
fncel-16-876342 April 23, 2022 Time: 13:59 # 1

REVIEW
published: 28 April 2022

doi: 10.3389/fncel.2022.876342

Edited by:
Marc J. Ruitenberg,

The University of Queensland,
Australia

Reviewed by:
Shan Huang,

University of California, Los Angeles,
United States

Renée Jade Turner,
University of Adelaide, Australia

*Correspondence:
Qingping Wu

wqp1968@163.com

Specialty section:
This article was submitted to

Cellular Neuropathology,
a section of the journal

Frontiers in Cellular Neuroscience

Received: 16 February 2022
Accepted: 05 April 2022
Published: 28 April 2022

Citation:
Feng Y-Q, Xu Z-Z, Wang Y-T,

Xiong Y, Xie WL, He Y-Y, Chen L,
Liu G-Y, Li X, Liu J and Wu QP (2022)

Targeting C–C Chemokine Receptor
5: Key to Opening

the Neurorehabilitation Window After
Ischemic Stroke.

Front. Cell. Neurosci. 16:876342.
doi: 10.3389/fncel.2022.876342

Targeting C–C Chemokine Receptor
5: Key to Opening the
Neurorehabilitation Window After
Ischemic Stroke
Yi-Qi Feng, Zhen-Zhen Xu, Yan-Ting Wang, Yue Xiong, Wanli Xie, Yu-Yao He, Lu Chen,
Guo-Yang Liu, Xia Li, Jie Liu and Qingping Wu*

Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China

Stroke is the world’s second major cause of adult death and disability, resulting in the
destruction of brain tissue and long-term neurological impairment; induction of neuronal
plasticity can promote recovery after stroke. C–C chemokine receptor 5 (CCR5) can
direct leukocyte migration and localization and is a co-receptor that can mediate human
immunodeficiency virus (HIV) entry into cells. Its role in HIV infection and immune
response has been extensively studied. Furthermore, CCR5 is widely expressed in the
central nervous system (CNS), is engaged in various physiological activities such as
brain development, neuronal differentiation, communication, survival, and learning and
memory capabilities, and is also involved in the development of numerous neurological
diseases. CCR5 is differentially upregulated in neurons after stroke, and the inhibition
of CCR5 in specific regions of the brain promotes motor and cognitive recovery. The
mechanism by which CCR5 acts as a therapeutic target to promote neurorehabilitation
after stroke has rarely been systematically reported yet. Thus, this review aims to discuss
the function of CCR5 in the CNS and the mechanism of its effect on post-stroke recovery
by regulating neuroplasticity and the inflammatory response to provide an effective basis
for clinical rehabilitation after stroke.

Keywords: stroke, CCR5, chemokines, immune response, neuronal plasticity, neurorehabilitation

INTRODUCTION

The limited recovery following acute brain damage leading to stroke is among the most
common causes of adult physical disability worldwide (Benjamin et al., 2019), with ischemic
stroke accounting for 71% of all strokes (Collaborators et al., 2018). Most ischemic strokes
are thromboembolic in origin, and regions without adequate blood flow lead to energy
depletion, metabolic disorders, and abnormal electrical activity, which become irreversibly
injured and contribute to the clinical deficit over time (Campbell et al., 2019). Progress has
been made in facilitating individuals’ recovery from ischemic stroke following advancements in
pharmaceutical mechanic and thrombolysis (Paul and Candelario-Jalil, 2021). However, because
of the limited window for reperfusion therapies and irreversible neuron death, approximately
50–60% of patients still suffer from motor impairments after successful endovascular clot
removal (Schaechter, 2004; Leng and Xiong, 2019). Hence, apart from therapies that promote
cerebral blood vessel reperfusion, medical treatments developed to enhance recovery after
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stroke have wide prospects for clinical application. The process
of neuronal recovery in brain traumas, including stroke, includes
upregulation of growth-promoting genes (Cramer and Procaccio,
2012), axonal sprouting (Li et al., 2010), and alterations
in tonic gamma-aminobutyric acid and α-amino-3-hydroxy-
5methyl-4-isoxazole propionic acid (AMPA) receptor signaling
(Clarkson et al., 2010, 2011). Accumulating evidence indicates
that enhancing plasticity processes in brain circuits plays a
significant role in neurorehabilitation therapies after stroke
(Joy and Carmichael, 2021).

C–C chemokine receptor 5 (CCR5) is a seven-membrane
G protein-coupled receptor (GPCR) composed of 352 amino
acids. CCR5 contains multiple ligands, including CCL3 (MIP-
1α), CCL4 (MIP-1β), CCL5 (RANTES), CCL8 (MCP-2), CCL3L1
(LD78), and CCL11 (eotaxin; Chen et al., 2018; Jiao et al., 2019).
Regulation of leukocyte migration is tightly linked to CCR5
expression and activation. In 1996, it was shown that CCR5 is key
co-receptor that allows human immunodeficiency virus (HIV) to
enter target cells (Alkhatib et al., 1996). Chemokine receptors,
furthermore, play a role in a wide range of physiological and
pathological processes in the central nervous system (CNS),
as demonstrated by mounting evidence (Babcock et al., 2003;
Rostène et al., 2007). In 2019, CCR5 was shown to be an effective
therapeutic target for recovery from traumatic brain injury
(TBI) and stroke, and became the first reported gene associated
with enhanced recovery in human stroke (Joy et al., 2019).
However, the mechanism by which CCR5 acts as a therapeutic
target to promote neurorehabilitation after stroke has rarely
been systematically reported. We have consequently reviewed the
current knowledge of CCR5 distribution and function, as well as
its mechanism and research development, as a target for ischemic
stroke rehabilitation.

C–C CHEMOKINE RECEPTOR 5 IN THE
BODY: DISTRIBUTION AND FUNCTIONS

C–C Chemokine Receptor 5 Expression
and Localization
Chemokine receptors are critical for immune cell recruitment
and development and play important roles in a wide range of
inflammatory responses, both protective and destructive. CCR5

Abbreviations: AC, adenylyl cyclase; AD, Alzheimer’s disease; AMPA, α-amino-
3-hydroxy-5methyl-4-isoxazole propionic acid; BBB, blood-brain barrier; BDNF,
brain-derived neurotrophic factor; cAMP, cyclic adenosine monophosphate;
CCR5, C–C chemokine receptor 5; CNS, central nervous system; CREB, cAMP-
response-element binding protein; DAG, diacylglycerol; DC, dendritic cells;
DLK, dual-leucine zipper kinase; ERK1/2, extracellular signal-regulated kinase;
GABA, gamma-aminobutyric acid; GPCR, G protein-coupled receptor; HIV,
human immunodeficiency virus; ICAM-1, intercellular adhesion molecule-1; IP3,
inositol 1,4,5-trisphosphate; JAK2, Janus kinases; JNK, C-Jun N-terminal kinases;
LPS, lipopolysaccharide; MAP, mitogen-activated protein; MAPK, mitogen-
activated protein kinase; MMPs, matrix metalloproteinases; NMDAR-1, N-Methyl
D-Aspartate Receptor 1; NK, natural killer cell; pCREB, phosphorylated cAMP-
response-element binding protein; PIP2, phosphatidylinositol 4,5-bisphosphate;
PMCA, plasma membrane Ca2+-ATPase; PI-3K, phosphatidylinositol 3-kinases;
PKB, protein kinase B; PLC, phospholipase C; PYK2, proline-rich tyrosine kinase
2; STAT, signal transducer and activator of transcription; TBI, traumatic brain
injury; VCAM-1, vascular cell adhesion molecule 1.

expression has been demonstrated in various immune cells,
including dendritic cells, NK cells, macrophages, T-lymphocytes,
and B-lymphocytes (Griffith et al., 2014; Hughes and Nibbs,
2018). In addition, microglia, astrocytes, and neurons in the CNS
also express CCR5 (Klein et al., 1999; Mennicken et al., 2002;
Westmoreland et al., 2002; Flynn et al., 2003). The presence of
CCR5 in vascular smooth muscle cells and capillary endothelial
cells has also been reported, but its function is still poorly defined
(Rottman et al., 1997; Murphy et al., 2000; Jones et al., 2011).
Table 1 shows the expression of CCR5 gene in cells.

Signaling Pathways in C–C Chemokine
Receptor 5 Functions
C–C chemokine receptor 5 belongs to the GPCR family and,
contains multiple ligands, including CCL3, CCL4, and CCL5.
Other inflammatory chemokines that act as CCR5 agonists
include CCL8, CCL3L1, and CCL11 (Zlotnik and Yoshie, 2012;
Bredesen, 2014; Brelot and Chakrabarti, 2018). Binding of ligands
to CCR5 leads to the dissociation of the G protein heterotrimer
into α and βγ subunits, and the α subunits include two types:
Gαq and Gαi (Figure 1). When Gαq is activated, PLC, which splits
PIP2 into IP3 and DAG, is activated. Calcium levels are raised by
IP3, which triggers PKC with DAG. The release of intracellular
Ca2+ activates the mitogen-activated protein (MAP) kinases
ERK1/2 (extracellular signal-regulated kinase), p38, and JNK,
which paly essential roles in cell migration and immune response,
as well as proline-rich tyrosine kinase 2, which is important for
cell motility (Dairaghi et al., 1998; Ganju et al., 1998; Del Corno
et al., 2001; Kraft et al., 2001; Missé et al., 2001; Wong et al.,
2001; Brelot and Chakrabarti, 2018). In addition, the Gαi pathway
inhibits adenylyl cyclase, resulting in decreased cAMP and
pCREB levels. As a result, plasticity-related protein transcription
and synaptic plasticity are reduced, leading to poorer learning
and memory function, as well as a worsened recovery from
neuronal damage. Neuronal plasticity and memory problems
have been linked to stroke, Huntington’s disease, Alzheimer’s
disease, and other neurocognitive disorders (Zhou et al., 2009;
Sano et al., 2014; Lorenzen et al., 2018). Rho GTPase and protein
kinase B (PKB/Akt) are stimulated when βγ subunits activate
PI-3K. The former is associated with cell survival, whereas the
latter regulates cell adhesion and motility (Burgering and Coffer,
1995; Neptune and Bourne, 1997; Downward, 2004; Oppermann,
2004). CCR5 activation also results in phosphorylation of Janus
kinases (JAK2) and subsequent activation of the JAK/STAT
pathway, which is unaffected by Gαq or Gαi (Mueller and Strange,
2004). CCR5 is involved in a variety of cellular biological changes
through complex signaling processes, including cell migration,
adhesion, survival, and neuronal plasticity.

Physiological Function of C–C
Chemokine Receptor 5
Functions of C–C Chemokine Receptor 5 in Immune
System
C–C Chemokine Receptor 5 Induces Immune Cell Migration
Leukocyte motility plays a critical role in inflammatory responses,
as it is essential to rapidly recruit innate immune cells to
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TABLE 1 | Expression of CCR5 genes in cells.

System Cell type Species Author and year

The cardio-vascular system Vascular endothelial cells (coronary endothelia, brain
endothelia)

Human Berger et al., 1999

Vascular smooth muscle cells (aorta, coronary artery and
saphenous vein)

Human, Macaques Rottman et al., 1997

The central nervous system Neurons (CA1–4 pyramidal hippocampal, dentate gyrus,
cortical white matter, brain stem neurons)

Human, Macaques Westmoreland et al., 2002

Astrocytes Human Flynn et al., 2003

Microglia

The immune system Innate lymphocytes Human Hughes and Nibbs, 2018

Innate lymphoid

Natural killer cells

Myeloid cells

Mactophages (spleen, lung, body cavity, intestine, liver)
classical/non-classical monocytes (bone marrow, blood)

Dendritic cells (DCs)

Skin DCs/Langerhans cells

DCs (thymus, spleen, lymph node, skin, lung)

DC precursors

B/T-lymphocytes

Natural killer T cells

Marginal Zone B cells

B cell precursors (bone marrow)

Memory CD4+/CD8+ T cells

Activated CD8+ T cells

B1 cells

γσ T cells (thymus, periphery)

FIGURE 1 | CCR5 receptor signaling pathways. When the amino terminus of CCR5 binds to its ligand, its following signaling pathway is mainly controlled by Gαq,
Gαi , and βγ subunits. The Gαi pathway results in the release of intracellular Ca2+ and decreased learning and memory function, as well as worsened recovery from
neuronal damage by reduced cAMP and pCREB. Activation of Gαq results in cell migration and cytokine expression in immune response. And the βγ subunits leads
to cell survival, adhesion and motility through multiple following signaling pathways such as AKT/PKB and Rho GTPase. AC, adenylyl cyclase; AD, Alzheimer’s
disease; AKT/PKB, protein kinase B; cAMP, cyclic adenosine monophosphate; CCR5, C–C chemokine receptor 5; CREB, cAMP-response-element binding protein;
DAG, diacylglycerol; HAND, HIV-related neurocognitive disorders; IP3, inositol 1,4,5-trisphosphate; JNK, C-Jun N-terminal kinases; MS, multiple sclerosis; pCREB,
phosphorylated cAMP-response-element binding protein; PKB/Akt, protein kinase B; PKC, protein kinase C; PLC, phospholipase C.
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kill pathogens, prevent the spread of microorganisms, trigger
inflammation, and repair damage. The classical function of
chemokines is to regulate inflammation and drive immune
cells through the blood and lymphatic vessels, directing their
migration and localization by forming soluble concentration
gradients in an autocrine or paracrine manner (Hughes and
Nibbs, 2018; Lau et al., 2020). In some contexts, chemokines are
also selectively recruited to the cell surface by glycosaminoglycans
polysaccharides present within extracellular matrices and at
the cell surface which can form fixed concentration gradients
and fine-tune the immune response (Paul and Candelario-Jalil,
2021). In NK cells and mast cell precursors, CCR5 binds to
locally generated chemokines and inflammatory mediators and
causes these innate immune cells to cross the endothelium
into peripheral tissues during acute inflammation. Chemokines
can regulate immunological responses by guiding regulatory T
cell (Treg) migration, and CCR5 may influence the antibody
response in the lymph nodes by enhancing the contact of
Tregs with B cells and antigen presenting cells (APCs; Maurer
and von Stebut, 2004; Khan et al., 2006; Maghazachi, 2010;
Griffith et al., 2014). In addition, CCL3/CCR5 was shown to be
very effective in augmenting the adhesion of the monocytes to
intercellular adhesion molecule-1 during monocyte–endothelial
cell interactions, and CCL4/CCR5 can enhance the adhesion of
T lymphocytes to vascular cell adhesion molecule 1, which drives
immune cell migration from the blood to local tissues across the
endothelium (Menten et al., 2002).

C–C Chemokine Receptor 5 Affects Immune Cell
Differentiation
Chemokines can induce T cells to differentiate into different
subsets and mediate different types of immune responses.
Interferon production and macrophage activation are associated
with the T helper (Th)1 response; whereas antibody response, B
cell assistance, and IL-4 and IL-5 production are associated Th2
response. CCL3, CCL4, and CCL5, which are ligands of CCR5,
are chemotactic on Th1 cells, but not on Th2 cells; Th2 cells
mainly express CCR2 and CCR4 (Rossi and Zlotnik, 2000; Wong
and Fish, 2003). There was a skewed Th2 cytokine profile in mice
lacking CCR5, indicating that CCL3/CCR5 and CCL4/CCR5 can
influence the immune response by regulating the differentiation
of Th to Th1 (Andres et al., 2000; Luther and Cyster, 2001).

C–C Chemokine Receptor 5 Promotes Immune Cell
Activation
Binding of CCR5 to ligands causes the CD8+ subset of DC to
produce IL-12, which is regarded as a critical step in initiating
cell-mediated immunity against intracellular infections (Aliberti
et al., 2000). CCR5 is activated when T cells come into contact
with APCs and is induced by IL-2 into positive feedback
expression on T cells. Simultaneously, CCR5 is recruited to
the immunological synapse to reduce T cell responsiveness to
other chemotactic substances, through which the stability of
T cell-APC interactions is increased and T cell activation is
enhanced (Molon et al., 2005). When CD4+ T cells interact
with DCs, both CD4+ T cells and the DC generate CCL3 and
CCL4. At the same time, CCR5 is upregulated on naive CD8+

T cells entering the lymph node and binds to these chemokines,
promoting their migration to CD4+ T cell/DC clusters, which
finally leads to improved interactions between naive CD8+ T
cells and DCs licensed by CD4+ T helper cells and increased
quality and quantity of the CD8+ T cell memory response (Del
Corno et al., 2001; Griffith et al., 2014). Bystander T cells in
the immune system can rapidly respond and secrete cytokines
even without antigenic stimulation. CCL5/CCR5 may promote
cytokine production and proliferation of bystander T cells, which
is important for autoimmunity (Wong and Fish, 2003).

C–C Chemokine Receptor 5 Regulates Immune Cell Survival
and Apoptosis
The goal of the host’s reaction to intracellular infections is to
eliminate the infected cells as quickly as possible. In addition,
it is crucial to remove infected, apoptotic cells from the
tissue. Pathogens, activated macrophages, and residual apoptotic
cells through proinflammatory proteinases and cytokines cause
further tissue damage if the clearance process is disrupted.
CCL5-CCR5 interaction can activate MEK-ERK and PI3K-AKT
anti-apoptotic signals, which mediate cell growth and survival
(Tyner et al., 2005). CCR5 may stimulate T-cell proliferation
by triggering STATs (signal transducers and activators of
transcription) activation, as chemokine receptors can regulate
many transcription factors (López-Cotarelo et al., 2017). By
binding to and activating CCR5, CCL5 generated by melanoma
tumor cells may trigger the death of tumor-infiltrating T
lymphocytes. This process is dependent on the release of
cytochrome c into the cytoplasm, rather than on the Fas/Fas
ligand. Continued activation of CCR5 by CCL5 following T-cell
activation has been shown to cause T-cell death in other studies,
indicating that it is a chemokine-dependent late regulation
mechanism at an inflammatory site (Wong and Fish, 2003).

Functions of C–C Chemokine Receptor 5 in Central
Nervous System
Chemokines, including astrocytes, microglia, and neurons, are
expressed in the human CNS from the embryonic stage to adult
stage (Westmoreland et al., 2002). CCR5 is mainly distributed in
microglia, with lower expression levels in astrocytes and neurons,
although all are upregulated in disease states (Xia et al., 1998;
Cartier et al., 2005). Numerous experiments have demonstrated
that chemokines in the brain function beyond directing
immune cell migration, including brain development, neuronal
differentiation, neuronal communication, neuron survival, and
learning and memory capabilities, directly by affecting neurons,
or indirectly through glial cells (Song et al., 2002; Sorce et al.,
2011; Wang et al., 2016).

C–C Chemokine Receptor 5 Is Involved in Brain
Development and Neuronal Differentiation
Neural progenitor cells express CCR5 and are significantly
induced to migrate by CCL5 from activated microglia and
astrocytes during human brain development; this migration can
be suppressed by antibodies against CCR5 (Park et al., 2009).
Mutant CCR5 mice showed fewer and later differentiation of
neuronal cells with instant motor deficits, and lacked nociceptive
responses, this supports the idea that CCR5 participates in the
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development of the CNS by inducing neural progenitor cells
to migrate to their target destination and promoting neuronal
differentiation (Aarum et al., 2003; Tran et al., 2007; Park
et al., 2009). CCR5 KO mice have fewer nigral dopaminergic
neurons than normal mice, suggesting that CCR5 may play
an important role in promoting maturation or development of
the nigral dopaminergic system (Park et al., 2009; Choi et al.,
2013). Furthermore, the recruitment function of CCR5 promotes
monocyte migration along the hippocampal sulcus during
brain development and facilitates microglial colonization of the
nervous system. Under normal conditions, attracting microglia
by chemokines produced by neural progenitor cells may play
an essential role in normal brain function, including nutritional
support, regulation of neuronal development, and removal of
toxic debris (Polazzi and Contestabile, 2002; Ji et al., 2004; Simard
et al., 2006; Hahn et al., 2010). Simultaneously, CCR5 ligands
from progenitors, microglia, and astrocytes can attract CCR5-
expressing dendritic cells, lymphocytes, and monocytes across
the immature blood-brain barrier (BBB) into the CNS to inspect
the newly generated cells (Cowell et al., 2006; Whitney et al.,
2009). CCR5 activation can regulate many transcription factors
including cAMP-response-element binding protein (CREB),
which participates in a variety of cellular activities and plays
an essential role in the CNS, such as neuronal development,
neuroprotection, and disease processes (Finkbeiner, 2000; Lonze
and Ginty, 2002; Kuipers et al., 2008). These findings may
partially explain the function of CCR5 in brain development
and neuronal differentiation; however, the implications of these
findings remain unclear.

C–C Chemokine Receptor 5 Affects Signaling Between
Neuronal Cells
By sensing chemokines in the blood generated by immune
cells, area postrema (AP)/nucleus tractus solitarius neurons
in the CNS may deliver signals from the active immune
system to the CNS. Through voltage-dependent Ca2+ channels,
chemokine receptors can reduce Ca2+ influx so that Ca2+-
dependent K+ currents might be inhibited, thereby regulating
neuronal excitability and neurotransmitter release (Oh et al.,
2002). However, the activation of presynaptic chemokine
receptors on hippocampal neurons can regulate the release
of glutamate at these synapses and reduce the frequency by
voltage-dependent Ca2+ channels; this may produce presynaptic
inhibition (Meucci et al., 1998). The current study shows that
because of PLC/IP3-induced Ca2+ mobilization following G
protein activation, CCL5/CCR5 plays a dual role in glutamate
transmission: the chemokine inhibits the depolarization-evoked
glutamate release, but potentiates the basal release of glutamate
(Musante et al., 2008).

C–C Chemokine Receptor 5 Regulates Neuronal Survival and
Apoptosis
C–C chemokine receptor 5 regulates a variety of transcription
factors involved in cell survival such as STAT and CREB.
Furthermore, because CCR5 mediates crosstalk between glia
and neurons, it is critical for neuronal survival in both normal
and pathological situations (Choi et al., 2013). Various stimuli

may induce the expression of CCR5, such as proinflammatory
cytokines TNF-α and INF-γ, lipopolysaccharide (LPS), and
hypoxic-ischemic brain injury; these can lead to neuronal death
through the release of excitatory amino acids and reactive
oxygen species (Hagberg and Mallard, 2005; Kaul et al., 2005;
Cowell et al., 2006). During brain aging and neurodegeneration,
the function of plasma membrane Ca2+-ATPase gradually
declines, and a large amount of cytosolic Ca2+ released via
the CCL5/CCR5 and PLC/IP3 pathways cannot be effectively
removed. Inflammatory CCL5 activity and long-lasting Ca2+

dyshomeostasis can lead to neuronal apoptosis (Radzik et al.,
2019). In addition, chemokines regulate the production of matrix
metalloproteinases (MMPs), suggesting that they may contribute
to MMP activity-mediated neuronal cell survival and death
(Rostène et al., 2007).

C–C Chemokine Receptor 5 Inhibits Learning and Memory
Processes
As a strong inhibitor of hippocampal and cortical plasticity,
CCR5 affects the MAPK/CREB signaling pathway to influence
learning and memory. During learning, MAPK and CREB
levels are enhanced after CCR5 antagonist use, region-specific
viral knockdown, or CCR5 knockout, whereas transgenic
mice that overexpress CCR5 in excitatory neurons display
learning and memory deficits (Zhou et al., 2016; Merino
et al., 2020). The transcription factor CREB in neurons
promotes long-term potentiation and enhances synaptic
plasticity. Simultaneously, neurons with higher CREB levels
are more excitable; consequently, they are more likely to
be recruited to participate in the process of learning and
memory (Zhou et al., 2009). N-methyl D-aspartate receptor
1 (NMDAR-1) plays an important role in social recognition
behavior, as demonstrated by the impaired social recognition
of mice with inactive NMDAR-1 receptors. The expression
of NMDAR-1 is higher in the brains of CCR5−/− mice than
in those of WT mice; additionally CCR5−/− mice show a
significant improvement in social identification (Kalkonde
et al., 2011). Dendritic spine turnover and spine clustering
associated with learning and memory depend on NMDAR.
In mammals, higher pre-learning spine turnover rates are
closely linked to increased levels of learning and memory,
which occur during important developmental periods as well
as maturity. After CCR5 knockout, increased dendritic spine
turnover rates may allow neurons to explore this space more
frequently, enhancing connections with appropriate presynaptic
neurons and consolidating new synapses through clustering
during learning (Frank et al., 2018). CCR5 activation can
lead to impaired AMPA-dependent synaptic transmission
and significantly reduced excitatory postsynaptic potential,
thereby impairing long-term memory and cognitive deficits
(Marciniak et al., 2015).

Additionally, astrocytes involved in learning and memory
processes can secrete chemokines to mediate synaptic
transmission and plasticity after binding to CCR5 via various
mechanisms; these including prevention of extrasynaptic
neurotransmitter diffusion and removal to modulate synaptic
release (De Pitta et al., 2016; Necula et al., 2021).
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C–C Chemokine Receptor 5 Mediates Neuroinflammation
C–C chemokine receptor 5 participates in the inflammatory
response in the CNS not only by mediating immune cell
migration but also by affecting the permeability of the BBB
and activating microglia (Necula et al., 2021). DCs can
acquire essential maturation signals from invading T cells when
inflammation occurs around CNS blood arteries. They then
operate locally to boost immunological responses or trigger
additional waves of autoreactive T cells after traveling to draining
lymph nodes (Ambrosini et al., 2005). In the early stages of
inflammation, the chemokine CCL5 released from endothelial
cells induces resident brain microglia expressing CCR5 to migrate
to cerebral vessels, causing microglial cells to infiltrate through
the neurovascular unit and express CLDN5. Thus brain microglia
initially contact endothelial cells and develop tight junctions to
maintain the integrity of BBB. However, prolonged inflammation
may cause brain microglia to evolve into a phagocytic phenotype
that includes morphological alterations, astrocytic fragment
engulfment, and leakage across the BBB. Therefore, CCR5-
positive microglia play a dual role in inflammation-induced
BBB permeability (Haruwaka et al., 2019). The migration of
CCL5-driven peripheral blood mononuclear cells across the BBB
is dependent on ligand interactions with CCR1 and CCR5:
CCR1 is involved in the arrest, while CCR5 is involved in
spreading. These interactions can directly affect the development
of certain neuroinflammatory diseases (Ubogu et al., 2006). At
the same time, CCR5 activation and Ca2+ increase can affect
gene expression and microglia activation, which can promote
microglial cell activation and proliferation. Therapeutic targeting
of CCR5 may decrease BBB leakage, increase neurogenesis
stimulated by the excitotoxin kainic acid (KA), and promote
migration of bone marrow-derived cells to the brain to become
neurons, thereby promoting the repair of nervous system damage
(Louboutin and Strayer, 2013).

C–C Chemokine Receptor 5 Mediates the Interaction
Between Neurons and Glial Cells
UsingCCR5 and its ligands, bidirectional interactions between
neurons and between neurons and glial cells play a critical
role in maintaining normal neuronal activity (Choi et al.,
2013). The CCR5/CREB pathway affects plasticity in neurons
in a unique way, whereas CCR5 activation in glial cells is
intimately linked to elevated Ca2+ (Louboutin and Strayer, 2013).
Microglia can communicate with immune cells and neurons
through a variety of signaling pathways. Microglial cells undergo
a complex, multistage activation process, when evidence of
brain lesions or nervous system dysfunction is detected, which
allows them to migrate to the injury site, phagocytose cells,
proliferate, and lead to protective or neurotoxic effects by
releasing active substances (Gebicke-Haerter, 2001; Streit, 2002).
CCR5 participates in the migration and activation of microglia
through Ca2+ signaling, which may damage vascular epithelial
cells and neurons (Shideman et al., 2006). Furthermore, a GPCR
screen showed the role of CCR5 in microglial neurotoxicity
suppression; it is activated by RANTES, as a signal mediator
between microglia and neurons, and decreases the expression
of toxic iNOS and inflammatory cytokines (Gamo et al., 2008).

Beyond being a component of the immune response, microglia
also can rebuild dendritic spines and synaptic adhesion and
transmission after CCR5-mediated migration to ligand-directed
chemotactic gradients, which leads to network-level effects
(Ekdahl, 2012; Louboutin and Strayer, 2013; Posfai et al., 2019).
Astrocytes also respond to a variety of stimuli via CCR5 mediated
calcium signals, supporting and modulating particular neuronal
networks in different ways after activation by ligands (Ben Haim
and Rowitch, 2017). Additionally, astrocytes, which are involved
in learning and memory processes, can secrete chemokines to
mediate synaptic transmission and plasticity after binding to
CCR5 via various mechanisms; these include the prevention
of extrasynaptic neurotransmitter diffusion and removal to
modulate synaptic release (De Pitta et al., 2016; Adamsky et al.,
2018; Allen and Lyons, 2018).

C–C CHEMOKINE RECEPTOR 5 AND
STROKE

Effects of C–C Chemokine Receptor 5
Inhibition on Neurological Rehabilitation
After Stroke
After a stroke, multiple biochemical and molecular mechanisms
can cause brain damage. The activation and interaction of
different signaling pathways following ischemia have different
effects on the final extent of the infarct. Inducible upregulation
of CCR5 and its ligands after stroke is particularly pronounced
in neurons. There are many relevant studies on the effect
of CCR5 inhibition after stroke, but owing to the redundant
manner in which chemokine families act, complex cellular and
molecular changes after stroke, and differences in experimental
methods and genetic backgrounds, the results of these studies
vary to some extent. In conclusion, mice knocked out for the
CCR5 gene showed increased neuronal apoptosis and increased
infarct size in histological analysis within 1 week after cerebral
ischemia. These results may be explained by the increased
expression of CCR2 caused by the loss of CCR5, which activates
inflammatory response and increases neuronal degeneration
and apoptosis (Zhou et al., 2009; Sorce et al., 2010). CCR5
activation is also required for adoptively the adoptive transfer of
Tregs to the ischemia-damaged endothelium. Tregs can prevent
proteolytic damage to the BBB by inhibiting the production
of matrix metallopeptidase 9. Therefore, CCR5 deficiency may
contribute to BBB damage and increased inflammation after
stroke (Li et al., 2017). However, it is clear that CCR5 has
important effects on neurological recovery in the subacute
phase after stroke, because mice injected with shCCR5 adeno-
associated virus into the pre-motor cortex showed a significant
and sustained improvement in motor control and cognitive
function 1 week after stroke (Joy et al., 2019). This improvement
does not occur through neuronal protection, and it mechanism is
elaborated below. Furthermore, 2 months after cortical ischemia,
brain-derived CCR5 deficiency causes an increase in infarction
size, dendritic loss in the peri-infarct cortex, and less long-term
inflammatory cell accumulation. This discrepancy shows that
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the role of brain-derived CCR5 in preserving and regulating
neurostructural connections after stroke may be cell dependent
(Ping et al., 2021).

A 32-bp deletion in CCR5 causes the receptor to be non-
functional. Furthermore, the homozygous CCR5 delta32 deletion
confers inherent resistance to HIV infection, which is found
in approxiamately 1% of Caucasians (Hutter et al., 2009). The
CCR5-132 mutation is the first report of a human genetic
variable linked to enhanced stroke recovery. Patients with loss-of-
function CCR5 were found to have enhanced stroke recovery on
multiple measures of motor, cognitive, and sensory function in a
large patient cohort, which included verbal functioning, memory,
and attention (Ben Assayag et al., 2012). Post-stroke depression is
a common neuropsychiatric comorbidity, it may negatively affect
outcomes by increasing the rates of disability and mortality (Wu
et al., 2018). A clinical study showed that, compared with non-
carriers, depressive symptoms tend to improve over time after
stroke in CCR5-132 carriers, which provides further evidence
that inhibition of CCR5 function is a protective factor for
neurorehabilitation after stroke (Tene et al., 2021).

Changes of Cell Biology After C–C
Chemokine Receptor 5 Inhibition
Inflammatory Response in Central Nervous System Is
Reduced
In addition to adhesion molecules and inflammatory cytokines,
chemokines and their receptors play critical roles in the
accumulation of leukocytes around the infarct tissues (Feuerstein
et al., 1998). Local and peripheral immune cells, including
astrocytes, microglia, neutrophils, macrophages, and monocytes,
are recruited after a stroke (Iadecola and Anrather, 2011; Chen
et al., 2020). Inhibition of CCR5 expression in premotor cortical
neurons after stroke can modulate astrogliosis, reduce astrocyte
reactivity, and dampen macrophage recruitment; this inhibition
as an intervention can help create a conducive environment for
neural repair (Adelson et al., 2012; Barreto et al., 2012; Liraz-
Zaltsman et al., 2021). CCR5 inhibition of premotor cortical
neurons has no significant effect on microglia responsiveness, but
2 months after ischemia, mice with complete CCR5 deletion in
the brain have fewer long-term inflammatory cells, such as Iba1+
cell infiltration around the peri-infarct tissues (Sorce et al., 2010;
Ping et al., 2021).

Neuronal Excitability Is Increased
Neuronal excitability and plasticity are similar mechanisms
between normal memory formation and recovery after stroke,
which can strengthen the connections underlying memory
formation and restore lost motor function after stroke. CCR5
inhibition increases neuronal CREB and pCREB expression after
stroke, thereby enhancing cellular excitability (Kandel, 2012;
Joy et al., 2019). After stroke, there were four separate time
epochs: hyperacute, acute, subacute, and chronic (Bernhardt
et al., 2017). In the hyperacute phase of stroke, extensive cell death
occurs, followed by an acute phase of delayed neuronal apoptosis
1 week later, during which increased neuronal excitability can
exacerbate brain damage due to enhanced excitotoxic signaling
pathways (Joy and Carmichael, 2021). The subacute period

of stroke lasts approximately a month in rodents and up to
3 months in humans, and increased neuronal excitability during
this phase can promote motor recovery (Cheng et al., 2014),
which partly explains the differential effect on brain injury
after CCR5 inhibition. Furthermore, activation of CCR5 affects
glutamate release and may affect neuronal signaling through
AMPA receptors. Although there are no clear related studies,
inhibition of CCR5 may alter neuronal excitability by modulating
excitatory neurotransmitters and signaling (Musante et al., 2008;
Marciniak et al., 2015). Similar to CCR5, the AMPA receptor is
important in the pathophysiology of stroke, but is functionally
contradictory. Binding of glutamate to AMPA receptors results in
cation influx, depolarization, and the expression of downstream
genes, such as brain-derived neurotrophic factor (BDNF). Early
potentiation of AMPAR signaling exacerbates stroke damage,
while delayed enhancement of the same system may enhance
functional recovery (Jourdi et al., 2009; Clarkson et al., 2011).
Because both initial cell death and delayed restorations of
function are caused by excitatory pathways in neurons, CCR5-
targeted treatment must be administered at specified time
intervals after the beginning of the stroke.

Neuronal Plasticity Is Increased
In the subacute phase of stroke, the brain is in a plastic state called
the sensitive period in stroke recovery, similar to the critical
period of enhanced plasticity during development (Carmichael,
2016; Zeiler et al., 2016). Increased plasticity during this period
leads to axonal sprouting, dendritic spine morphogenesis, and the
remapping of movement representations, which are extremely
important for the recovery of adult brain injury (Li et al.,
2010; Cirillo et al., 2020). During the sensitive period of
stroke recovery and learning and memory, common mechanisms
include neuronal distribution, competitiveness controlled by
the excitability state, morphogenesis of dendritic spine in
engram generation, and compensation for disrupted engrams.
After CCR5 inhibition in cortical neurons, enhanced CREB
signaling increases neuronal excitability. Furthermore, neurons
with higher excitability are more likely to synergize with other
neurons after the arrival of a stimulus, forming an engram that
will be stored (Yiu et al., 2014). Specifically, because of increased
CREB function, neurons with CCR5 knockdown are specifically
incorporated into the same motor circuit. CCR5 knockdown
induces upregulation of CREB and downstream proteins, such
as dual-leucine zipper kinase proteins, in the premotor cortex,
which may help preserve the dendritic spine in the early stages
of stroke, induce axonal sprouting in the contralateral cortex,
improve remapping of damaged sensory and injured motor
circuits, and stimulate the creation of new links in these circuits
(Joy et al., 2019). Furthermore, CREB induction can also adaptive
or compensatory if nearby areas of the brain are injured because
of the compensation of memory engrams for brain regions that
are dysfunctional or inactivated (Caracciolo et al., 2018). In
addition, CCR5 may indirectly affect the plasticity of the CNS
after stroke by affecting the reactivity of astrocytes. Activated
astrocytes can form glial scars after ischemic injury, which
sequesters the injury site and protects cells against the release
of harmful substances during the acute phase (Liu and Chopp,
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2016). However, persistent glial scars hinder axonal regeneration
and inhibit neural plasticity (Pekny et al., 2016). Thus, decreased
astrocyte reactivity after CCR5 inhibition may be beneficial to
functional outcomes.

Clinical Significance of Targeting C–C
Chemokine Receptor 5 After Ischemic
Stroke
Additionally, treatment with Maraviroc (Pfizer, New York,
United States), a CCR5 antagonist approved by the FDA,
improves motor recovery in rodent models of stroke and TBI
by enhancing tissue preservation in the brain, attenuating
inflammatory responses, and upregulating the levels of
cognition-related signaling molecules to promote neural
plasticity (Villanueva, 2019; Friedman-Levi et al., 2021).
However, using antagonists to inhibit the function of CCR5
requires improved consideration of its potential negative effects.
In other studies, CCR5-deficient mice showed increased damage
after stroke, which is mainly related to differences in animal
models and time of intervention (Sorce et al., 2010). Knockout
of the CCR5 gene, compared with using Maraviroc and other
antagonists, or small interfering RNA, may cause dramatic effects
on cell signaling pathways and lead to a worse prognosis, while
reducing CCR5 expression in specific cell types may be more
beneficial for neurorehabilitation (Joy et al., 2019; Ping et al.,
2021). Furthermore, the enhancement of neuronal excitability
after inhibition of CCR5 increases neuronal death in the acute
phase; therefore, CCR5-targeted treatment at a specified time
in the late subacute phase may be more beneficial for ischemic
stroke (Clarkson et al., 2011; Joy and Carmichael, 2021).
Although it plays multiple roles represented by immunology
in the CNS, inhibition of CCR5 during pathological injury
does not reduce immune microglial migration, which notes
the loss of CCR5 may be compensated by increased expression
of CCR3 and CCR2 (Bauss et al., 2021). Therefore, due to the
complexity and interactions of the chemokine receptor family,
the benefits of CCR5-targeted therapy after stroke require
further investigation and confirmation. Maraviroc is currently
being tested in clinical trials for stroke recovery (NCT03172026;
Medicine, 2019).

In addition to promoting neurorehabilitation, recent studies
have suggested other clinical implications of CCR5 in the
context of stroke, including identification of stroke type and
prognosis. Transient ischemic attack and ischemic stroke
together constitute ischemic cerebrovascular disease, which
has four subtypes: cardioembolism, large artery atherosclerosis,
cryptogenic disease, and small artery occlusion. A study showed
that in cardioembolism but not in other subtypes, the 132 allele
frequency was lower, which suggests that CCR5 132 plays a
protective role in the cardioembolism, and 132 polymorphism
helps identify stroke type (Kostulas et al., 2009). CCR5+ Tregs
combined with Tregs may function as biomarkers for predicting
the prognosis of ischemic stroke. CCR5 chemotactic Tregs
can reduce inflammation after stroke and protect the BBB.
Higher expression of Tregs often appears in severe stroke
patients and large infarction groups, and high expression of

CCR5+ Tregs may indicate mild stroke and smaller infarct area
(Zhang et al., 2020).

C–C CHEMOKINE RECEPTOR 5 AND
OTHER DISEASES

C–C chemokine receptor 5 is involved in the pathophysiological
process of a wide range of human diseases through its complex
signaling pathways, ranging from infectious diseases, tumors to
various neurological diseases, and its mechanism in different
diseases may also provide clues for targeted rehabilitation therapy
after stroke. Table 2 summaries CCR5’s different roles in CNS
during normal and disordered conditions.

C–C Chemokine Receptor 5 and
Infectious Diseases
C–C chemokine receptor 5 plays an important role in the
immune processes of various infectious diseases, such as
pathogen removal and inflammatory response regulation. These
effects can limit the development of infectious diseases and
maintain the stability of the body’s internal environment but
can also cause pathological damage under certain conditions.
Multiple studies on CCR5 and HIV were published in
1996, identifying CCR5 as an essential co-receptor for HIV
entrance. After the envelope glycoprotein attaches to CCR5,
the envelope is embedded in the host cell membrane (Alkhatib
et al., 1996; Kwong et al., 1998). Neuronal damage caused
by HIV infection leads about half of the infected people to
acquire HIV-related neurocognitive disorders (Ru and Tang,
2017). Microglial activation and subsequent neuronal injury
are prevented by the genetic deletion of CCR5, which in a
transgenic model also rescues spatial learning and memory.
Cognitive performance is also improved in chronic HIV
patients after dual CCR2 and CCR5 antagonism (Maung et al.,
2014; D’Antoni et al., 2018). CCR5 is crucial in West Nile
virus (WNV) infection as an antiviral and survival factor,
as evidenced by the enhanced leukocyte accumulation in the
CNS and increased survival of up to 60% after splenocytes
from WNV-infected WT mice were transferred into WNV-
infected CCR5−/− mice (Glass et al., 2005). Endothelial
cells of the cerebral microvasculature produce CCL3, CCL4,
and CCL5 after cerebral malaria infection, which could
attract CCR5-positive leukocytes toward the brain, where
they would eliminate parasites. Nevertheless, brain-recruited
effector CD8+ T cells destroy ECs, causing the BBB to break
(Belnoue et al., 2003).

C–C Chemokine Receptor 5 and Cancers
C–C chemokine receptor 5 has anti-cancer and pro-cancer
effects. Anti-cancer properties include recruitment of tumor-
infiltrating lymphocytes and destruction of cancer cells. In
contrast, chemokines exhibit pro-cancer properties by promoting
angiogenesis and lymphangiogenesis, as well as enhancing
cancer cell migration, invasion, and proliferation and recruiting
cells that promote tumor development (Korbecki et al., 2020).
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TABLE 2 | Various roles of CCR5 in the CNS during healthy and diseased states.

Condition Cell type Role of CCR5 in CNS References

Normal Neural progenitor cells Induces neural progenitor cells to migrate and
promotes neuronal differentiation

Ji et al., 2004; Park et al., 2009

Neuron Promotes neuronal growth and differentiation
during embryonic development

Bolin et al., 1998; Park et al., 2009

Modulates neuronal excitability and
neurotransmitter release

Oh et al., 2002; Musante et al., 2008

Regulates neuronal survival or apoptosis Choi et al., 2013; Radzik et al., 2019

Inhibits hippocampus and cortical plasticity,
impairs learning and memory processes

Zhou et al., 2016; Necula et al., 2021

Microglia Mediates microglia migration and colonization,
which may provide nutritional support,
regulation of neuronal development, and
removal of toxic debris

Polazzi and Contestabile, 2002; Cowell et al.,
2006

Astrocytes Regulates the proliferation, survival and
differentiation of astrocyte progenitors during
embryonic development

Bakhiet et al., 2001; Cartier et al., 2005; Necula
et al., 2021

Ischemic stroke Neuron Inhibits neuronal plasticity and recovery Joy et al., 2019; Joy and Carmichael, 2021

Astrocytes Promotes astrocytes proliferation and activation Liraz-Zaltsman et al., 2021

Monocytes Recruites monocytes and modulates the
immune response

Cartier et al., 2005

Treg cells Mediates the docking of transferred Tregs to
relieve neutrophil accumulation and protect
BBB

Sorce et al., 2010; Li et al., 2017

Neutrophils Induces neutrophils migration toward the
injured area and leads to deteriorated brain
injury

Chen et al., 2020

Intracerebral hemorrhage Neuron Mediates neurological deficits and neuronal
pyroptosis via CCR5/PKA/CREB pathway

Yan et al., 2021

Neuroinflammation Microglia Induces microglia proliferation and activation Louboutin and Strayer, 2013

Monocytes Mediates monocyte migration and affects the
leakage of BBB

Ubogu et al., 2006; Louboutin et al., 2011

Infectious disease

West Nile virus infection Monocytes, Macrophages,
NK cells, and T
lymphocytes

Regulates trafficking of leukocytes to CNS to
contain and clear the virus

Glass et al., 2005

Mouse Hepatitis Virus
intracranial infection

Macrophages Mediates macrophage trafficking into CNS and
leads to demyelination

Glass et al., 2001

HIV-Associated
Neurocognitive Disease
(HAND)

CD4+ T lymphocytes Mediates HIV-1 entry into CD4+ cells as a
fusion cofactor

Kwong et al., 1998

Microglia Promotes microglial activation and neuronal
damage, thereby improved cognition

Maung et al., 2014; D’Antoni et al., 2018

Monocytes Recruits HIV-infected monocytes to CNS and
leads to intracranial infection and inflammation.

Hahn et al., 2010

Cerebral malaria CD8+ T lymphocytes Regulates trafficking of CD8+ T lymphocytes to
destroy brain endothelial cells and BBB

Belnoue et al., 2003

Cancer

Primary central nervous
system lymphomas

Malignant B lymphocytes Induces B lymphocytes homing to the brain
and spreading within CNS

Brunn et al., 2007

Glioblastoma Glioma-associated
microglia/macrophages
(GAMs)

Induces glioma invasive process Yu-Ju Wu et al., 2020

Regulates M1/M2 microglia phenotype Laudati et al., 2017

Treg cells, Monocyte Recruits immunosuppressive cells to induce
immune tolerance

Jiao et al., 2019

Tumor cell Promotes tumor cell proliferation and migration Aldinucci and Colombatti, 2014

Pathological pain Neuron Activates neuron ERK to create and maintain
pathological pain

Piotrowska et al., 2016; Hang et al., 2017; Lu
et al., 2017

Reduces the antinociceptive action of opioid
receptor agonists

Szabo et al., 2002; Chen et al., 2007

(Continued)
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TABLE 2 | (Continued)

Condition Cell type Role of CCR5 in CNS References

Multiple sclerosis (MS) T lymphocytes Regulates trafficking of inflammatory T cells into
CNS to induce self-destructive inflammatory
process

Zang et al., 2000; Menten et al., 2002; Schlager
et al., 2016

Neurodegenerative
disease

Alzheimer’s disease (AD) Microglia, Astrocytes Recruits and activates astrocytes and microglia
to affect amyloid deposition and memory
function with CCR2

Cartier et al., 2005; Lee et al., 2009; Goldeck
et al., 2013

Parkinson’s disease (PD) neuron Promotes maturation of nigral dopaminergic
neurons

Choi et al., 2013

CCR5 plays a role in tumor development or progression
in multiple myeloma, classical Hodgkin lymphoma, prostate,
breast, gastric, colon, and ovarian cancer, glioblastoma, and
melanoma (Brunn et al., 2007; Yu-Ju Wu et al., 2020).
Notably, CCR5 promotes tumor cell proliferation mechanisms,
including the Jak-STAT or the MAPK/ERK signaling pathway
leading to upregulation of cyclin expression and the PI-
3K pathway resulting in the proliferation of progenitor
and stem cells when the serine/threonine kinase protein
kinase B (AKT) and PDK1 increase. Furthermore, via Akt
phosphorylation, which stimulates the uptake of glucose,
glutamine metabolism, fatty acid synthesis and the pentose
phosphate pathway, CCR5 enables tumor cells to utilize glucose
and catabolites more efficiently (Aldinucci and Colombatti,
2014; Jiao et al., 2019). CCR5 induces the expression and
activity of DNA repair genes, resulting in aberrant cell survival
and resistance to agents that cause DNA damage. The CCR5
antagonists Maraviroc and Vicriviroc dramatically enhance
cell destruction mediated by DNA-damaging chemotherapeutic
agents (Jiao et al., 2018).

C–C Chemokine Receptor 5 and Pain
Spinal CCR5 is involved in the development and maintenance of
pathological pain, including visceral hyperalgesia, cancer-
induced bone pain, and neuropathic pain induced by
spinal nerve injury. A novel medication for pathological
pain that targets the CCL8/CCR5/ERK pathway in the
spinal cord can be developed (Piotrowska et al., 2016;
Hang et al., 2017; Lu et al., 2017). Activation of CCR5
in the brain significantly reduce the antinociceptive
action of opioid receptor agonists, which is based on
heterologous desensitization of µ-opioid receptors. These
results shed light on the treatment of hyperalgesia related
to inflammatory reactions and also suggest that the
chemokine system, joins neurotransmitters and neuropeptides
(Szabo et al., 2002).

C–C Chemokine Receptor 5 and Other
Central Nervous System Diseases
Alzheimer’s disease (AD) is a neurodegenerative disease that is
characterized by a neuroinflammatory component. CCR5 and
its ligands are overexpressed in both the periphery and brain of
AD patients, which activates astrocytes and microglia, leading

to amyloid deposits and memory dysfunction. However, some
studies have also shown that CCR5 deletion can lead to worsening
of AD, which may be due to a compensatory increase in CCR2
(Cartier et al., 2005; Goldeck et al., 2013). The autoimmune
disease multiple sclerosis (MS) is a CNS disease with chronic
inflammation caused by T cells. T cells from patients with MS
had a considerably higher migratory rate than healthy cells
that selectively migrated toward CCL3. In addition, CCR5 is
involved in myelin degradation and, hence, plays a crucial role
in the progression of MS (Zang et al., 2000; Janssen et al.,
2016).

This review focuses on the research progress of CCR5 in
ischemic stroke, but there are numerous functions of CCR5
in stroke and other diseases in CNS waiting for exploration.
A recent study found CCR5 activation after intracerebral
hemorrhage, partially through the CCR5/PKA/CREB/NLRP1
(nucleotide-binding domain leucine-rich repeat pyrin domain
containing 1) signaling pathway, promoted neuronal pyroptosis,
and neurological deficits (Yan et al., 2021).

CONCLUSION

The broader biological role of CCR5 has been confirmed as
scientific research progresses. CCR5 was once thought to be
involved exclusively in immune responses, such as leukocyte
migration and pathogen clearance, but new data have revealed
that it also modulates cell signaling and neural plasticity, which
play a role in the control of learning and memory. The
therapeutic effect of promoting cerebral reperfusion after stroke
is strictly limited by the therapeutic time window, and limited
recovery after acute brain injury leads to the prevalence of
disability after stroke; therefore, neurorehabilitative therapies
have broad therapeutic prospects. Numerous molecular, cellular,
and behavioral studies have been conducted on neural recovery
after brain injury, and recent studies have demonstrated
that the function of CCR5 signaling is essential in human
stroke recovery. CCR5 activation reduces neuroplasticity and
inhibits the recovery process after stroke through CREB/MAPK
inactivation, impaired axonal regeneration, and decreased
synaptic plasticity, whereas inhibition of CCR5 function
promotes neurorehabilitation after stroke. CCR5, the first
reported gene linked to improved neurological recovery after
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stroke in humans, reopens the recovery window after stroke
(Zhou et al., 2016; Joy et al., 2019; Servick, 2019). There are
common mechanisms between memory formation and brain
repair, and the induction of neuronal plasticity provides a new
therapeutic direction for promoting the recovery of motor and
cognitive functions in patients with stroke.
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