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The process of aging strongly correlates with maladaptive architectural,

mechanical, and biochemical alterations that contribute to the decline in

cardiac function. Consequently, aging is a major risk factor for the

development of heart disease, the leading cause of death in the developed

world. In this review, we will summarize the classic and recently uncovered

pathological changes within the aged heart with an emphasis on the

mitochondria. Specifically, we describe the metabolic changes that occur in

the aging heart as well as the loss of mitochondrial fitness and function and how

these factors contribute to the decline in cardiomyocyte number. In addition,

we highlight recent pharmacological, genetic, or behavioral therapeutic

intervention advancements that may alleviate age-related cardiac decline.
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1 Introduction

Extending life expectancy while attenuating the negative effects of aging is, arguably,

the overall goal of health sciences (Sierra et al., 2009). Reducing the maladaptive effects of

aging not only lengthens survival, but also preserves bodily functions and enhances overall

fitness into the later stages of life. (Vaupel, 2010; Olshansky, 2018). Since the 19th century

we have successfully prolonged the average human lifespan to a natural maximum of

115 years, with the likelihood of individuals surviving an age greater than 125 years being

less than 1 in 10,000 (Dong et al., 2016). This increase in lifespan is due to the major

contributions of modern medical advancements which include preventative measures

such as immunizations and the administration of symptom-targeting therapies like

insulin (Ben-Haim et al., 2017). Inevitably, as the population’s life expectancy

increased nearly two-fold within the last century, systematic conditions such as

cancer and heart disease now dominates the majority of late-age mortalities

(Crimmins, 2015). Undoubtedly, understanding age-related changes that occur in the

heart over time in order to therapeutically counter their effects is crucial for preventing

heart disease.

Cardiovascular disease (CVD) includes a collection of pathological heart disorders

such as heart failure (HF), ischemia-reperfusion (I/R) injury, atherosclerosis, and

arrhythmias, which together culminate into the majority of deaths in developed
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countries (Tang X. et al., 2020). Cardiomyocyte viability is a

major contributing or initiating factor for many forms of CVD,

and mitochondrial health and function are critical to myocyte

contractility and survival. In this review, we will examine the

major findings regarding the time-dependent decline of the heart

with respect to: 1) cardiomyocyte drop-out, 2) maladaptive shifts

in major signaling pathways, 3) the contributions of reactive

oxygen species (ROS) and 4) mitochondrial dysfunction. Finally,

we will highlight the current efforts to preserve heart health and

the novel developments in medical interventions, exercise, and

diet to delay the negative consequences of cardiac aging.

2 Cardiomyocyte drop-out over time

During embryonic development, cardiac progenitor cells

from the mesoderm arise and differentiate into their

cardiomyocyte fates, which then form the cardiac tube and

continue to populate what will become the chambers of the

primitive atria and ventricles (Asp et al., 2019). Shortly after

birth, the mammalian heart loses its regenerative capacity

(Figure 1) (Foley and Mercola, 2004). Unlike the embryonic

heart, the adolescent heart loses its ability to proliferate and

instead undergoes growth due to an increase in cell size (Figure 1)

(Günthel et al., 2018). This arrest of proliferative capacity

experienced by cardiomyocytes leads to a total withdrawal

from the cell cycle, induced by the downregulation of pro-

mitotic factors such as cyclins and cyclin-dependent kinases

(Hesse et al., 2018). In contrast, cyclin inhibitors such as p21,

p27, and p57 which antagonize cardiomyocyte mitosis also

become upregulated upon birth (Tane et al., 2014; Hesse

et al., 2018). Therefore, adult cardiomyocytes are post-mitotic

and terminally differentiated (Bergmann, 2019). Additionally,

the adult heart has an extremely low potential for regeneration

(Rizzo et al., 2018). There is evidence for low level regeneration

that occurs in the adult human heart which ranges between a rate

of 0.5–2% per year, however, this endogenous regenerative

capacity is not sufficient to overcome a catastrophic injury

such as a myocardial infarction (Senyo et al., 2013; Bergmann

et al., 2015). Earlier reports have claimed the existence of cardiac

progenitor pools in extra cardiac (i.e. bone marrow) or resident

tissues that can give rise to new cardiomyocytes (Beltrami et al.,

2003; Martin et al., 2004; Matsuura et al., 2004; Oyama et al.,

2007). Resident cardiac stem cells were identified by their

expression of hematopoietic stem cell markers such as c-kit

and stem cell antigen 1 (Beltrami et al., 2003). However, the

majority of these claims have been discredited and retracted,

causing much controversy within the field (Li H. et al., 2020). The

classification of cardiac stem cells based on stem cell factor

expression alone was challenged (Sultana et al., 2015;

Vicinanza et al., 2017), and lineage-tracing techniques

demonstrated that previously described cardiac resident stem

FIGURE 1
Cardiac Aging. At the time of birth, the postnatal human heart exhibits a brief period of cell growth through proliferation. However, this
proliferative capacity is lost shortly after birth and heart growth proceeds by an increase in cardiomyocyte (CM) size throughout adolescence (ages
12–24). During adulthood (ages 25–64), a decline in heart function occurs due to the emergence of pathological age-related stresses, such as
imbalances in force distribution per myocyte as a result of natural CM dropout, altered metabolism, decreased ATP generation, and
accumulation of reactive oxygen species. These stresses consequently lead to mitochondrial dysfunction, increased CM death, inflammation,
fibrosis, and the overall functional decline of the heart late in life.
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cells do not produce cardiomyocytes (Van Berlo et al., 2014; He

et al., 2017). A recent consensus statement was published to

redefine the narrative on cardiomyocyte renewal and to assert

agreement of the low regenerative potential of adult myocardium

at both homeostatic and post-injury conditions (Figure 1)

(Eschenhagen et al., 2017). Therefore, cardiomyocyte viability

must stand the test of time, as the cardiomyocytes present at

young adulthood are the same cardiomyocytes present later

in life.

Since cardiomyocytes are naturally long-lived cells it is logical

to assume that they are naturally resistant to cell death. Indeed,

many cell death-regulating factors are suppressed at the

transcript level compared to other tissues in the body (Patel

and Karch, 2020). However, cardiomyocytes are not invincible

and throughout life, there is a slow but gradual loss of

cardiomyocytes, referred to as cardiomyocyte drop-out. It has

been estimated that roughly 33% of cardiomyocytes of the left

ventricle dropout naturally during a person’s lifetime, according

to a study which reported that between the ages of 17–90 years,

the human heart experiences a drop-out rate of 38 million

cardiomyocytes/yr within the left ventricle and a cell volume

enlargement of the surviving myocytes of 110 μm3/yr (Figure 1)

(Olivetti et al., 1991). As a highly contractile organ, the heart

must sustain appropriate levels of rigidity and elasticity to

maintain shape, distribute force, and efficiently eject blood in

a controlled fashion (Vikhorev and Vikhoreva, 2018). The slow

decline in myocytes, which are the contractile unit of the heart, is

responsible for increasing mechanical stress per myocyte

(Bernhard and Laufer, 2008). Once a sufficient amount of

dropout has occurred, the heart may compensate by becoming

hypertrophic in order to maintain the workload (Lakatta, 2000;

Fajemiroye et al., 2018). In addition to myocyte hypertrophy,

activated fibroblasts (myofibroblasts) will proliferate and

infiltrate the heart to fill the residual space left by dead CMs

in a process known as fibrosis (Gourdie et al., 2016). A recent

study evaluated the physical fitness of 104 healthy volunteers

ranging from 20 to 76 years of age and demonstrated that fibrosis

negatively impacts the exercise fitness of older individuals, as

their hearts cannot eject an adequate volume of blood to the body

(Pandey et al., 2020).

Furthermore, the most common cause of heart failure is due

to a sudden loss of a large portion of cardiomyocytes due to

myocardial infarction (MI) (Hofstra et al., 2000). This occurs

when arteries that provide oxygenated blood to the heart become

blocked, which commonly requires a lifetime of plaque build-up

to occur. Preserving cardiomyocyte viability in the face of these

extreme events will limit the onset of age-related

cardiomyopathies, and a better understanding of what

pathways are engaged during cardiomyocyte drop-out may

provide insight on how to fortify myocytes against a life time

of stressors. The majority of cardiovascular diseases involve or

are initiated by the irreplaceable death of cardiomyocytes

(Benjamin et al., 2019). In terms of cardiac injury and disease

states, at least six types of cell death have been previously

described (Patel and Karch, 2020). Of these cell death

mechanisms, mainly two forms of cell death, apoptosis and

necrosis, occur in the aging heart (Figure 2) (Kajstura et al.,

1996). Apoptosis is regulated mainly by the B-cell lymphoma 2

(BCL-2) family at the level of the mitochondria, where pro-

apoptotic family member effectors, BAK and BAX, can form

homo/hetero-oligomeric pores on the outer mitochondrial

membrane (OMM) to induce mitochondrial outer membrane

permeability (MOMP). MOMP is prevented by anti-apoptotic

BCL-2 family members such as BCL-2. BCL-xL, MCL-1, which

directly interact with pro-apoptotic BCL-2 family members to

inhibit BAX/BAK oligomerization (Otera et al., 2013). Once

MOMP occurs, cytochrome c is released into the cytosol

which leads to the formation of the apoptosome and the

initiation of the caspase cascade (Garrido et al., 2006).

Activation of execution caspases 3 and 7 (CASP3, CASP7)

result in proteolysis, morphological membrane blebbing, and

cell shrinkage, which are all considered hallmarks of apoptosis

(Tait and Green, 2010).

A recent study determined that intrinsic apoptosis signaling

becomes altered in the cardiac muscles of old Fischer 344 rats

(20 months), such that pro-apoptotic Bax protein is increased by

at least 69% and anti-apoptotic protein levels of Bcl-2 were

reduced by 70% comparative to very young rat hearts

(1 month) (No et al., 2020a). This group also observed a

higher number of cleaved CASP3 and TUNEL-positive

myocytes within elderly rat hearts as well, which may indicate

that the change in expression of apoptotic regulators may

exacerbate aging-induced cardiac dysfunction. One team of

investigators concluded that subjecting senile rats to 12 weeks

of exercise helped attenuate age-induced apoptosis, cardiac

remodeling, and BAX/BCL-2 ratio in the heart (Kwak et al.,

2006). Currently, there lacks consensus on the contribution of

apoptosis to age-related cardiomyocyte drop-out (Li H. et al.,

2020). Early studies on elderly human patients determined that

levels of apoptotic death increase with age in the myocardium

(James, 1994), however, more recent investigations also using

human subjects failed to detect a correlation between this form of

age-related cardiomyocyte drop-out and apoptosis (Mallat et al.,

2001).

Necrotic cell death has also been implicated in cardiac aging.

In contrast to apoptosis, the necrotic death of the cardiomyocyte

results in the release of intracellular components due to plasma

membrane permeabilization, which causes an inflammatory

response upon the neighboring myocardial tissue (Bernhard

and Laufer, 2008). One investigation determined that the

inhibition of regulated necrosis by administration of

necrostatin-1, which specifically inhibits of necroptosis (a sub-

type of necrosis), can significantly reduce infarct size by 37% of

I/R injury-induced aged rat hearts compared to controls (Garvin

et al., 2018). Necroptosis is governed by the receptor-interacting

protein kinases 1 and 3 (RIPK1, RIPK3) which together become
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the necrosome which phosphorylates mixed lineage kinase

domain-like protein (MLKL) which, upon activation, induces

detrimental membrane permeabilization and subsequent death

via necroptosis (Sun et al., 2012). In a recent investigation, an

anti-aging drug known as Metformin was administered to aged

WTmice for 4 weeks prior to being subjected to I/R injury which

resulted in a decrease in infarct size compared to aged hearts that

received the vehicle control (Li C. et al., 2020). This study

determined that Metformin could be targeting the necroptosis

pathway in a RIP1-RIP3-dependent mechanism, thus providing

anti-aging properties to injured and aged myocardium (Li C.

et al., 2020). In addition, the same group observed that RIPK3-

deficient (Ripk3−/−) murine hearts became more resistant to

I/R-induced myocardial necrosis comparative to WT

counterparts. While the association of necroptosis to age-

related cardiomyocyte mortality is still relatively new in the

literature, these reports certainly support the hypothesis of

this form of regulated necrosis occurring in the old heart.

In addition to maturing cardiac tissue becoming increasingly

impaired due to cardiomyocyte drop-out, altered calcium (Ca2+)

handling has also been associated with the decline of

cardiomyocyte function. Physiologically, Ca2+ is central to

various signaling pathways and is tightly regulated by influx/

efflux channels and pumps (Modesti et al., 2021). It is well

understood, that the dysregulation of Ca2+ within the confines

of the cell can lead to the overloading of the ion to toxic degrees.

The mitochondrial calcium uniporter (MCU) is a known

transporter of Ca2+ into the mitochondrial matrix, which

when exceeds physiological limits, may induce maladaptive

responses such as the opening of the mitochondrial

permeability transition pore (MPTP). The opening of the

MPTP, a non-specific voltage-dependent pore, results in a loss

of mitochondrial membrane potential, a reduction in adenosine

triphosphate (ATP) generation, and overall mitochondrial

dysfunction if prolonged opening occurs (Halestrap and

Pasdois, 2009). Although the molecular identity of the multi-

protein pore has yet to be fully elucidated, its known regulators

are the adenine nucleotide translocases (ANTs) and peptidyl-

prolyl isomerase cyclophilin D (CypD) (Karch and Molkentin,

2014). One previous study reported that deacetylation at lysine

166 of CypD can suppress mitochondrial dysfunction and age-

associated cardiac hypertrophy (Hafner et al., 2010).

There is a consensus that an overload of Ca2+ perturbs aged

cardiac tissue, evidenced by several reports (Hunter et al., 2012;

No et al., 2018) Furthermore, aged myofibrils have been

previously shown to grow insensitively to intracellular Ca2+

concentrations, which is thought to reflect a lack of

contractility and prolonged relaxation in older individuals

(Bernhard and Laufer, 2008). Accurately measuring the extent

of aging-dependent cardiomyocyte dropout in vivo is extremely

FIGURE 2
Mitochondrial Dysfunction in Aging. There are various intracellular pathways that become altered over time, especially with regard to
mitochondrial function. Between the stages of young and late adulthood, mitochondria within the cardiomyocytes experience a decreased level of
biogenesis due to decreased expression of PGC-1 and downregulation of NAD+-dependent sirtuins. A metabolic shift occurs in old hearts, resulting
in greater glucose and less fatty acids utilization for energy production. Mitochondrial quality control by mitophagy induction is also
compromised. Cell death levels increase in the form of apoptosis and necrosis, which utilize mitochondrial outer membrane permeabilization
(MOMP) through the Bcl-2 family and mitochondrial permeability transition pore (MPTP), respectively. Excess ROS is generated through increase
electron transport chain (ETC) leak, resulting in increased levels of mitochondrial DNA (mtDNA) damage, imbalance of CM redox states, damage to
lipids/proteins within themitochondria, and the inability of antioxidants to clear ROS from themicroenvironment. Together, these stressors lead to a
decrease in mitochondrial function and lower levels of ATP production.
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challenging and will require novel methods in order to investigate

the potential cell death mechanisms that are utilized. Once these

methods are established, genetic or pharmacological inhibition of

individual cell death pathways will reveal which mechanisms

contribute to age-related cardiomyocyte drop out.

3 Decline in mitochondrial ATP
generation

One organelle at the center of cell death and aging is the

mitochondrion. The mitochondrial theory of aging postulates

that the accumulation of damaged, genetically mutated,

respiratory dysfunctional, and excessively ROS-producing

mitochondria over time correlates strongly with age-related

heart disease (Kowald, 2001; Loeb et al., 2005). Thus, there is

a potential relationship between mitochondrial fitness and

cardiomyocyte aging. There are two main types of

mitochondria within cardiomyocytes, one of which are located

beneath the sarcolemma (subsarcolemmal mitochondria, SSM)

or between myofribrils (interfibrillar mitochondria, IFM)

(Palmer et al., 1977). Interestingly, there is a decreased

number of IFM in elderly rat hearts (24–28 months) but no

change in SSM content comparative to younger adult hearts

(6 months old), which indicates that there is a potential change in

ATP levels within micro domains of the aged myocyte (Fannin

et al., 1999). Structurally, there are no apparent differences

between mitochondria of adult and aged rat hearts using

transmission electron microscopy (Palmer et al., 1985;

Lesnefsky et al., 2016). However, other groups have reported a

noticeable difference in the appearance of mitochondrial cristae

between adult and elderly myocyte mitochondria, as electron

microscopy revealed that SSM isolated from 24-month old rats

have normal lamelliform cristae, whereas IFM cristae display a

more tubular phenotype (Riva et al., 2005). Another study

identified an age-related decrease in the surface area of the

inner mitochondrial membrane (IMM) between 3-months and

24-month-old (El’darov et al., 2015).

As the heart continuously works to supply blood throughout

the body, it must rely on mitochondria to generate a sufficient

amount of ATP to satisfy the high energetic demand of the

cardiomyocyte, which makes mitochondria a major contributing

factor to cardiac aging (Tang X. et al., 2020). Due to this absolute

necessity for energetic substrate, mitochondria form dense linear

networks along sarcomeres, occupying at least 30–40% of

cardiomyocyte cell volume (Cao and Zheng, 2019). Within the

developing fetal and immediate postnatal heart, glucose is the

main source for energy production whereas the utilization of

fatty acids for substrate at this stage of life is very minimal due to

low circulation of fats and high availability of lactate (Girard

et al., 1992; Lopaschuk and Jaswal, 2010). However upon days

after birth, the mammalian heart no longer relies on anaerobic

glycolysis for its main form of energy transduction (Piquereau

and Ventura-Clapier, 2018). Over time, the maturing heart

transitions to metabolizing lipids as a primary source for ATP

in a process known as β-oxidation (fatty acid oxidation, FAO).

Adult cardiomyocytes preferentially utilize fatty acids, unlike

most other cells in the body which typically prefer carbohydrate

metabolism (Lionetti et al., 2011). From adolescence to

adulthood under normal conditions, the heart utilizes

approximately 70–90% fatty acid as its primary metabolic

substrate, whereas carbohydrates can provide anywhere

between 10–30% of the total acetyl-coenzyme A (CoA)

generated (Tuunanen et al., 2008; Martín-Fernández and

Gredilla, 2016; Piquereau and Ventura-Clapier, 2018).

Conversely, as the heart approaches old age, instead of

utilizing the major metabolite that drives β-oxidation known

as fatty acyl-CoA, pyruvate-derived metabolite acetyl-CoA

becomes the primary metabolite for energy production (Tang

J. X. et al., 2020). Previous reports demonstrated that there is a

40% decline of fatty acid utilization for ATP generation in the

aged mammalian cardiomyocyte, however there is no such

decline in the proportion of carbohydrates metabolized

(Figure 2) (Hansford, 1978; Lakatta and Yin, 1982). One study

determined that this switch to glycolysis occurs around the age of

65 in human subjects, a change that may contribute to the lower

amounts of ATP associated with longevity (Kates et al., 2003; Dai

et al., 2014). The alteration in metabolic behavior of

cardiomyocytes from adulthood to old age is understood to be

a response to stressful stimuli caused by pathological conditions

associated with aging (Picca et al., 2018). Carbohydrate

metabolism utilizes a lower amount of oxygen per ATP

molecule generated, and therefore may be more advantageous

for myocytes during states of hypoxic stress (Ussher et al., 2012).

This emphasizes how adaptive mitochondria must be in times of

stress in order to maintain ATP production (Stanley et al., 2005).

Therefore, the occurrence of a metabolic shift from β-oxidation
to glycolysis pathways is a classic cardiac aging phenotype. This

causes an imbalance that results in lipid toxicity in the aged

cardiomyocyte (Koonen et al., 2007). Indeed, lipotoxicity is a

well-established characteristic of an aged myocardium (Slawik

and Vidal-Puig, 2006).

Despite the time-dependent decrease in fatty acid utilization,

intracellular FA uptake is known to increase upon the rise of

sarcolemmal transporter CD36 expression, which is reported to

be responsible for 50% of all lipid uptake in the mammalian heart

(Koonen et al., 2007; Nagendran et al., 2013). Fatty acid oxidation

metabolite acyl-CoA cannot be utilized for energy production

until it is internalized into mitochondria by carnitine-palmitoyl

transferase-1 (CPT1) (Kolwicz et al., 2013). CPT1 is a rate-

limiting enzyme known to be dramatically downregulated in

old rat hearts, which may further explain the decrease in

oxidative phosphorylation during aging (Long et al., 2012;

Zhang X. et al., 2019). Without adequate CPT1 expression to

regulate mitochondrial fatty acid uptake, the likelihood of

cytoplasmic lipotoxicity increases as these metabolites are
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unable to be processed, leading to potential contractile

dysfunction, cardiac hypertrophy, and eventual heart failure

(Sharma et al., 2004; He L. et al., 2012).

In addition, components of the β-oxidation pathway are

transcriptionally downregulated in the aged heart due to the

decreased expression of their positively regulating transcription

factors such as PPAR, retinoid X receptor-α (RXRα), and PPAR

gamma co-activator 1 (PGC-1) (Lopaschuk et al., 2010; Dillon

et al., 2012). PGC-1 isoforms such as PGC-1α and PGC-1β are

originally both highly expressed in the young heart and are

considered master regulators of mitochondrial biogenesis;

however, cardiac PGC-1α/β expression is commonly reported

to decrease during aging (Figure 2) (Dillon et al., 2012). One

study observed that the downregulation of PGC-1α and its target
gene estrogen-related receptor α (ERRα) are a key features of the
failing human heart, an observation whichmay be involved in the

age-related reduction of mitochondrial metabolic capacity (Sihag

et al., 2009). Deletion of either isoform in mice contributes to

decreased mitochondrial biogenesis, lower mitochondrial

volume, and a reduction in both nuclear and mitochondrial

encoded genes within heart and skeletal muscle (Arany et al.,

2005; Lelliott et al., 2006; Adhihetty et al., 2009). Indeed, genetic

ablation of both isoforms (PGC-1αβ−/− mice) leads to extreme

phenotypes such as smaller heart size, sudden cardiac arrest,

atypical mitochondrial morphology, and a detrimentally low

cardiac output, all of which results in low survival beyond a

few days post-birth (Lai et al., 2008). These findings confirm that

PGC-1 is critical for the energy metabolism and overall health of

the adult heart.

Another major attribute of myocardial aging is the harmful

decrease in ATP generation with time (Figure 2) (No et al.,

2020b). Studies have reported that elderly human and mice

mitochondria express reduced levels of electron transport

chain (ETC) components (complexes I-V), thus lowering total

ATP synthesis rate (Zahn et al., 2006). In states of energy

depletion, ketones such as acetoacetate, acetone, and β-
hydroxybutyrate can also be utilized as alternate substrates for

the generation of energy in cardiomyocytes through a process

known as ketone oxidative phosphorylation (ketosis) (Selvaraj

et al., 2020). Various reports have established that the metabolic

utilization of ketones can therapeutically lessen the maladaptive

effects of cardiac aging by prevention of age-associated

myocardial remodeling, inhibition of apoptosis in elderly

murine myocardium, and contribution of additional oxidative

ATP production (Balietti et al., 2009; Sedej, 2018; Yu et al., 2020).

Notably, a ketone rich diet was also shown to lengthen the

lifespan of adult mice (Roberts et al., 2017). An increase in

ketone bodies, specifically β-hydroxybutyrate dehydrogenase 1

(βDH1, also known as βOHB), was observed in murine hearts

showcasing classic features of heart failure, suggestive of a shift to

metabolizing ketone bodies to generate ATP in these contexts

(Aubert et al., 2016). Compared to glucose, βDH1 requires less

oxygen for ATP synthesis, which results in less oxidative stress,

lower inflammation, and more efficient energy production (Bedi

et al., 2016). This may demonstrate that the increase of ketone

bodies as a source for energy, much like the metabolic switch

from FAO to glycolysis, may be a protective mechanism to

reduce the intracellular complications that correlate with age.

Nonetheless, there is no current consensus on whether ketosis is

truly a cardioprotective mechanism to prolong cardiomyocyte

life (Nilsson et al., 2016; McSwiney et al., 2018).

As cardiac metabolism becomes altered over time, responsive

enzymes facilitate energy production in order to prevent

cardiovascular deterioration. The silent mating type

information regulation (SIRT) family of proteins, also known

as sirtuins, are key regulators of sustaining metabolic function

and protection against myocardial stressors that commonly

emerge in the aging heart (Cencioni et al., 2015). As

metabolic sensors, sirtuins can sense the energy state of the

cell in order to enhance metabolic efficiency as well as

mitochondrial function when necessary. Sirtuins can also

promote ATP generation, for example SIRT3, which is highly

expressed in the heart, increases the enzymatic activity of ATP

synthase β, a catalytic subunit of mitochondrial complex V of the

ETC, through its deactylation activity (Lombard et al., 2007;

Rahman et al., 2014). Indeed, genetic ablation of SIRT3 in the

heart leads to decreases in overall ATP synthesis, OXPHOS

activity, oxygen consumption, and rates of fatty acid and

glucose metabolism (Ahn et al., 2008).

With regards to aging, sirtuins have been observed to

ameliorate classic features of myocardial stresses that arise

over time. SIRT3 overexpression is protective against age-

related cardiac phenotypes (Sundaresan et al., 2009). This

protective role of SIRT3 was further confirmed by another

study, which determined that SIRT3 activity made aged

murine hearts more resistant to I/R-injury (Porter et al.,

2014). Genetic deletion of SIRT2 resulted in an accelerated

aging phenotype, such as spontaneous cardiac hypertrophy,

fibrosis, and overall dysfunction, whereas overexpression of

SIRT2 improved viability in cultured myocytes (Sarikhani

et al., 2018). SIRT1 expression is considered to be important

for maintaining cardiomyocyte health during aging,

demonstrated by cardiac-specific SIRT1 overexpression which

preserved systolic function and reduced hypertrophy, fibrosis,

and senescence marker expression in 18 month old mice

(Alcendor et al., 2007).

The ability of sirtuins to act as metabolic sensors is the result

of their activation being dependent on nicotinamide adenine

dinucleotide (NAD+), a redox carrier typically converted to

NADH by accepting a hydride group from either glycolysis,

TCA cycle, or fatty acid oxidation, which is crucial for driving

oxidative phosphorylation (Xie et al., 2020). Unfortunately, there

is an age-related decline of NAD+ that is well known to contribute

to a myriad of aging hallmarks, such as metabolic imbalance,

mitochondrial dysfunction, oxidative stress, and pro-

inflammatory conditions (Haigis and Sinclair, 2010; Nakagawa
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and Guarente, 2011). Due to the utilization of NAD+ as a

substrate for SIRT enzymatic activity, as well as its utilization

by other enzymes such as DNA repair enzyme poly (ADP-

ribose)-polymerase 1 (PARP-1), the pool of available NAD+

decreases within myocardium during aging (Figure 2) (Pillai

et al., 2005). Complex I governs the oxidation of NADH to

generate NAD+, however one study determined that a mouse

model of dysfunctional complex I (Ndufs4−/−) resulted in a

decreased NAD+/NADH ratio and heart failure (Karamanlidis

et al., 2013), therefore it is hypothesized that complex I

dysfunction may occur in aged hearts which prevents the

replenishment of NAD+ stores (Bugger et al., 2016). Since

NAD+ is consumed and may not be replenished, it is clear

why the sustained imbalance of NAD+ levels would exacerbate

age-associated depletion of ATP as the metabolic-sensing

abilities of sirtuins would be rendered inactive (Xie et al.,

2020). Ultimately, the decline in sirtuin activity results in

many consequences for the onset and perpetuation of

maladaptive cardiac aging.

In summary, there are various forms of mitochondrial

bioenergetics that generate ATP in the heart such as the ETC,

β-oxidation, glycolysis, and ketosis (López-Otín et al., 2013). As

these aforementioned studies have demonstrated, the

maintenance of fatty acid oxidation as the predominant

source of energy is a characteristic of normal adult heart

function and alterations to this metabolic programming can

accelerate aging phenotypes. Loss of homeostasis between

mitochondrial energy production pathways is due to the

altered expression of key regulatory enzymes such as PGC-1

and the sirtuin family, which results in the metabolic remodeling

and subsequent energy deficit that occurs in aged hearts. Further

investigation is needed to determine the cause of age-related

metabolic switching and eventual cardiac decline.

4 Increase in mitochondrial ROS
generation

Reduction and oxidation (redox), a biochemical reaction that

involves the loss or gain of electrons between molecules, is the

source of oxidative stress in the heart which leads to age-related

pathologies (Cortassa et al., 2021). This transfer of electrons can

be mediated by ROS (Fuloria et al., 2021). The mitochondria are

the greatest source of ROS within a myocyte, with the majority of

ROS resulting from the ETC. Within the ETC, NADH and

FADH2 are responsible for donating electrons to complex I

(NADH dehydrogenase) and complex II (succinate

dehydrogenase), which are then transferred to complex III

(cytochrome b-c1) by way of ubiquinone [coenzyme Q

(CoQ)], then to complex IV (cytochrome c-oxidase), until

they reach the final acceptor, molecular O2 (Jang and Javadov,

2018). ROS can be produced in various ways, however it is mainly

derived from the reverse electron transport through complex I by

way of either low CoQ availability or high proton-motive force

(Figure 2) (Robb et al., 2018). ROS can also become generated by

single electrons escaping the ETC in a passive process known as

electron leakage (Zhao et al., 2019). Electrons can interact with

and reduce O2 to form an extremely unstable superoxide anion

(O2
− or O2

•–) (Kausar et al., 2018). To counteract this form of

ROS generation, superoxide dismutase (SOD) initiates the

conversion of O2
− into a more stable form known as

hydrogen peroxide (H2O2) (Li X. et al., 2019). However, H2O2

is readily interacts with metal atoms to generate a highly reactive

hydroxyl radical (OH•) (Wang et al., 2020). The common

hydroxyl radical (OH•) indiscriminately scavenges electrons

off biomolecules such as proteins, lipids, and nucleic acids,

thus damaging the myocyte.

While it is well established that ROS can be harmful inducers

of oxidative stress which contribute to impaired cardiac health, it

is important to emphasize that these molecular species are

essential for regulating a wide range of physiological

phenomena, as long as intracellular ROS concentrations are

controlled (Murphy et al., 2011). Mitochondrial-derived

oxidants can serve as mediators for a variety of ROS-mediated

signaling pathways important for baseline cardiomyocyte

function (Shadel and Horvath, 2015). An example of this can

be observed from the ability of O2
− and H2O2 to promote

cardiomyocyte growth and viability (Finkel, 2003; Tsutsui

et al., 2009). Furthermore, nitric oxide (NO•, NO) has been

linked to the regulation of mitochondrial biogenesis, improving

OXPHOS function, and ATP content by signaling through its

second messenger, 3′,5′-cyclic guanosine monophosphate

(cGMP) (Nisoli and Carruba, 2006). NO is synthesized by

endothelial nitric oxide synthase (eNOS) and is derived from

the endothelium of coronary vasculature as well as from

cardiomyocytes (Gödecke et al., 2001). Upon stimulation of

eNOS, increases in NO activity enhance ventricular filling

capacity by lengthening diastolic intervals and lowering

frequency of contractility (Gao, 2010). The contributing

factors that determine which oxidation reaction or signaling

pathway becomes engaged by mitochondrial ROS depends on

the species of ROS generated, radical concentration, duration of

oxidant, and the microdomains in which ROS is produced/

present (Finkel and Holbrook, 2000).

Oxidative stress can be defined as the functional

dysregulation of molecules due to the removal of electrons

and introductions of unusual charges into their structures

(Sies, 2020). According to the radical theory of aging, which

was first proposed in the mid-20th century, a main contributing

factor of aging is related to deleterious attacks by free radical

species within a cell over time, resulting in additive oxidative

stress unto biological structures that drives the functional decline

in aged animals (Figure 2) (Harman, 1956). Indeed, previous

investigations support this theory as they have demonstrated that

there is an increased production of ROS in the aged heart, such as

the finding that heart mitochondria isolated from elderly rats
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(23 months) produced 25% more super-oxide radicals than

young rats (3 months) (Nohl and Hegner, 1978). Additional

evidence in support of the radical theory of aging is shown by

a knock-out mouse model of the p66Shc gene (p66Shc−/−), which

encodes for a mitochondrial redox enzyme that generates ROS

from ETC by-products (Giorgio et al., 2005). The p66Shc−/− mice

study determined that targeting this enzymatic source of ROS

successfully lengthened the lifespan of these animals by 30%

(Migliaccio et al., 1999). Age-related increases of ROS production

results in the accumulation of damaged proteins and

dysfunctional mitochondria, of which exacerbate stress

(Anderson et al., 2018). The increased amounts of oxidized

macromolecules and ROS production levels contribute to a

multitude of age-associated cardiovascular diseases (Toba and

Lindsey, 2019). When this harmful process overwhelms the

cardiomyocyte, there are several known protective processes

that serve to maintain protein and organelle quality, which

will be discussed further in the sections below.

Besides ROS production, oxidative stress also is the result of a

decrease in homeostatic antioxidant activity (Balaban et al., 2005;

Dai et al., 2012). Biological antioxidants such as glutathione

peroxidase or catalase exist in the myocardium to provide

endogenous defenses against ROS (Figure 2) (Snezhkina et al.,

2019). In one previous study, an overexpression mouse model of

human antioxidant catalase (mCAT) increased life span due to

lower levels of oxidative stress, and exhibited reduced cardiac

aging phenotypes such as enhanced contractile function and

mitigated hypertrophy (Schriner et al., 2005). Additionally,

mCAT mice exhibited attenuated mitochondrial H2O2

toxicity, oxidative DNA damage, and mitochondrial DNA

(mtDNA) mutation accumulation. Therefore, the findings of

this study support the hypothesis that abnormal antioxidant

activity is a limiting factor to maintaining health in the aged

heart, and highlight a potential in utilizing antioxidants as a

therapeutic intervention.

The redox-state of a cardiomyocyte can be determined by

taking a ratio of oxidant to antioxidant levels, a balance that relies

on the conversion between the oxidized and reduced states

(Schafer and Buettner, 2001). Examples of redox couples

commonly measured to assess the redox-state of

cardiomyocytes are NADH:NAD+, cysteine:cystine, and GSH:

GSSG (Figure 2). The glutathione redox couple comprises the

majority of redox couples in the cell, therefore, this balance of

reduced GSH to oxidized GSSG has been utilized as a marker for

oxidative stress (Jones, 2002; Wang and Wang, 2021). Once

oxidized, GSSG can scavenge electrons from cysteinyl thiols

within the structures of various proteins in a reaction known

as S-thiolation or glutathiolation (Kouakou et al., 2019). An

imbalanced redox state where oxidizing species dominate results

in an upsurge of S-thiolation, and consequently, the disturbance

of physiological structures and functions of many critical

enzymes. A recent study performed an analysis of the effects

of hypoxia on redox biomarkers within young and aged Wistar

rats and determined that aged hearts were more prone to thiol

(T-SH) group oxidation, and thus, more susceptible to oxidative

stress (Ağaşcıoğlu et al., 2019). Another study supports the

notion that ROS levels are certainly increased in the aged

myocardium, as they observed that age-related ROS levels

only worsen the damaging effects of I/R injury, resulting in

significantly greater mitochondrial dysfunction and

cardiomyocyte death (Zhang et al., 2020). Furthermore,

sirtuins (SIRT1 and SIRT3) have been associated with

efficiently reducing ROS levels in a protective mechanism

against I/R stress in aged hearts, since the genetic deletion of

SIRT1/3 results in excessive oxidative stress, mitochondrial

dysfunction, and cardiomyocyte death (Zhang et al., 2020).

Together these studies demonstrate the importance of

conserving cardiomyocyte redox state, as disturbed redox

homeostasis can lead to various consequences regarding

aberrant signaling, mitochondrial dysfunction, and cell death.

The mitochondrion is the only organelle other than the

nucleus with its own genetic material. Mitochondrial DNA is

circular and comprised of 37 genes, 13 of which encode for

essential ETC subunits, housed within the matrix of the

mitochondrion (Ryzhkova et al., 2018). Notably, the vast

majority of proteins expressed at the level of the mitochondria

are nuclearly encoded and are imported to the mitochondria. The

occurrence of mtDNA point mutations and deletions have been

observed to increase with age in human heart as well as other

tissues (Figure 2) (Cortopassi and Arnheim, 1990). An increase

in the production of mitochondrial radicals presents a potential

risk to mtDNA stability (Lu and Finkel, 2008). One previous

report has shown that there is an increase in H2O2 in SSM and

oxidative stress levels in IFM isolated from the hearts of old male

rats (24 months) compared to younger rats (6 months) (Judge

et al., 2005). As reported in another investigation, the senescence-

accelerated mouse model (SAMP8 mice) displayed an age-

associated increase in lipid peroxidation products indicative of

increase oxidative damage with respect to time (Rodríguez et al.,

2007). The phenomenon of age-related increase of ROS-

dependent mtDNA damage was highlighted by a previous

study in which investigators utilized an oxidative stress

biomarker known as 8-oxo-2′-deoxyguanosine (8-OH-dG), a

major product of mtDNA oxidation, and measured this

biomarker in hearts of eight various mammalian species with

a spread of maximal life spans ranging from 3.5 to 46 years (Barja

and Herrero, 2000). This study determined that greater amounts

of 8-OH-dG were detected within short-lived animals, and vice

versa, suggestive that excessive mtDNA damage correlates with

shortened lifespans (Barja and Herrero, 2000). Overall, it is

apparent that oxidative damages upon mtDNA have been

shown by various sources to correlate with increasing age.

Further research has shown that a mouse model of a proof-

reading deficient version of mitochondrial polymerase PolgA

(mtDNA mutator mouse, PolgAmut/mut) caused various

premature aging phenotypes such as reduced lifespan, weight
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loss, alopecia, and heart enlargement (Trifunovic et al., 2004).

Despite this, recent reports have suggested that mtDNA

deletions, not mtDNA point mutations, serve as the driving

force behind the shortened lifespan observed in these mice

(Vermulst et al., 2008). In contrast to this argument, other

researchers hypothesize that mtDNA replication errors made

by mtDNA polymerases are the driving factor in aging instead of

ROS-dependent mtDNA mutations (Kauppila et al., 2017). It is

also important to note that the mutator mouse model has been

challenged since these animals experience greater levels of

mtDNA mutations than aged humans, and therefore do not

recapitulate the natural aging processes (Khrapko et al., 2006).

Additionally, previous research efforts have shown that there are

very low levels of specific mtDNA deletions attributed to the

phenomenon of aging (Cortopassi and Arnheim, 1990). It is

currently debated whether mtDNA mutations directly cause

aging or simply correlate with the process (Vermulst et al.,

2007). Therefore, the origin of mtDNA mutations and their

contributions to the cardiac aging process remains to be fully

elucidated.

At baseline, mtDNA has a higher mutation rate than nuclear

DNA due to the high presence of radical species in the local

microenvironment (Hu et al., 2020). One mathematical model

demonstrated that 90% of cardiomyocytes will undergo a

minimum of 100 mtDNA mutations by the age of 70, which

likely contributes to age-related mitochondrial dysfunction (Li H.

et al., 2019). Although the nuclear genome is not impacted as

severely, poor nuclear genome stability can occur in the instance

of mitochondrial dysfunction, since imbalanced ROS-to-

antioxidant mode of oxidative stress can eventually surpass

the local microenvironment and induce an increase in nuclear

mutations as well (Veatch et al., 2009). In addition to SIRTs

metabolism-related functions, as previously mentioned in this

review, this family of deacetylases can also increase

cardiomyocyte levels of mitochondrial antioxidants such as

superoxide dismutase 2 (SOD2) in the event of detrimental

oxidative stress (Figure 2) (Imai and Guarente, 2014). Sirtuins

can also engage in nuclear as well as mtDNA damage repair as

they can induce deacetylation reactions directly upon hyper-

acetylated chromatin or correct DNA repair proteins (Tennen

and Chua, 2011).

In summary, there is a critical need to address the excessive

generation of radical species during aging. Due to the

nonselective damage that occurs due to oxidative stress,

radical species and antioxidants both serve as a major

therapeutic targets to deaccelerate age-associated cardiac

phenotypes. Additional research must be implemented to

reduce the oxidative burden of the old heart, and therefore

preserve mtDNA stability, sustained mitochondrial membrane

integrity, and maintain a balance of the overall redox state of the

cardiomyocyte. However, therapeutic attempts to reduce the

burden of ROS to prevent age-related decline have had little

success as discussed in section 7.

5 Decline in mitophagy during aging

Since mitochondria are the central generators of ROS within

the cardiomyocyte, they are constantly faced with the threat of

oxidative damage that can lead to the functional failure of the

organelle (Onishi et al., 2021). In this event, there is a need for

these dysfunctional organelles to be cleared from the cell to

preserve viability (Scheibye-Knudsen et al., 2015). Dysfunctional

mitochondria can be selected for degradation in a sub-type of

autophagy that is known as mitophagy, termed for its

mitochondrion-specific engulfment (Kubli and Gustafsson,

2012). Currently, there are two main forms of this

mitochondrial quality control mechanism that exist in the

mammalian heart: 1) ubiquitin-dependent mitophagy, and 2)

receptor-mediated mitophagy (Ding and Yin, 2012; Jin and

Youle, 2012).

Ubiquitin-dependent mitophagy is regulated by phosphatase

and tensin homolog (PTEN)-induced putative kinase protein 1

(PINK1) and Parkinson Protein 2 (Parkin). PINK1 is targeted to

the mitochondria, while Parkin is a cytosolic protein. Under

normal conditions, PINK1 activity remains negatively

constrained by mitochondrial processing peptidase (MPP) and

presenilin-associated rhomboid-like protease (PARL) via

consistent degradation through cleavage (Jin et al., 2010).

Upon the loss of mitochondrial membrane potential, which is

a classic feature of mitochondrial dysfunction, PINK1 will

translocate on the OMM and mediate the subsequent

translocation of Parkin, an E3 ubiquitin ligase, to the

dysregulated mitochondrion (Matsuda et al., 2010). Parkin

will then ubiquitinate outer membrane substrates such as

voltage-dependent anion channel (VDAC), translocase of the

outer membrane (TOM), mitofusins, BAK, and more (Sarraf

et al., 2013). Autophagy adaptors such as optineurin (OPTN) or

p62/SQSTM1 utilize their ubiquitin-binding domains (UBD) to

identify these ubiquitinated substrates, and consequently recruit

microtubule-associated protein light chain 3 (LC3) to enable

autophagosome engulfment of the mitochondrion for fated

lysosomal fusion and degradation (Ajoolabady et al., 2020).

Receptor-mediated mitophagy is mediated through

mitophagic receptors on the OMM such as FUN14 domain

containing 1 (FUNDC1), Bcl-2-like protein 13 (Bcl2L13/Bcl-

Rambo), FK 506-binding protein (FKBP8), Bcl2/adenovirus

E1B 19-kDa interacting protein 3 (BNIP3), and NIX/BNIP3L

(Novak et al., 2010; Hanna et al., 2012; Liu et al., 2012; Murakawa

et al., 2015; Bhujabal et al., 2017; Wei et al., 2017). All these

receptors are anchored to the OMM and bind directly to LC3 to

guide its tethered organelle to the autophagosome, bypassing the

need for ubiquitination (Liang and Gustafsson, 2020). Another

receptor, Prohibitin-2 (PHB2), found within the IMM also binds

with LC3, but this event typically occurs when the outer

membrane is permeabilized or ruptured (Wei et al., 2017).

Each of these mitophagy receptors can bind to LC3 for the

sequestration of mitochondria by their LC3-Interacting-Regions
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(LIRs), which are conserved domains located at various sites

specific to each regulator. Although these receptors are

established, their mechanisms of activation are still not well

understood (Liang and Gustafsson, 2020). Thus far, it is

understood that some of these receptors are regulated by

phosphorylation status to become activated and bind LC3.

It is interesting to note that BNIP3 and Bcl-Rambo are both

members of the Bcl-2 family of apoptotic regulators, based on the

presence of Bcl-2 homology (BH) domains within their peptide

structures. However unlike BNIP3, the role of Bcl-Rambo in

apoptotic cell death remains to be controversial (Meng et al.,

2021). Containing all four BH domains (BH1-4) Bcl-Rambo has

been shown to either induce cell death upon overexpression into

HEK 293T cells, or promote cell viability as in glioblastoma

cancers, resulting in controversial conclusions within the field

(Kataoka et al., 2001; Jensen et al., 2014). Despite this ambiguity

in apoptosis, newly emerging studies have demonstrated that Bcl-

Rambo promotes mitochondrial fission as a precursor to

mitophagy (Murakawa et al., 2015). It has yet to be

determined whether Bcl-Rambo is protective or maladaptive

with respect to the aging heart. BNIP3 is a BH3-only protein

that is typically inactive during physiological conditions, yet

upon stressful stimuli such as hypoxia, it has been previously

associated with the induction of cell death, since its activation has

been shown to correlate with a loss of membrane potential, and

an increase in oxidative stress (Burton and Gibson, 2009). Once

activated BNIP3 becomes upregulated and translocates to the

OMM as a stabilized homodimer, anchored by its C-terminus

domain (Hanna et al., 2012). Interestingly, a recent study

demonstrated that NIX (BNIP3L) and FUNDC1 are critical

for stimulating mitophagy in adult cardiac progenitor cells

(Lampert et al., 2019). Overall, the mitophagic functions of

these Bcl-2 proteins demonstrates that there are various

processes involved with this class of proteins beyond their

influences on cell death.

There is an accumulation of dysfunctional mitochondria

within the aged myocyte which may be due to the loss of

efficient mitophagy in the old heart (Figure 2) (Linton et al.,

2015). Not only are defective mitochondria of the aged myocyte

not sufficiently degraded, a majority of mitochondria become

structurally enlarged and exhibit reduced dynamics such as

fission, resulting in an increasing number of these organelles

that are poorly engulfed by the autophagosome (Terman et al.,

2010). One study demonstrated that there is a decrease in

PINK1 protein expression in the hearts of middle-aged to

elderly human patients with end-stage heart failure when

compared to PINK1 levels in healthy controls (Billia et al.,

2011). Mitophagy was also determined to be diminished in

old hearts according to another study, where investigators

subjected old vs. young WT mice to a mitochondrial

uncoupler to induce a mitophagic response (Hoshino et al.,

2013). As a result of this study, investigators observed that

mitochondria within the hearts of adult WT mice (10 months)

appeared to be encapsulated within autophagosome vacuoles

more so than the mitochondria of aged mice (20 months)

(Hoshino et al., 2013). Evolutionarily conserved cysteine

residues on mitophagy regulator Parkin are prone to

oxidation by ROS, resulting in the loss of Parkin’s ubiquitin

ligase activity, misfolding, and subsequent clearance from the cell

(Wong et al., 2007; Meng et al., 2011). Therefore, it has been

postulated that the excess of oxidative stress, a classic feature of

the aged myocardium, may decrease the efficiency of Parkin-

mediated mitophagy within the heart (Liang and Gustafsson,

2020). Unfortunately, less is known about the status of the

mitophagy receptors during aging, although BNIP3 is known

to be upregulated in aged hearts (Lee et al., 2011). Interestingly,

BNIP3 and Nix are thought to become maladaptive cell death

inducers during age-related myocardial stresses such as heart

failure and I/R injury, however this harmful shift from promoting

mitochondrial quality control is yet to be fully understood

(Hamacher-Brady et al., 2007; Baines, 2010; Shires and

Gustafsson, 2015).

Pharmacological or genetic alterations of the mitophagy

pathway influences aging. Chemically inducing mitophagy by

natural compound, urolithin A (UA), can lead to the clearance of

damagedmitochondria and extend the lifespan of C. elegans (Ryu

et al., 2016). Importantly, this result has been translated into the

mouse model system through orally consumed UA which

protects against age-related muscle decline (Ryu et al., 2016).

Additionally, Parkin-deficient mice (Parkin−/−) exhibit features of

accelerated cardiac aging such as accumulations of dysfunctional

mitochondria within their hearts and these mice experience

exaggerated cardiac damage and increased mortality when

stressed (Kubli et al., 2013). Conversely, Parkin overexpression

in mice delays cardiac aging and improves mitochondrial health

(Rana et al., 2013). Moreover, cardiac-specific Parkin

overexpression leads to a decrease in abnormal mitochondria,

as well as a resistance to an age-dependent decrease in oxygen

consumption (Hoshino et al., 2013). However, Parkin

overexpression leads to an increase in cardiac fibrosis

(Woodall et al., 2019), perhaps due to the over activation of

the autophagic pathway. This suggests, while increasing the rate

of mitophagy is protective, there is a threshold where too much

may be maladaptive. Interestingly, transgenic mice that

accumulate mtDNA mutations caused by defective mtDNA

polymerase were not protected by cardiac-specific

overexpression of Parkin (Woodall et al., 2019). This may

demonstrate that there is a minor role of Parkin-dependent

mitophagy in cardiomyocytes, at least concerning

mitochondrial instability genomic driven dysfunction.

Unfortunately, less is known about the status of the

mitophagy receptors during aging, although BNIP3 is known

to be upregulated in aged hearts (Lee et al., 2011).

A powerful genetic tool used as a reporter of mitophagy is the

mtKeima transgenic mice model, which express a pH-sensitive

and lysosome resistant-protein known as Keima which possesses
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dual-excitation fluorescence (Sun et al., 2017). Fluorescent Keima

protein originates from coral and is localized to mitochondria

using the mitochondrial targeting sequence of inner-membrane

subunit Cox VIII (Sun et al., 2015). When at neutral pH within

uncompromised mitochondrial, Keima becomes excited at

approximately 458 nm recognized as green fluorescence, yet

upon co-localization with the lysosome which contains an

acidic pH of 4.5, the probe gradually shifts its excitation

wavelength to 561 nm which appears as red (Sun et al., 2017).

Using this novel genetic tool, researchers have shown that both

the heart and brain contain higher levels of baseline mitophagy

compared to the other tissues in the body (Sun et al., 2017). In the

future, these mice will be a valuable asset to investigate changes in

mitophagy that occur during aging. Another group engineered a

mouse model known as the αMHC-MitoTimer mice, which

allows investigators to identify mitochondrial turnover with

respect to the passage of time (Stotland and Gottlieb, 2016).

This was accomplished by using MitoTimer, a mitochondrial-

targeted protein which can stably induce cardiomyocyte

mitochondria to fluoresce from green-to-red over a course of

several hours, all of which was driven by a cardiac driven alpha-

MHC promoter (Williams et al., 2017). After comparing the

hearts of young (3 weeks) and old (16 weeks) αMHC-MitoTimer

mice, investigators observed a higher population of green-

fluorescent mitochondria in young hearts compared to older

littermates, which demonstrated that the rate of mitochondrial

degradation was decreased in the aged cohort (Stotland and

Gottlieb, 2016). In all, the decline in efficient mitochondrial

clearance from the myocyte is one of many central features of

cardiac aging and further studies must be conducted to re-

establish quality control of this vital organelle.

6 The decline of autophagy and the
ubiquitin-proteasome system

It is critical for the non-proliferative cardiomyocyte to

maintain adequate protein quality control, which entails the

regulation of proper protein translation, folding, trafficking,

localization, and degradation. The quality control pathways

which occur commonly within the myocardium are autophagy

and the ubiquitin-proteasome system (UPS), which are

lysosomal- and proteasomal-dependent, respectively (Sun-

Wang et al., 2020). Here in this section we will review

previously published research of these protein degradation

mechanisms with special emphasis on the implications of the

aged myocardium.

Autophagy is a mechanism important for maintaining the

quality of proteins and organelle systems by selective lysosome-

dependent degradation of defective intracellular components

(Saha et al., 2018). There are three types of autophagy known

as macro-autophagy, micro-autophagy, and chaperone-mediated

autophagy. However, here we will focus primarily on macro-

autophagy as it is the most widely characterized form that exists

within the heart (Yamaguchi, 2019). Autophagy can serve either

protective or maladaptive roles when upregulated in response to

a stressful event, dependent on the pathological context

(Sciarretta et al., 2012). The functional unit of autophagy is

the autophagosome, a double lipid membrane that encapsulates

cargo destined for degradation once it fuses to a lysosome. The

initiation of autophagy begins with the seeding of an isolated

membrane known as the phagophore. Phagophore formation is

controlled by two multi-protein complexes, the Atg13/ULK-1/

Atg101/FIP200 heterotetratmer which is regulated tightly by

metabolic sensors mammalian target of rapamycin complex 1

(mTORC1) and AMP-activated protein kinase (AMPK) (Alers

et al., 2012). Once the ULK1 complex forms at designated

autophagophore assembly sites, it initiates phagophore

formation by the recruitment and subsequent activation of the

class III phosphoinositide 3-kinase (PI3K) complex I which is

composed of Vps34, Vps15, Beclin-1, and Atg14 (Russell et al.,

2013). The PI3K complex is responsible for producing

phosphatidylinositol 3-phosphates (PI3Ps) which recruits yet

another complex known as the ATG2-WIPI complex (Al-Bari

and Xu, 2020). The phagophore can expand in size as further

regulatory proteins are recruited at the assembly site such as the

ubiquitin-like proteins that behave like E1 (ATG7), E2

(ATG10 and ATG3), and E3 (ATG12-ATG5-

ATG16 L complex) UPS enzymes (Geng and Klionsky, 2008).

Altogether, these complexes complete the maturation of the

phagophore into the nascent autophagosome by way of

ATG4-induced conjugation of LC3-I (ATG8) to

phosphatidylethanolamine (PE) to form LC3-II (ATG8-II)

(Geng and Klionsky, 2008). The lipidation of cleaved LC3-I to

form LC3-II is critical for autophagy, hence, LC3-II is a common

marker of autophagy (Ghosh and Pattison, 2018). Adaptor

proteins such as p62/SQSTM1 link the damaged cargo to

LC3-II using ubiquitin-associated domains and LIRs,

respectively (Gatica et al., 2018; Johansen and Lamark, 2020).

This process finalizes once the autophagic machinery fully

engulfs damaged cargo and undergoes fusion with the

lysosome, causing all sequestered contents to become

degraded by lysosomal enzymes (Ravikumar et al., 2010).

Amino acids can then be released into the cytosol for nutrient

recycling through the amino acid transporter SLC38A9 and Rag

GTPase-Ragulator complex which each exist on the lysosomal

membrane (Wyant et al., 2017). The release of essential amino

acids from the lysosome ensures the continuous growth and

survival of the cell.

The UPS mediates the non-lysosomal degradation of

damaged or mutated proteins (Zheng and Shabek, 2017). This

mechanism initiates once ubiquitin-activating enzyme (E1)

activates ubiquitin in an ATP-dependent manner, then

ubiquitin conjugation enzymes (E2) attach multiple ubiquitin

molecules to the lysine residues of abnormal proteins fated for

degradation (Akutsu et al., 2016). After further interaction by
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E3 ligase enzymes, which acts as a scaffold for the targeted

substrate and the E2-ubiquitin complex to achieve a

significant ubiquitination status (Pohl and Dikic, 2019). The

ubiquitinated protein is then ready for digestion by the 26S

proteasome (Roos-Mattjus and Sistonen, 2004). The 26S

proteasome is a 2.5 MDa multi-protein complex that consists

of a 33 subunit assembly known as the 20S core particle which is

capped by the 19S regulatory particle (Rousseau and Bertolotti,

2018). During physiological conditions, UPS is an ATP-

dependent quality control mechanism, yet in times of

pathological cardiac stress, the 26S proteasome can perform

degradative actions in an ATP-independent manner (Kumar

Deshmukh et al., 2019). The UPS system responsible for the

majority of intracellular protein maintenance via degradation, as

approximately 80–90% of all dislocated, misfolded, oxidized, and

dysfunctional proteins become eliminated through UPS-

mediated clearance (Bhattacharyya et al., 2014). Therefore,

UPS is a highly efficient mechanism that maintains

cardiomyocyte health. It is important to note that while the

UPS mechanism shares similarities with the autophagic pathway

such as a similar goal and the use of ubiquitin-type enzymes, the

proteasome targets more transiently-active proteins such as

tumor suppressor p53, whereas the lysosome degrades larger,

more long-lived proteins such as the myosin heavy chains and

entire organelles that cannot fit within the confines of the

proteasome core (Zhang et al., 2016).

The UPS system has been established to participate in the

turnover of proteins which exist on the OMM (Xu et al., 2011).

Originally it was proposed that proteins contained within the

mitochondria were not degraded by the UPS, but instead by

mitochondrial proteases, due the inaccessibility of the UPS

system (Langer and Neupert, 1996). However, this hypothesis

has been recently challenged by emerging evidence suggesting

that intramitochondrial proteins undergo ubiquitination (Udeshi

et al., 2013). It is important to note that 62% of the mitochondrial

proteome is ubiquitinated in humans, with a majority of these

proteins localized within the matrix and IMM (Lehmann et al.,

2016a). One group of investigators determined that degradation

of internally housed mitochondrial proteins can indeed be UPS-

dependent, since they observed that pharmacological inhibition

of the cytosolic 26S protesome led to the increase in levels of a

IMM protein known as uncoupling protein 2 (UCP2) (Azzu and

Brand, 2010). Other known matrix and IMM proteins have also

been hypothesized to undergo UPS-associated proteolysis

(Lehmann et al., 2016b; Lavie et al., 2018). The mechanism by

which inner membrane and matrix proteins can be degraded

has yet to be fully elucidated, however one potential hypothesis

is the mitochondria-associated degradation (MAD) pathway,

which lead to the extraction of these proteins out of the

organelle by Cdc48 (p97/VCP in higher eukaryotes) for

degradation by the proteasome (Franz et al., 2014; Liao

et al., 2020). Other than the shuttling of intramitochondrial

proteins to the proteasome, the proteasome can also become

recruited to the mitochondrial outer membrane via anchoring

onto FK506-binding protein 38 (FKBP38) (Nakagawa et al.,

2007). Further studies must be conducted to fully comprehend

the extend of UPS-dependent degradation of mitochondrial

contents with respect to aging.

According to a recent report, there are 87 human UPS

components including the ubiquitination machinery that

reside at the level of the mitochondria, many of which

contain mitochondrial targeting sequences and undergo

interactions with a variety of non-UPS mitochondrial proteins

(Lehmann et al., 2016a). Notably, UPS components localized to

the mitochondria are E3 ubiquitin ligase, membrane-associated

RING-CH E3 ubiquitin ligase 5 (MARCH5), and deubiquinases

ubiquitin specific protease 30 (USP30) and Ataxin-3 (Lehmann

et al., 2016a). Notably, the UPS is known to be heavily involved in

mitochondrial protein degradation (Neutzner et al., 2008). The

UPS can regulate mitochondrial morphological processes such as

fission and fusion, as depletion of USP30 expression results in a

hyper fusion mitochondrial morphology (Nakamura and Hirose,

2008). Additionally, the UPS system can alter fission and fusion

proteins directly by leading to the degradation of Mitofusin 1

(MFN1) or dynamin-regulated protein-1 (DRP1) (Wang et al.,

2011). Interestingly, Parkin induces UPS activity to degrade

fusion machinery in order to induce mitochondrial fission for

the promotion of mitophagy (Tanaka et al., 2010; Chan N. C.

et al., 2011). Therefore, the UPS is a highly efficient mechanism

that maintains cardiomyocyte health through direct protein

clearance and mitochondrial quality control regulation (Heo

and Rutter, 2011; Ikeda et al., 2014).

One main feature of cardiac aging is the accumulation of

misfolded proteins and dysfunctional organelles due to failed

quality mechanisms, a pathological disorder known as cardiac

proteinopathy (Su andWang, 2009). Quality control pathways in

the aged heart become severely hampered, resulting in protein

toxicity within cardiomyocytes (Tannous et al., 2008). There is an

increasing body of evidence suggesting that proteostasis becomes

detrimentally altered with age, due to nonfunctional autophagy

and/or UPS mechanisms which cannot accommodate the rate of

protein synthesis (Löw, 2011). One such study supports the

existence of age-related cardiac proteinopathy by analyzing

the hearts of old mice where they observed an accumulation

of many proteins compared to younger murine cohorts, such as

more sarcomeric protein (α-actin), myosin heavy chain beta

(β-MHC), B-type natriuretic peptide (BNP), and Atrial

Natriuretic Peptide (ANP) (Castello et al., 2010). With an

increase in protein content there is greater opportunity for

oxidants to target the crowded intracellular landscape, driving

further dysregulation (Petropoulos et al., 2000). There is evidence

of human cardiac proteinopathy, as amyloid aggregates of small

heat shock protein α-B-crystallin and desmin are present in

middle-aged human heart samples diagnosed with dilated

cardiomyopathy and hypertrophic cardiomyopathy (Sanbe

et al., 2004). In summary, it is well established that aging and
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age-associated diseases such as CVD are strongly correlated with

cardiac protein toxicity.

As hearts age, autophagic flux decreases, which further

exacerbates cardiomyocyte drop-out and organ failure

(Shirakabe et al., 2016). Growing evidence showcases the anti-

aging properties of autophagy, as several studies observed that

restoring autophagic flux in mouse models of aging or

maladaptive protein folding positively improves heart function

(Zheng et al., 2010; Bhuiyan et al., 2013; Dutta et al., 2014).

Transgenic mice and isolated fibroblasts that overexpress

Atg8 experience improved motor function, are more tolerant

to oxidant stress, less susceptible to cell death, and have extended

lifespans (Pyo et al., 2013). Additionally, the hearts of these

Atg8 overexpression mice yielded greater levels of autophagic

activity as the mice matured with age compared toWTmice. This

would indicate that heightened autophagy levels in the aged heart

is indeed cardioprotective. If the process of autophagy is blocked

in the myocardium, as observed in an investigation which

utilized a Atg5 null mouse, aging phenotypes such as the

accumulation of dysfunctional cellular components become

accelerated (Nakai et al., 2007). Furthermore, hearts that are

Atg5-deficient showcase disorganized sarcomere structure and

mitochondrial disorganization. Furthermore, upon pressure-

overload stress, the hearts had an increase in dilated

hypertrophy of the left ventricle (Nakai et al., 2007).

Altogether, these findings suggest that autophagy plays a

protective role in the heart, both at baseline and during stress

conditions that emerge with aging. Development of autophagy-

enhancing interventions may be beneficial for prolonging the

function of the heart into old age.

There is also supporting evidence for the necessity of the UPS

in the aging heart. Interestingly, proteasome inhibitor drug

treatments administered to cancer patients cause adverse

cardiotoxicity, which indirectly suggests the importance of the

UPS system in the heart (Drews and Taegtmeyer, 2014). In fact,

proteasome activity was previously observed to become

downregulated in the epidermal cells of elderly human

subjects (Petropoulos et al., 2000), as well as in the hearts of

rodents (Bulteau et al., 2002). Within the latter study,

investigators observed reduced levels of proteasomal 20S core

particle in old Fisher 344 rat hearts, which was hypothesized to

contribute to enhanced susceptibility of the aging heart to

cardiovascular disease (Bulteau et al., 2002). A recent

investigation demonstrated that myocardial 26S proteasome

activity and UPS proteolytic function could be restored in

cardiac proteinopathy-prone mice (CryABR120G) by inhibition

of the cyclic nucleotide phosphodiesterase 1 (PDE1), suggestive

that the PDE1 enzyme may play a prominent role in proteasome

degradation in the aged murine heart (Zhang H. et al., 2019). As

for the aged human heart, one study isolated peripheral blood

lymphocytes samples from elderly donors and determined that

there is an increase in the number of post-translational

modifications of individual proteasome subunits, which

contributed to age-related decline of 26S proteasome-specific

activity (Carrard et al., 2003).

Overall, these findings strongly suggest that aberrant

alterations to the function, structure, and activity of the

autophagic and proteasomal processes leads to the aging

process. In summary, autophagy and UPS pathways are

critical for preserving the integrity of the cardiomyocyte.

Further understanding of how these pathways are commonly

dysregulated during the aging process is needed in order to

determine how to best therapeutically intervene.

7 Reduction in mitochondrial
biogenesis

Due to evidence that mitochondria are susceptible to

accruing damage during aging, it becomes critical to maintain

mitochondrial function by renewing the mitochondrial pool

during aging (Van Remmen and Richardson, 2001).

Therefore, mitochondrial turnover must be monitored closely

by the cell to ensure healthy progression of energy production,

regulation of mitochondrial cell death factors, control of radical

oxidative species, and proper housekeeping of the mitochondrial

genome (López-Lluch et al., 2008). The generation of new

mitochondria is referred to as mitochondrial biogenesis. The

dynamic event of biogenesis is closely linked to the processes of

growth and division, or fission and fusion, of mitochondrial

bodies (Liu et al., 2009). Fusion is accomplished by OMM

regulators such as MFN1 and MFN2 and the IMM regulator

Optic atrophy 1 (OPA1), which have been shown to be necessary

for mitochondrial health (Chen et al., 2011; Piquereau et al.,

2012). The genetic deletions of cardiac specific MFN1 and

MFN2 leads to a rapid progression of cardiomyopathy (Chen

et al., 2011). A major regulator of fission is GTPase DRP1, and its

genetic deletion causes an accelerated aging phenotype (Ikeda

et al., 2015). Fission typically precedes the breakdown of

organellular components (i.e. mitophagy) which occurs in

parallel with mitochondrial content synthesis (i.e. protein

translation). Therefore, both mitochondrial fission and fusion

are required to maintain a healthy population of mitochondria

within the heart and the inhibition of either pathway has the

potential to accelerate aging. Together, synthesis and degradation

events determine the total mitochondrial number within the cell,

however, total mitochondrial quantity is not necessarily

indicative of a change in mitochondrial biogenesis. Actually, it

is solely an increase in the rate of mitochondrial synthesis that is

the most reflective measure of mitochondrial biogenesis (Miller

et al., 2012). The best method for measuring mitochondrial

renewal is to determine the rate of mitochondrial protein

synthesis (mitoPS), which is accomplished by the

measurements of mitochondrial phospholipid levels or

incorporating stable isotopic tracers such as stable isotopically

labeled water (2H2O) into mitochondrial protein precursors
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(Robinson et al., 2010). While some investigators have utilized

mtDNA and mitochondrial mRNA contents as indicators of

biogenesis, these methods are not considered to be as accurate as

mitoPS, since transcript number does not necessarily equate to

total mitochondrial number (Miller et al., 2012).

Unfortunately, it has been established that the rate of

mitochondrial biogenesis is greatly reduced in the elderly

population (Figure 2) (López-Lluch et al., 2008). One study

claimed that the diffusion of H2O2 and NO• contribute to

decreased mitochondrial biogenesis in aged rodents (Navarro and

Boveris, 2007). In order to provide the protein and lipid substrate

necessary for the generation of new mitochondria, reliable crosstalk

between the mitochondria and nucleus must occur, which is

mediated by various metabolic sensors and transcriptional

regulators (Nirwane and Majumdar, 2018). PGC-1α is known as

the master regulator of mitochondrial biogenesis (Steinberg and

Kemp, 2009). PGC-1α, which is highly expressed in the heart, serves
as a sensor formetabolic changes and/or stressors in order tomodify

gene expression, and thus reflects the energetic demands of the

cardiomyocyte (Fernandez-Marcos and Auwerx, 2011). The

regulators of PGC-1α activity are AMPK and SIRT1, both of

which are considered to be critical metabolic sensors (Nirwane

and Majumdar, 2018). It is well established in the literature how

AMPK and SIRT1 directly target transcription factor fork head box

O3 (FoxO3) to increase PGC-1α expression (Brunet et al., 2004;

Greer et al., 2007). Upon successful activation of PGC-1α via SIRT1-
dependent deacetylation, it shuttles from the cytoplasm to the

nucleus where it co-activates transcription factors such as PPARα
to promote gene expression of various mitochondrial enzymes

critical for mitochondrial β-oxidation medium-chain acyl-CoA

dehydrogenase (MCAD) (Fernandez-Marcos and Auwerx, 2011).

Interestingly, SIRT1 and PGC-1α participate in nuclear-

mitochondrial crosstalk for the stimulation of mitochondrial

turnover, supported by their dynamic subcellular co-localization

and shuttling between the two organelles (Aquilano et al., 2010;

Aquilano et al., 2013). While it is important to acknowledge the key

role that PGC-1α plays with regard to mitochondrial biogenesis, it is

not sufficient to initiate this process alone (Miller and Hamilton,

2012). In summary, stimulating mitochondrial biogenesis could

have great effects on maintaining cardiomyocyte longevity.

Indeed, several interventions such as caloric restriction and

exercise, discussed in the following section, have been shown to

induce this process and effectively increase lifespan.

8 Preservation of mitochondrial
function and heart health

A multitude of efforts have been employed to lessen the

severity of age-associated myocardial dysfunction (Giannuzzi

et al., 2003; Haykowsky et al., 2007). It is important to note

that exercise can have either positive or negative effects on the

heart dependent on the intensity, training type, or health of the

individual (Haykowsky et al., 2007; Fagard, 2011). Some

individuals may have greater risk in developing hypertension,

high blood pressure, and other cardiomyopathies based on

genetic factors and lifestyle. When utilized efficiently and

appropriately to the individual, exercise can become a

tremendous asset to conserving heart health (Fagard, 2011).

Surmounting amounts of evidence show that exercise can

indeed improve cardiac aging phenotypes such as cardiomyocyte

senescence, telomere shortening, and cell viability (Figure 3)

(Werner et al., 2008). In fact, experts recommend that

individuals begin engaging in exercise at least at middle-age,

since a lack of mid-life fitness is strongly correlated with

increased late-life morbidity, hospitalization rate, and a greater

risk for heart failure (Pandey et al., 2015). However, initiating an

exercise regimen late in life is no longer beneficial, as one

investigation demonstrated that 1 year of vigorous

trainingstarting at ~70 years old does not improve negative

cardiac remodeling compared to sedentary seniors (Fujimoto

et al., 2010). All subjects in this study underwent Doppler

echocardiography and maximal exercise testing which led

researchers to determine that the long-term period of exercise

imparts only minor LV remodeling and favorable, yet

insignificant, effects on arterial function and oxygen capacity.

Altogether these data solidify the notion that the beneficial effects

of exercise can be achieved if initiated by mid-life but not late in life.

Previous findings have shown that exercise-training can elicit

an elevated autophagic response in skeletal muscle and cardiac

tissue (He C. et al., 2012; Jamart et al., 2012). This is speculated to

occur in a BCL-2-dependent mechanism, as it was determined

that mutating three critical phosphorylation sites (Thr 69,

Ser 70 and Ser 84) within the non-structured loop of murine

BCL-2 led to a lack of stimulus-induced, but not baseline

autophagy (He C. et al., 2012). Similarly, another study

observed that mice subjected to wheel-running over a period

of 7 months increased autophagic flux in the heart and improved

left ventricular function (Bhuiyan et al., 2013). These seminal

findings continue to be upheld by current data: one recent study

confirmed how cardiac autophagy and mitophagy can be re-

established by exercise-training in a post-myocardial infarction-

induced heart failure animal model (Campos et al., 2017),

whereas another group determined that a swimming regime

can reduce myocardial fibrosis and apoptosis in aged mice

hearts (Zhao et al., 2018). Swimming was also able to reduce

isoproterenol-induced cardiac injury in mice compared to

sedentary mice (Jimenez et al., 2011). One group utilized the

mtDNA mutator mouse, which exhibits a lack of proofreading

mtDNA polymerase, resulting in a premature aging phenotype

(Safdar et al., 2016). However, these investigators observed that

this aging phenotype was reversed upon subjecting the mice to

endurance exercise. Not only were oxidative stress levels reduced

in these exercised-mice, but levels of mitochondrial biogenesis

increased. These findings imply that exercise can prevent nuclear

DNA damage through a reduction in ROS-induced stress.
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Indeed, endurance performance is greatly dependent on

mitochondrial fitness and biogenesis, since their respiratory

function lies at the root of the maximal oxygen consumption

capacity of an individual (Bishop et al., 2019). A recent study

demonstrated that PGC-1, a transcriptional regulator of genes

important for energy production and mitochondrial biogenesis,

is upregulated in rat hearts upon exercise training (Kianmehr

et al., 2020). Additionally, mitochondrial biogenesis can be

effectively stimulated by various exercise regimens, such as

single-leg cycling which was shown to increase mitochondrial

content in skeletal muscle compared to the untrained leg within

the same subject model (MacInnis et al., 2017). However, there is

no general consensus on whether high intensity exercise can

reliably induce mitochondrial biogenesis in old age (Bishop et al.,

2019).

Twelve week old mice (middle age) subjected to chronic

exercise training, resulted in elevated antioxidant glutathione

activity in the myocardium (Kakarla et al., 2005). However,

exercise only worsened the outcome of oxidative stress, as levels

of lipid peroxidation were also observed to increase (Figure 3). This

study demonstrated that chronic physical exercise is not sufficient

to protect the aged heart from oxidative stress. It is likely that the

increase in oxygen consumption and rise in metabolic rate that

occurs during exercise could promote ROS activity at the level of

lipid membranes, causing their dysregulation. Therefore, doubt

has been cast over the hypothesis that exercise-induced antioxidant

stimulation can help aged hearts cope with the harmful load of free

radicals. The pros and cons of exercisemust be considered to better

understand the extent of the benefits it can provide for the aged

heart.

Similar to exercise training, specific forms of dietary training

have been proposed to contribute to increased health benefits.

Caloric restriction (CR), which is the limited dietary intake of

calories, has demonstrated positive outcomes against aging.

Multiple studies demonstrate a strong link between over-

eating and cardiovascular disease, since strict dietary

restrictions in human patients successfully lowers blood

pressure, serum lipids, and maintains vascular health

(Holloszy and Fontana, 2007). Contrary to popular belief, the

combination of CR and exercise was shown to not provide an

additive benefit in lowering total body fat or enhancing

cardiovascular health (Redman et al., 2007). Instead, the

induction of an exercise regimen is equally as beneficial

compared to restricting caloric intake with nearly identical

outcomes, despite the enhancement of aerobic fitness provided

exclusively by exercise (Redman et al., 2007).

According to recent reports, there exists a correlation

between caloric restriction and life span extension (Figure 3)

(Sundaresan et al., 2012). Many past studies established that one

of the benefits of CR diets is the decrease in electron leakage and

prevention of membrane potential loss within mitochondria

(López-Lluch et al., 2006). Senescent mice given a calorie-

restricted diet have been observed to maintain metabolic

dependence on β-oxidation, and thus reduced the tendency of

the old heart to switch substrates from fats to glucose, compared

to age-matched mice on a typical diet (Dai et al., 2014). Another

investigation yielded evidence that suggests that a 40% caloric

reduction prevented a maladaptive redox state shift of reduced to

oxidized glutathione (GSH to GSSG) (Rebrin et al., 2003).

Interestingly, CR also correlates with the reduced expression

FIGURE 3
Behavioral and Medicinal Interventions against Cardiac Aging. Currently, various studies have implemented many approaches to reduce the
negative effects associatedwith the aging heart. Diets such as caloric restriction (CR), intermittent fasting (IF), and increasing antioxidant rich foods or
supplements have been investigatedwith regard to heart health. However, the latter was shown to be ineffective atmitigating the effects of aging. On
the other hand, CR and IF are both effective at reducing many of the negative consequences of aging. Exercise has been demonstrated to
enhance cardiac function in both mouse and human models, however it only produces beneficial effects when it is initiated during middle age and
may impose an increased oxidative stress burden. In addition to these lifestyle changes, medicinal intervention utilizing sirtuin stimulators SRT1720,
resveratrol, and polyamine spermidine have exerted positive effects against cardiac stress.
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of pro-apoptotic genes such as Bax, Bad, Caspase 9, and Capsase

11, whereas CR upregulated the expression of anti-apoptotic

regulator Bcl-x (Lee et al., 2002), and can also induce

mitochondrial biogenesis as well as bioenergetic efficiency

(López-Lluch et al., 2006). While earlier studies have shown

that CR can promote mitochondrial biogenesis in healthy and

young human skeletal muscle (Nisoli et al., 2005; Civitarese et al.,

2007), other reports have observed no connection between CR

and mitochondrial biogenesis within the mammalian heart

(Hancock et al., 2011). One group of investigators have

postulated that restricting caloric intake without inducing

malnutrition can lower mitochondrial free radical production

as a therapeutic avenue for attenuating oxidative stress in the

muscles of healthy humans, which may pose a translational

solution for aging cardiac tissue (Civitarese et al., 2007).

Finally, several reports demonstrate that CR can lower the

chances of developing CVD and contractile dysfunction,

observed in both murine and human models (Fontana et al.,

2004; Wagh and Stone, 2004; Meyer et al., 2006; Seymour et al.,

2006) and short-term CR suppress gene expression of key

regulators involved with cardiac fibrosis (Dhahbi et al., 2006).

Another form of dietary restriction that positively effects

health throughout aging is intermittent fasting (IF). Alternate-

day fasting is a form of IF that has been attributed to beneficially

lowering hypertrophic phenotypes in aged rat hearts by reducing

age-induced inflammation by inhibiting oxidative damage

(Figure 3) (Castello et al., 2010). In addition to ameliorating

hypertrophy, alternate-day fasting also extended life-span and

rescues homeostatic metabolism in humans and rhesus monkey

subjects (Anderson et al., 2009; Colman et al., 2009). Researchers

suggest that the mechanism of action behind IF is

downregulation of pathological myocardial hypertrophic

markers such as extracellular signal-regulated kinase 1 and 2

(ERK1/2) and phosphoinositide 3-kinase γ (PI3Kγ) (Castello

et al., 2011). It has become clear that regulating the diet can

impose promising health benefits for extending human life by

delaying the onset of a normal aging phenotype.

Since oxygen radicals and other reactive molecular species have

been heavily implicated in the progression of degenerative diseases,

antioxidant supplements have become more commercially

advertised and sold under the societal premise that they improve

health (Gutteridge andHalliwell, 2010). Antioxidant-rich diets have

also been considered for a series of clinical trials with the goal of

minimizing the elevated levels of oxidative stress that correlates with

age. Unfortunately, many of these trials and experiments did not

observe a positive effect with increasing dietary antioxidant

supplements with regard to onset prevention or reducing

symptoms of age-related diseases (Figure 3) (Sadowska-Bartosz

and Bartosz, 2014; Conti et al., 2016; Gutteridge and Halliwell,

2018). In fact, administering large doses of antioxidant not only has

demonstrated in many cases no therapeutic effect, but it has also

been associated with worsening pathological outcomes in human

subjects. This unexpected finding has been termed “the antioxidant

paradox” since this outcome has puzzled investigators (Halliwell,

2000). Instead of supplying high concentrations of antioxidants in

the diet, it seems that a more effective approach may be to promote

and stimulate endogenous antioxidant defenses. An

aforementioned study observed that overexpression of

mitochondrial targeted catalase in transgenic rats extend life by

increasing antioxidant defenses, therefore there may be promise in

increasing intracellular mitochondrial antioxidants instead of

obtaining them externally (Schriner et al., 2005; Dutta et al.,

2014). Additionally, investigations combining antioxidant rich

diets with exercise regimens may show an additive effect since

some studies demonstrate increasing exercise also increases

oxidative stress.

Polyphenols, which are currently on the market as dietary

antioxidants, can be detected at the level of the murine heart after

digestion (Manach et al., 2004). A recent investigation

determined that consumption of traditional Chinese medicine

(TMC), which contains a variety of polyphenol antioxidants, may

serve as a powerful intervention against cardiac aging phenotypes

by means of targeting the UPS (Chen et al., 2021). One of the

most popular dietary antioxidant polyphenol compounds is

resveratrol, which was demonstrated to have anti-aging and

cardioprotective effects through a nitric oxide (NO)-

dependent mechanism (Figure 3) (Das et al., 2011). One

recent study has shown that old rats supplemented with

resveratrol over a 10-week period exhibited significantly

reduced cardiac inflammatory, oxidative, and apoptotic

markers (Torregrosa-Muñumer et al., 2021). Previous

evidence suggests that resveratrol can also reverse cardiac

hypertrophy and contractile dysfunction after it develops

(Juric et al., 2007; Chan V. et al., 2011; Thandapilly et al.,

2013). Pre-clinical studies demonstrated that resveratrol was

promising in treating CVD in mice models (Zordoky et al.,

2015), which led to testing its translation to humans. Several

randomized clinical trials performed over the span of a decade

provided evidence that when resveratrol is administered to

human patients with heart failure, there were improvements

to left ventricle diastolic function (Magyar et al., 2012; Militaru

et al., 2013; Dyck et al., 2019). However, some resveratrol-focused

clinical studies produced contradicting and insignificant results

(Smoliga et al., 2013). Furthermore, there exists no consensus in

the mechanism of resveratrol, as it has been hypothesized to

metabolically stimulates antioxidant activity to mobilize against

oxidative stress (Carrizzo et al., 2013), activates deacytelase

SIRT1 for the induction of mitochondrial biogenesis

(Arunachalam et al., 2010), and/or induce metabolic sensor

AMPK activity to accomplish beneficial vasodilatory effects

(Dolinsky et al., 2013). Additional studies are needed for

resveratrol to be considered a reliable treatment against the

age-related decline of heart function in humans.

As previously discussed, the sirtuin proteins have been

recognized as therapeutic candidates for enhancing the longevity

of heart health with respect to aging. Interestingly, caloric restriction
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has been shown to activate sirtuin 6 (SIRT6) to promote longevity

and anti-aging in aged Fisher 344 rats (Kanfi et al., 2012). Due to the

beneficial anti-aging potential of the sirtuin family, pharmacological

SIRT-activators have been clinically implemented. Thus far, the

effects of SIRT1-activating compound SRT1720 have resulted in

an enhancement of cardiac contractility in aged mice hearts

(Figure 3) (Ren et al., 2017). Administration of polyamine

spermidine, another hypothesized stimulator of SIRT1, to old

C57BL6 mice remediated aging phenotypes such as hypertrophy

and systolic/diastolic pump function (Eisenberg et al., 2016).

Although these compounds have yet to be tested in human aging

studies, this evidence has certainly garnered attention and may have

therapeutic potential (Wirth et al., 2019).

To summarize the main findings regarding caloric restriction,

intermittent fasting, and exercise with regard to the aging heart as it

currently stands, there is increasing evidence that restricting caloric

intake or increasing energy expenditure through physical endurance

training is beneficial for the heart. In regards to mitochondrial

quality control and turnover, it is speculated that reducing calories

leads to increased autophagy and probably mitophagy which in turn

may enhance mitochondrial fitness. These models demonstrate the

need to expand our understanding about health and diet, and the

diets discussed within this review should be further evaluated

especially for older aged individuals.

9 Future perspectives

The American Heart Association has reported that despite

advancements for improving cardiac health, the prevalence of

CVD is still escalating in the elderly population (Benjamin et al.,

2019). Targeting the factors responsible for the harmful and often

fatal deterioration of the heart has remained elusive, partly due to

current ineffective treatments, as well as the complexity of age-

related CVD as a whole. Here we have highlighted the evidence

reported within the literature concerning the multifaceted forms

of dysfunction and dysregulation that altogether amalgamate

into the downfall of the aging myocardium. According to the

general consensus, the contributors of age-related myocardial

dysfunction compromise maladaptive changes in metabolism,

dysregulation of redox reactions, poor protein quality control,

decreased mitochondrial biogenesis, and induction of pro-cell

death pathways (Paneni et al., 2017), all of which lead to

increased cardiac dysfunction. Despite the collection of

knowledge we have gained over the last several decades, there

is still much we do not understand about cardiac aging.

Some questions indeed remain, for example; at the onset of

cardiac-aging phenotypes, which signaling pathways are the

primary drivers cardiac aging? Can these pathways be targeted

in combination for additive protection? What is the maximal

capacity of the human lifespan if optimal heart health is

maintained? Once these questions are answered, we may

eventually be able to attenuate negative aging defects. Notably,

few current methods reduce maladaptive myocardial remodeling

in humans in late adulthood. While changes in lifestyle such as

exercise and diet are the most powerful behavioral interventions

to thwart cardiac dysfunction, we must determine additional

ways to minimize the associated side effects such as oxidative

stress and potential nutrition deficit.

As we progress into the future, the goal of maintaining

cardiac health during aging will become more feasible with the

identification of novel therapeutic targets. The objective of

therapeutic interventions should be to target cell death, ensure

long-term mitochondrial metabolic function, and prevent the

accumulation of toxic or dysregulated cellular components.

Treatments that address more global, multi-faceted aspects of

cardiac aging will ensure long-term mitochondrial health

within the elderly heart. With these combined efforts, it is

just a matter of “time” until we reap the benefits of

maintaining heart health into old age and expand the

boundaries of human life.
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