training samples to construct the matrix𝑋

(2) normalize columns of the matrix 𝑋 with the 𝑙
2
norm

(3) solve (7) or (8) using the OMP in Algorithm 1, and obtain the coefficient vector 𝛼
(4) determine the category of the testing sample according to (9)

Algorithm 2: SRC algorithm.

According to the properties of kernel function, (11) is further
expressed as

[
[
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1
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.

.

.
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.

.
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𝑛
, 𝑥
1
) ⋅ ⋅ ⋅ Ψ (𝑥

𝑛
, 𝑥
𝑛
)

]
]

]

𝛼. (12)

Therefore, minimum equation (10) is equivalent to

min ‖𝛼‖0, subject to (8). (13)

Equation (13) has the same solution as (10). The KSRC was
shown in Algorithm 3.

4. Results and Discussion

4.1. Optimal Feature Subset Selection. First, the mRMR algo-
rithm [30] was applied to the training set, producing a
sequence of 666 scored features. Details of the results can be
found in Supplementary Material S5.

Second, apply incremental feature selection procedure to
search optimal feature subset. Figure 1 shows MCC values
of each candidate feature subset by using 10-fold cross
validation on the training set. The best MCC value is 0.1634,
corresponding to the combination of the first 134 features.
Therefore, this candidate feature subset was regarded as the
optimal subset.

In the implementation, the factor 𝛿 of the Laplacian
kernel function in the KSRC algorithm is 100. The sparsity
𝑘 in OMP algorithm was 50. The used OMP algorithm codes
are available at the following site: http://www.cs.technion.ac
.il/∼ronrubin/software.html [45]. The used mRMR codes are
available at http://penglab.janelia.org/proj/mRMR/ [30].

4.2. Comparison with Other Algorithms. As was mentioned
in Section 1, quite a few methods have been developed to
predict the S-nitrosylation sites in recent years. However, it
was difficult to make direct comparisons between them due
to the following two reasons. First, different methods usually
employed different datasets. It was biased to compare their
overall performances based on different datasets. Secondly,
we did not know what parameters they used to optimize the
predictors. So, it was difficult for us to compare othermethods
with ours based on the same training and testing datasets.

Notwithstanding this, we attempted to compare our
methods with other data mining methods based on our
training and testing datasets. Hence, the KSRC algorithm
proposed in this paper was compared to five other data
mining algorithms: SRC [38], k-nearest neighbor algorithm
(KNN) [46], random forest (RF) [47], sequential minimal
optimization (SMO) [48], and Dagging [49]. KNN is an
instance-based learning algorithm, which is widely used due
to its simplicity and efficiency in training. RF is an integration
method by combining many tree predictors together. Each
tree predictor performs computation based on the values of a
randomvector sampled independently andwith the samedis-
tribution for all trees in the forest. SMO is an algorithm that
trains the support vector machine. Dagging is an algorithm
that ensembles weak classifiers. In terms of implementation,
KSRC and SRC were coded in Matlab language by virtue of
the OMP package [45]. The computation of KNN, RF, SMO,
and Dagging algorithms was performed by Weka (version 3-
6-1) [50], which is a collection of learningmachine algorithms
and is available at http://www.cs.waikato.ac.nz/ml/weka/. In
this work, the number of the nearest neighbors in the KNN
is 3. The RF, SMO, and Dagging use the default parameters
in the Weka. The sparsity of the OMP in the SRC is 50, the
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Input: the training set with 𝑐 distinct classes {𝑥
𝑖
}
𝑛

𝑖=1
, the testing sample 𝑦, and kernel function Ψ

Output: the category of the test sample
(1) compute the matrix𝐷 and the test sample𝑊 such that 𝑊 = 𝐷𝛼 by using (12)
(2) normalize columns of the matrix 𝐷 with the 𝑙

2
norm

(3) solve (13) using the OMP in Algorithm 1, and obtain the coefficient vector 𝛼
(4) compute 𝐾 = argmin

𝑘=1,2,...,𝑐

󵄩󵄩󵄩󵄩
𝑊 − 𝐷𝛼

𝑘

󵄩󵄩󵄩󵄩

2

(5) assign the testing sample to the class 𝐾

Algorithm 3: KSRC algorithm.
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Figure 1: MCC value of 10-fold cross validation of the KSRC on the
training set in the incremental feature selection procedure.

same as that of the KSRC. All the computer programs were
executed on the Operation System platform Fedora 17.

The four indicators, SN, SP, ACC, and MCC, mentioned
in Section 3.2.3, were also used for the comparison of different
algorithms. The MCC curves of SRC, KNN, RF, SMO, and
Dagging on the training set were plotted in Figure 2. The five
algorithms attained optimal feature subsets containing 76,
52, 38, 127, and 103 features, respectively. All six algorithms
were compared both on the training set and on the testing
set with optimal feature subsets of their own. Tables 2 and
3 showed their performances on the training and testing
datasets, respectively. As indicated by Table 2 and Figure 2,
KSRC could achieve MCC that exceeded 0.16 on the training
set. Although SMO and Dagging performed better in terms
of the MCC, KSRC showed better SN than that of SMO
and Dagging. Table 3 presented the performances of the six
algorithms on the testing dataset, which were not previously
used in the training. As shown in Table 3, KSRC yielded the
highest MCC and SN among all of the six algorithms, while
SMO and Dagging showed poor MCC on the testing set. The
high MCC and SN of KSRC on both the training and testing
datasets indicated that KSRC was more effective and robust
than the other five data mining algorithms.

To compare the predictive performances of the 134 opti-
mal features with that of the original 666 features, the 10-fold
cross validation and independent tests were also conducted
on the training and testing sets by the 666 original features,
respectively. Table 4 shows the performance of using original

Table 2: Performances of six algorithms on the training set with the
respective optimal features using 10-fold cross validation.

SN SP ACC MCC
KSRC 0.4048 0.7543 0.6393 0.1634
SRC 0.3489 0.7876 0.6433 0.1467
KNN 0.3852 0.7469 0.6279 0.1358
RF 0.3399 0.7957 0.6458 0.1473
SMO 0.2840 0.8705 0.6776 0.1887
Dagging 0.3610 0.8320 0.6771 0.2150
KSRC: kernel sparse representation classification; SRC: sparse representa-
tion classification; KNN: 𝑘-nearest neighbor algorithm; RF: random forest
method; SMO: sequential minimal optimization; Dagging refers to the use
of majority vote to combine multiple models derived from a single learning
algorithm using disjoint samples.

Table 3: Performances of six algorithms on the testing set with the
respective optimal features.

SN SP ACC MCC
KSRC 0.4727 0.8077 0.6978 0.2919
SRC 0.2909 0.7988 0.6322 0.1000
KNN 0.4061 0.7899 0.6649 0.2062
RF 0.3636 0.8343 0.6799 0.2206
SMO 0.2364 0.8669 0.6600 0.1299
Dagging 0.2848 0.8343 0.6541 0.1386

Table 4: Performances of KSRC on the training and testing sets with
the original 666 features.

SN SP ACC MCC
The training set 0.2749 0.8120 0.6354 0.0991
The testing set 0.2909 0.8462 0.6640 0.1612

666 features on the training and testing sets, respectively. It
can be seen in Table 4 that SN andMCCwith the 134 optimal
features were much better than those of the original features,
though SP is a bit worse. Since theMCC is themost important
criterion among the adopted metrics, we conclude that the
134 optimal features performed better than the original 666
features.

4.3. Comparison of Algorithms on Independent Testing Set.
Since the training and testing sets were mainly collected
from published literatures, we constructed an independent
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Figure 2:MCC curves of 10-fold cross validation on the training set of (a) SRC, (b) KNN, (c) RF, (d) SMO, and (e) Dagging in the incremental
feature selection procedure.

testing set for the comparison between our method and
other methods. The independent testing set contained 113
protein sequences from the latest version of Uniprot database
(version 2014 05) (see Section 2 for details). Two existing
S-nitrosylation predictors, iSNO-AAPair [51] and iSNO-
PseAAC [52], were used for comparison. The comparison
results of our predictor, iSNO-AAPair, iSNO-PseAAC, and

other five data mining algorithms on the independent testing
set were presented in Table 5. As shown in Table 5, the
SRC algorithm achieved the highest MCC of 0.2617, and
our proposed KSRC algorithm was the second with MCC
of 0.2239. The iSNO-AAPair and iSNO-PseAAC predictors
attained MCC of 0.1125 and 0.1190, respectively, both of
which were only approximately half of the KSRC algorithm.
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Table 5: Performances of eight algorithms on the independent test-
ing set with the respective optimal features.

SN SP ACC MCC
KSRC 0.5196 0.7368 0.6915 0.2239
SRC 0.5588 0.7419 0.7038 0.2617
KNN 0.4069 0.7419 0.6721 0.1333
RF 0.4657 0.7535 0.6936 0.1958
SMO 0.1765 0.8645 0.7211 0.0474
Dagging 0.2745 0.7884 0.6813 0.0612
iSNO-AAPair 0.4020 0.7252 0.6578 0.1125
iSNO-PseAAC 0.5343 0.6103 0.5945 0.1190

Although the MCC of KSRC algorithm was a little lower
than that of SRC algorithm, the KSRC algorithm was the one
algorithm that could achieve high and stable performance in
both of the testing set and the independent set (as shown in
Tables 3 and 5), demonstrating the robustness of the KSRC
algorithm among different datasets.

5. Conclusions

In the paper, we proposed a framework based on the KSRC to
computationally identify S-nitrosylation modification sites.
Our experimental results show that KSRC outperforms other
state-of-the-art algorithms in terms of the key prediction
metrics. The KSRC is an application of kernel function tech-
nique to the SRC. Kernel approach can project linearly inse-
parable samples into high-dimensional feature space with the
use of kernel functions. If an appropriate kernel function
is selected, the original linearly inseparable samples could
become linearly separable in the high-dimensional feature
space. Kernelizing of the sparse representation by Laplacian
function could improve the separability of the samples and
yields higherMCC than those linear classification algorithms,
such as KNN and SRC. We believe that the proposed KSRC
based framework could become a helpful tool for the predic-
tion and analyses of protein S-nitrosylation.
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