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Abstract
Neonatal calf diarrhea (NCD) andmortality cause significant losses to the dairy industry. The preweaning dairy calf mortality risk
in Uruguay is high (15.2%); however, causes for these losses are largely unknown. This study aimed to assess whether various
pathogens were associated with NCD and death in Uruguayan dairy calves and whether these infections, diarrhea, or deaths were
associated with the failure of transfer of passive immunity (FTPI). Contemporary diarrheic (n = 264,) and non-diarrheic (n = 271)
1- to 30-day-old calves from 27 farms were sampled. Feces were analyzed by antigen-capture ELISA for Cryptosporidium spp.,
rotavirus, bovine coronavirus, and Escherichia coli F5+, RT-PCR for bovine astrovirus (BoAstV), and bacterial cultures for
Salmonella enterica. Blood/serum was analyzed by RT-PCR or antigen-capture ELISA for bovine viral diarrhea virus (BVDV).
Serum of ≤ 8-day-old calves (n = 95) was assessed by refractometry to determine the concention of serum total proteins (STP) as
an indicator of FTPI. Whether the sampled calves died before weaning was recorded. At least one pathogen was detected in
65.4% of the calves, and this percentage was significantly higher in diarrheic (83.7%) versus non-diarrheic (47.6%) calves.
Unlike the other pathogens, Cryptosporidium spp. and rotavirus were associated with NCD. Diarrheic calves, calves infected
with any of the pathogens, and calves infected with rotavirus had significantly lower concentrations of STP. Diarrheic calves had
higher chances of dying before weaning than non-diarrheic calves. Diarrheic calves infected with S. enterica were at increased
risk of mortality. Controlling NCD, salmonellosis, cryptosporidiosis, and rotavirus infections, and improving colostrum man-
agement practices would help to reduce calf morbi-mortality in dairy farms in Uruguay.
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Introduction

Dairy farming in Uruguay is socio-culturally and economical-
ly important, as Uruguay is one of the top per capita

consumers of dairy products in Latin America [1], and ap-
proximately 70% of the milk produced in the country is
exported [2]. Uruguayan dairy farming systems are largely
pasture-based, with 75% of the diet of the milking herd being
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farm-grown forage [3]. From 1985 to 2016, milk production
grew linearly at a rate of 3.2% per year, with an attendant
reduction in the number of farmers and the area allocated to
dairy farming. This growth was due to increased stocking
rates, individual milk production and the milking cow:dry
cow ratio [2], indicating a production intensification process.
However, the national dairy stock did not grow significantly
over the past decade [2], which has partly been attributed to a
relatively high (15.2%) nationwide annual dairy calf mortality
risk from birth to weaning [4]. Despite this, little information
is available in the scientific literature on the causes of dairy
calf diseases and death in this country.

Neonatal calf diarrhea (NCD) is the leading cause of dairy
calf morbidity and mortality within the first month of life [4,
5]. Affected calves suffer from dehydration, electrolyte imbal-
ances, and metabolic acidosis, which, if left untreated, can
lead to death [6]. Long-term effects of NCD in dairy heifers
include reduced weight gain and development, increased time
to first calving and reduced milk production in the first lacta-
tion, which result in significant economic losses to the live-
stock sector [7, 8]. As the leading cause of dairy calf morbidity
and mortality, NCD also raises serious concerns on newborn
calf welfare [9] and the excesive use of antibiotics with poten-
tial increase of antibiotic resistance [10, 11].

NCD is a complex and multifactorial syndrome, it can be
caused by several infectious and parasitic agents, including
viruses (e.g., rotavirus, bovine coronavirus -BCoV-, and bo-
vine viral diarrhea virus -BVDV-), bacteria (e.g., enterotoxi-
genic and enteropathogenic/enterohemorrhagic Escherichia
coli and Salmonella enterica), and protozoa (e.g.,
Cryptosporidium spp. and Eimeria spp.) [12–15], some of
which are zoonotic. Although under field conditions BVDV
rarely causes diarrhea in neonatal calves that receive colostral
antibodies, it can be associated with perinatal and neonatal
mortality due to congenital infections [16, 17]. Other agents
that infect neonatal calves, such as bovine astrovirus
(BoAstV), have been suspected to play a causative role in
NCD, although attempts to experimentally reproduce diarrhea
in gnotobiotic calves have been unsuccessful [18], and infor-
mation available from field studies is limited [15]. Studying
causality in spontaneous outbreaks of diseases with multifac-
torial etiologies is challenging and requires extensive labora-
tory testing for various pathogens. Agents that cause NCD can
be found both in diarrheic and non-diarrheic calves, and the
same or different calves in an outbreak can be coinfected by
two or more causative agents [19–21], making interpretation
of individual test results difficult in clinical contexts.

Additionally, NCD is frequently associated with nutritional
and/or immunological factors, such as failure in the transfer of
passive immunity (FTPI) [8, 22], and environmental and man-
agement factors that either favor the transmission of the caus-
ative agents [20] or increase the susceptibility of the calves.
Transfer of passive immunity is arguably the single most

important non-infectious factor determining neonatal calf
health and survival [23]. Calves with FTPI are at increased
risk of disease and mortality [22, 24], and a large proportion of
calf deaths up to 3 weeks of life can be attributed to FTPI [5,
25].

NCD outbreak investigations should be comprehensive
and consider not only the infectious and parasitic etiological
agents in affected and unaffected calves, but also epidemio-
logical aspects and herd management practices that can vary
greatly between farms [26]. In this context, farm-matched
case-control studies represent adequate designs for the evalu-
ation of possible associations between single or mixed infec-
tion and clinical outcomes, to better understand the causal role
of the different agents while minimizing confounders. NCD
has been broadly studied through cross-sectional [19, 20, 27,
28] and, to a lesser extent, case-control designs [21, 29, 30];
although these case-control studies were not matched consid-
ering the farms of origin of the calves, somewhat limiting the
conclusions that can be drawn from them.

Because causes of NCD andmortality in Uruguayan dairies
are largely unknown, in this study, we aimed at assessing the
association of several known (Cryptosporidium spp., rotavi-
rus, BCoV, E. coli F5+, S. enterica), putative (BoAstV) and
occasional (BVDV) pathogens for calves with diarrhea and/or
death, and whether these infections, diarrhea, or death were
associated with FTPI through a farm-matched case-control
study.

Materials and methods

Study design

A case-control study was conducted in 27 pasture-based, com-
mercial dairy farms in six Uruguayan departments (San José,
Río Negro, Colonia, Flores, Florida and Soriano) between
January and November 2016. Farms were sampled by conve-
nience because they were experiencing spontaneous outbreaks
of NCD. In all farms, Holstein was either the only or the
predominant breed of cattle; two farms had some Holstein-
Jersey crosses. Contemporary calves with diarrhea (cases)
and a similar number of non-diarrheic calves (controls) were
sampled in each farm. Only calves aged 1–30 days were in-
cluded; control calves were within an age range of 0–13 days
of their respective cases. On average, 19.8 calves per farm
(range: 13–29) were sampled, totaling 535 calves. Overall,
49.3% (n = 264) of the calves included in the study were
experiencing diarrhea (cases) at the time of sampling, and
the remainder 50.7% (n = 271) were not experiencing diarrhea
and did not have a history of diarrhea (controls). The overall
case:control ratio was 1:1.03. The sample size was calculated
using an online epidemiological calculator [31], considering a
power of 80% to detect an association between diarrhea and a
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given infectious/parasitic agent, a percentage of exposed con-
trols of 5%, and an Odds Ratio (OR) of 2.5 with a 95% con-
fidence level.

Animal specimens

Individual fecal, whole blood, and serum samples were ob-
tained from each calf by a veterinarian, following procedures
approved by INIA´s animal ethics committee for the use of
animals in experimentation (protocol #20199). Fecal samples
were collected from the rectum using individual sterile fecal
cups and gloves. A fecal score was assigned to each sample as
previously described [32], based on which calves were classi-
fied as either non-diarrheic (controls; fecal score ≤ 1) or diar-
rheic (cases; fecal score ≥ 2). Additionally, the fecal samples
were assessed macroscopically for the presence of fibrin and/
or mucus. Blood samples were drawn by jugular venipuncture
using individual sterile needles and syringes and collected in
red top tubes for serum and heparinized tubes (BDVacutainer,
Franklin, NJ) for whole blood.

Data collection

At the end of the calf-rearing period in each of the 27 farms, a
questionnaire was conducted to the farmers to assess whether
the individual calves sampled for this study had died within
the rearing period (before weaning), until 60 days of age (fol-
low-up time), and the age in days at death, when available
(Supplementary Material 1).

Pathogen detection in feces

Enzyme-linked immunosorbent assay (ELISA)
for coproantigen detection

A commercial monoclonal antibody-based antigen-capture
ELISA kit (Pathasure Enteritis 4, Biovet Inc., St-Hyacinthe,
Canada) was used to detect Cryptosporidium spp., rotavirus,
BCoV and E. coli F5+ (K99+) antigens in fresh feces from all
535 calves [33], 24–72 h after sample collection, following the
manufacturer´s recommendations.

Salmonella enterica culture and serotyping

All 535 fecal samples were cultured aerobically in
tetrathionate broth (Oxoid, code CM0671) for 24–48 h at
37°C (selective enrichment) after which 100 μl of broth were
plated onto xylose-lysine-deoxycholate (XLD) agar (Oxoid,
code CM0469). Suspect colonies were selected, and routine
biochemical tests were performed for identification of
S. enterica, as previously described [34]. Salmonella enterica
serotyping was performed following the Kauffman-White-Le
Minor classification scheme [35] at the bacteriology service of

the “Instituto de Higiene, Facultad de Medicina, Universidad
de la República,” in Montevideo, Uruguay.

RT-PCR for bovine astrovirus

A total of 396 fecal samples were diluted 1:10 (v:v) in
phosphate-buffered saline solution and centrifuged at 3000g
at 4°C for 20 min. Supernatants were collected and stored in a
freezer at −80°C. Viral RNA was extracted using QIAamp
cador Pathogen Mini Kit (Qiagen) with an elution volume of
50 μL. Reverse transcription (RT) was carried out with
RevertAid Reverse Transcriptase (ThermoFisher, Scientific)
and random hexamer primers (Qiagen) to obtain cDNA that
was stored at -20°C. BoAstV PCR was performed using
MangoMix (Bioline) and primers BoAstV-F and BoAstV-R
that amplify a 432-nucleotide fragment of the polymerase
gene of BoAstV, as described elsewhere [36]. PCR products
were visualized in 2% agarose gels. The results were
expressed as positive or negative.

Bovine viral diarrhea virus detection in blood or
serum

Frozen samples of serum (n = 418) or whole blood (n = 62)
were processed for BVDV detection, either by a commercial
antigen-capture ELISA (BVDVAg/Serum Plus Test, IDEXX,
Switzerland) (136 serum and 62 whole blood samples) or by
RT-PCR (282 serum samples). The RT-PCR was performed
as previously described [37].

Assessment of transfer of passive immunity in
neonatal calves

Serum samples from all calves that were ≤ 8 days of age at the
time of sampling (n = 95) were analyzed for serum total solids
using an optic refractometer (ATAGO PAL-1, Tokyo, Japan),
as an indicator of the concentration of serum total proteins
(STP) in g/dl. A cutoff value of < 5.6 g/dl was considered to
determine FTPI, as previously described [38]. Additionally,
the results were categorized to reflect calves with poor (< 5.1
g/dl), fair (5.1–5.7 g/dl), good (5.8–6.1 g/dl), or excellent (>
6.2 g/dl) transfer of passive immunity as suggested byGodden
et al. [23].

Data and statistical analyses

Data of each sampled calf, including the age at sampling, farm
of origin, occurrence of diarrhea, presence or absence of fibrin
and/or mucus in feces, all laboratory test results (pathogen
detection, STP concentration), and the information from the
questionnaire, including whether calves had died or survived
during the preweaning period (follow-up time) was collected.
Data was entered into a Microsoft Excel 2013 spreadsheet to
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create a digital database (Supplementary Material 1) that was
used as a template for statistical analyses. A brief description
of the statistical analyses are presented in the following para-
graphs; a more detailed description is available in
Supplementary Material 2.

Descriptive statistics of the raw data including proportions,
means, and standard deviations (SD, for data with normal dis-
tribution), median and interquartile range (IQR, for data not
normally distributed) were calculated. Differences between
the proportions of diarrheic calves by age in weeks, the propor-
tions of diarrheic and non-diarrheic calves that tested positive to
at least one of the pathogens and to ≥ 2 pathogens, and the
proportions of diarrheic and non-diarrheic calves that died be-
fore weaning were assessed by chi-square. Differences in the
STP concentrations (g/dl) in diarrheic versus non-diarrheic
calves, as well as calves that tested positive or negative for (a)
given pathogen(s) were evaluated by analyses of variance using
the procedure PROC MIXED (SAS University Edition, SAS
Institute Inc. Cary, NC, USA), controlling for herd as a random
effect. Results were expressed in least squares means (LMS)
and standard errors of the means (SEM).

A logistic regression model was fit to assess the effect of
the pathogens on diarrhea. The model accounted for the struc-
ture of the sample design in which diarrheic calves (cases)
were matched with control calves within a farm [39]. The
variable “age” grouped in weeks (1, 2, 3, and > 3) was includ-
ed in the model to adjust the OR. Interaction terms between
the pathogens were tested to assess the effects of co-infections.
The model was made using the procedure PROC LOGISTIC
including the farm identification in the STRATA statement;
the model fit was checked by the Akaike Information
Criterion (AIC) and r squared [22, 40, 41].

A univariate generalized estimating equation (GEE)
repeated-measures logistic model was made to assess the ef-
fect of the concentration of STP on diarrhea, rotavirus, BCoV,
and E. coli F5+ detection adjusted by the age of the calves in
days. This hypothesis was tested because vaccination against
these pathogens is a common practice in Uruguayan dairy
farms. For this model, values of STP concentration < 5.6 g/
dl were classified as low and compatible with FTPI, as previ-
ously described [38].

A multivariate GEE repeated-measures logistic model was
employed to assess the association between the presence of
fibrin or mucus in the feces and the pathogens adjusted by age
of the calves in weeks.

Finally, we tested the risk of death among diarrheic calves
infected with S. enterica, rotavirus and Cryptosporidium spp.
adjusted by age in days using the same multivariate GEE
model structure but including the Poisson instead of the bino-
mial distribution to estimate the risk of death [42]. BCoV,
BoAstV, BVDV, and E. coli F5+ were not included because
there were either only one (BCoV, BVDV and E. coli F5+) or
too few (BoAstV) deceased diarrheic calves infected with

these pathogens. For this, data from all the diarrheic calves
for which the questionnaire was available (118 calves) was
used; these calves were followed-up until the end of the pre-
weaning period.

A significance level (alpha) of 5% (p < 0.05) was consid-
ered for all the statistical analyses.

Results

At the time of sampling, the calves had a median of 11 days of
life (IQR = 9), with a range of 1 to 30 days [non-diarrheic
calves = 12 (IQR = 14), diarrheic calves = 11 (IQR = 5)]. The
proportion of diarrheic calves was 39.9% (61/153) in the first
week of life, 71.8% (158/220) in the second, 28.9% (33/114)
in the third and 25.0% (12/48) after the third week of life. The
proportion of diarrheic calves was significantly higher in the
second week of life (p < 0.001). Fibrin or mucus were ob-
served in the feces of 8.1% (21/259) and 47.1% (122/259) of
diarrheic calves and 2.6% (7/266) and 32.3% (86/266) of non-
diarrheic calves, respectively.

The questionnaire was completed for 241 calves (118 cases
and 123 controls), 19.9% (48/241) of which had died before
weaning at 5–37 days of age (median age at death: 16, IQR =
13). The remainder 80.1% (193/241) of the calves survived
after weaning (> 60 days of age). Thirty-one (64.6%) of the
calves that died before weaning were diarrheic, and the re-
mainder 35.4% (17/48) were non-diarrheic at the time of sam-
pling. Of the 193 calves that survived after weaning, 45.0%
(87/193) were diarrheic, and the remainder 55.0% (106/193)
were non-diarrheic at the time of sampling. The proportion of
calves that died before weaning was significantly higher
among diarrheic than non-diarrheic calves (p < 0.02).
Individual results for each calf in each farm are shown in
Supplementary Material 1.

Detection of pathogens in feces and BVDV in
serum/blood

At least one of the pathogens was detected in 65.4% (350/535)
of the calves, this percentage was significantly higher in diar-
rheic (83.7%, 221/264) versus non-diarrheic (47.6%, 129/
271) calves (p < 0.001). In 34.6% (185/535) of the calves no
agents were detected, being 76.8% (142/185) of them non-
diarrheic and the remaining 23.2% (43/185) diarrheic ones.
Individual pathogens and coinfections were identified in
43.2% (231/535) and 22.2% (119/535) of the calves, respec-
tively. The frequencies of detection of each pathogen individ-
ually and in coinfections are shown in Table 1and
Supplementary Material 1. Cryptosporidium spp., BoAstV
and rotavirus were the most frequently detected agents, both
at the animal and farm levels (Table 1). Cryptosporidium spp.
and rotavirus were detected with a significantly higher
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frequency in diarrheic calves, in contrast to BoAstV, which as
a single infection had a significantly higher frequency in non-
diarrheic calves. The proportion of diarrheic calves infected
with one pathogen was 59.3% (137/231). In the 119 calves
with coinfections (84 cases and 35 controls), two (89.1%; 106/
119) or three (10.9%; 13/119) pathogens were identified. A
proportion of 69.8% (74/106) of the calves coinfected with
two pathogens were diarrheic, while the remainder 30.2%
(32/106) were non-diarrheic. Of the 13 calves coinfected with
three pathogens, 76.9% (10/13) were diarrheic. The propor-
tion of diarrheic calves coinfected with ≥ 2 pathogens was
70.6% (84/119). All isolated Salmonella strains were
S. enterica subspecies enterica serotype Typhimurium, except
for two isolates from one farm that were serotype Anatum.

Association between pathogens, diarrhea, and
preweaning death

In the final multivariate conditional logistic regression model
individual infections with Cryptosporidium spp. (OR = 1.65,
95% CI = 1.25–2.17, p = 0.0004), rotavirus (OR = 1.79, 95%
CI = 1.36–2.35, p < 0.0001), and their interaction (p = 0.0274)
were associated with diarrhea. No association was observed
between diarrhea and infection with BCoV, E. coli F5+ or
S. enterica. There was an interaction effect between
Cryptosporidium spp. and rotavirus, which means that the
effects of one of this pathogens on diarrhea differered accord-
ing with the infection status by the other and viceversa. The
odds of diarrhea were higher in calves infected with
Cryptosporidium spp. that were negative for rotavirus (OR =
5.77, 95% CI = 3.47–9.61), and in calves infected with rota-
virus that were negative forCryptosporidium spp. (OR = 4.93,

95% CI = 2.31–10.54), than in calves that were positive for
both agents. The model with interaction terms had the best fit
compared with the full model and with the model without
interaction according to the AIC (507.6) and r squared values
(0.35). Calves in the second week of life had significantly
higher odds of being diarrheic (OR = 2.16, 95% CI = 1.25–
3.69, p < 0.0001), while the odds decreased in calves in the
third week of life (OR = 0.6, 95% CI = 0.33–1.11, p < 0.03).
There were no associations between diarrhea and infection
with BVDV (OR = 0.55, 95% CI = 0.08–3.70, p = 0.54) or
BoAstV (OR = 0.85, 95% CI = 0.48–1.50, p = 0.58).

Calves without diarrhea at the time of sampling had lower
chances of dying before weaning (OR = 0.40, 95% CI = 0.19–
0.84, p < 0.02) than diarrheic calves.

Pathogens and the presence of fibrin or mucus in
feces

Individual infections with S. enterica and rotavirus were sig-
nificantly associated with the presence of fibrin in the feces in
the multivariate repeated-measures logistic model. The odds
of S. enterica-positive calves presenting fibrin in the feces was
5.8 times greater than for S. enterica-negative calves (OR =
6.8, 95%CI: 2.4–18.9, p < 0.001), while the odds of rotavirus-
positive calves presenting fibrin in the feces was 1.2 times
greater than for rotavirus-negative calves (OR = 2.2, 95%
CI: 1.1–4.4, p = 0.03). None of the evaluated pathogens were
associated with the presence of mucus in the feces.

Table 1 Overall frequency of detection of pathogens in 535 diarrheic and non-diarrheic dairy calves from 27 farms in Uruguay

Tests (sample type
and total No. analyzed)

No. of samples analyzed
from diarrheic and
non-diarrheic calves

Total no. (%) of
positive calves

Total no. (%) of
diarrheic positive
calves

Total no. (%) of
non-diarrheic
positive calves

No. of farms with ≥ 1 positive
animal (% of total No. of farms,
n = 27)

Cryptosporidium spp.
ELISA (feces, 535)

264 and 271 256 (47.8%) 183 (69.3%) 73 (26.9%) 27 (100.0%)

BoAstV
RT-PCR (feces, 396)

186 and 210 86 (21.7%) 39 (21.0%) 47 (22.4%) 21 (77.8%)

Rotavirus
ELISA (feces, 535)

264 and 271 94 (17.6%) 64 (24.2%) 30 (11.1%) 24 (88.9%)

Salmonella enterica
isolation (feces, 535)

264 and 271 21 (3.9%) 14 (5.3%) 7 (2.6%) 8 (29.6%)

Escherichia coli F5+
ELISA (feces, 535)

264 and 271 11 (2.1%) 6 (2.3%) 5 (1.8%) 5 (18.5%)

BCoV
ELISA (feces, 535)

264 and 271 8 (1.5%) 5 (1.9%) 3 (1.1%) 5 (18.5%)

BVDV antigen
ELISA or RT-PCR

(serum/blood, 480)

231 and 249 6 (1.3%) 4 (1.7%) 2 (0.8%) 4 (14.8%)

ELISA enzyme-linked immunosorbent assay, BoAstV bovine astrovirus, RT-PCR reverse transcriptase polymerase chain reaction, BCoV bovine coro-
navirus, BVDV bovine viral diarrhea virus
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Transfer of passive immunity, diarrhea, pathogens,
and preweaning death

The STP concentration was assessed in 95 ≤ 8-day-old calves
with (n = 40) and without (n = 55) diarrhea, 45 of them
(47.4%) had FTPI based on the cutoff proposed by [38]
(STP < 5.6 g/dl). According to the four-level categorization
suggested by Godden et al. [23], 28.4% (27/95), 26.3% (25/
95), 13.7% (13/95) and 31.6% (30/95) of the calves had poor,
fair, good, or excellent transfer of passive immunity, respec-
tively. The overall mean STP concentration was 5.64 g/dl (SD
= 0.9, min = 4, max = 8.6), the LSM for the STP concentration
was 5.81 g/dl (n = 55, SEM = 0.20) in non-diarrheic calves,
and 5.36 g/dl (n = 40, SEM = 0.19) in diarrheic calves, these
differences were statistically significant (p = 0.0445).
Similarly, the STP concentration was significantly lower in
calves infected with any of the pathogens under study (n =
62, LSM = 5.40 g/dl, SEM = 0.16) than in those that were
negative to all tested pathogens (n = 33, LSM = 6.08 g/dl,
SEM = 0.21) (p = 0.0016). Although calves with concentra-
tions of STP ≥ 5.6 g/dl had 54.0% lower odds of presenting
diarrhea than calves with STP concentrations < 5.6 g/dl (OR =
0.46, 95% CI = 0.21–1.03, p = 0.059), this difference was not
statistically significant.

The calves that tested positive only for rotavirus had sig-
nificantly lower concentrations of STP (n = 13, LSM = 5.20
g/dl, SEM = 0.24) than the negative ones (n = 82, LSM = 5.67
g/dl, SEM = 0.16) (p = 0.0469). Calves with STP concentra-
tions ≥ 5.6 g/dl had 64.0% lower odds of being positive to
rotavirus than calves with concentrations of STP < 5.6 g/dl
(OR = 0.36, 95% CI = 0.12–1.07, p < 0.07), this difference
was not statistically signicant. There were no associations be-
tween the STP concentration and infections by BCoV or
E. coli F5+, or with preweaning death.

Pathogens and risk of death during the preweaning
period in diarrheic calves

The risk of death before weaning was 0.9 times higher in
diarrheic S. enterica-positive calves than in diarrheic
S. enterica-negative ones (RR = 1.90, 95% CI = 1.13–3.16,
p = 0.015). The other evaluated pathogens were not associated
with increased risk of death of diarrheic calves before
weaning.

Discussion

NCD is one of the leading causes of death in dairy calves [5].
In coherence with this, in our study, calves that manifested
diarrhea early in their lives had significantly higher chances of
dying before weaning than contemporary non-diarrheic ones,
indicating that controlling and preventing NCD regardless of

its cause would aid in reducing calf mortality in Uruguayan
dairy farms. As a multifactorial syndrome associated with
various infectious and parasitic agents, as well as non-
infectious factors [13], determining its etiology is a complex
process that usually requires laboratory testing along with
clinical and epidemiological investigations. In this work, the
frequency of infection with various known or putative patho-
gens, and their association with NCD, the presence of fibrin or
mucus in feces, FTPI and death, was evaluated through a
large-scale farm-matched case-control study in contemporary
calves with and without diarrhea. Case-control studies are key
to identify the possible associations and the role of the agents
in disease, since most of the causative agents of NCD can be
found in clinically healthy calves, and therefore their mere
presence does not warrant disease causality. Additionally, be-
cause NCD is a multifactorial syndrome, the interaction be-
tween different potential etiologies needs to be considered in
studies aiming at assessing causality. Case-control studies
with large numbers of dairy calves that investigate multiple
possible etiologies of NCD and conduct statistical analyses to
assess interactions between multiple agents to obtain robust
and reliable epidemiological information are scant in the sci-
entific literature [21, 29, 30].

In our study, at least one of the evaluated pathogens was
detected in 65.4% of the 535 calves, and 83.7% of the 264
diarrheic calves. The attributable factor in exposed calves was
0.82 (not shown), meaning that 82% of the NCD cases may be
attributed to the studied agents. This also suggests that other
infectious (i.e., attaching and effacing -enteropathogenic and
enterohemorrhagic- E. coli) or non-infectious (i.e., nutritional)
factors not assessed in this study, may also be contributing to
NCD in a smaller proportion of cases. In our study, the pro-
portion of diarrheic calves was higher in the second week of
life, which indicates that calves are exposed to diarrheagenic
agents early after birth, as observed by other authors [20, 43].
A decline in the levels of colostral neutralizing antibodies in
the intestine is the main determinant for the occurrence of
infectious diarrhea during the second week of life [44, 45].

Themost frequently detected agents wereCryptosporidium
spp., BoAstV and rotavirus, both as individual infections and
coinfections. This is remarkable given the high frequency of
detection of these agents at the farm level. The detection fre-
quencies of rotavirus in diarrheic (24.2%) or non-diarrheic
(11.1%) calves in our study were much lower than those re-
ported by RT-qPCR by Castells et al. [46] in the same country
using mostly the same sample set (72.1% and 59.9%, respec-
t ively). In our study, this frequency is probably
underestimated considering that the detection limit and the
sensitivity of the antigen-capture ELISA are lower than RT-
qPCR, mainly in subclinical infections, and neutralizing anti-
bodies derived either from colostrum or active immune re-
sponses may interfere with viral detection by antigen-capture
ELISA [47]. Given the high frequency of these pathogens,
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transmission routes within and between farms need to be fur-
ther studied locally to better understand their epidemiological
cycle. Rotavirus andCryptosporidium spp. are highly resistant
to environmental conditions; calves get infected by contact
with feces from dams, which shed these pathogens subclini-
cally contaminating the udder or calving areas. As calves are
the main biological amplifyers of these enteric pathogens,
transmission between calves occurs by direct contact in com-
munal pens, or indirect contact by fecal contamination of rear-
ing utensils [48]. Waterborne transmission seems plausible,
considering that water is the main transmission route for
Cryptosporidium spp. and has also been suggested for group
A rotavirus in dairy calves in Uruguay [49], and that most
dairy farms in the country administer untreated underground
water or surface water to livestock. Given the geographic
proximity of the dairy calf rearing areas and natural surface
watersources in Uruguay, the dense network of rivers and the
relatively high annual rainfalls and occasional flooding events
in this country, calves pose a risk for surface water contami-
nation with fecal pathogens, notably Cryptosporidium spp.
[50]. Because some subtypes of Cryptosporidium parvum
are zoonotic and cattle are reservoir of potentially zoonotic
strains [51, 52], and considering that Cryptosporidium spp.
has been identified as a cause of diarrhea in children in
Uruguay [53], we further speciated and subtyped the crypto-
sporidia detected in calves in this study. Interestingly, of seven
C. parvum subtypes detected in 166 calves, five subtypes
detected in 143 calves from nearly all farms had been detected
in humans elsewhere and have zoonotic potential [50].

Regarding coinfections and interactions between
Cryptosporidium spp. and rotavirus, both agents were associ-
ated with diarrhea in calves that had individual infections with
either pathogen, and in those that were coinfected. However,
an unexpected finding was that in coinfected calves the odds
of diarrhea were lower than in those infected with either path-
ogen. Because Cryptosporidium spp. and rotavirus are both
intracellular pathogens that invade and affect the same target
cells (superficial enterocytes) of the small intestine [54, 55],
resulting in similar lesions, it can be speculated that they oc-
cupy the same cellular or subcellular niches (i.e., receptors,
signaling pathways), and/or that infection with one of them
somehow interferes with the ability of the other to cause fur-
ther intestinal damage and diarrhea. A study in mice experi-
mentally infected withC. parvum and a strain ofEnterococcus
faecalis administered as a probiotic demonstrated that when
both agents were present in the same intestinal location, the
bacterium interfered with C. parvum infection [56].

In humans, astroviruses cause acute infantile diarrhea [57];
however, the clinical relevance of enteric astroviruses in cattle
is not entirely clear. A recent review on viral enteritis in calves
concluded that it is currently unclear whether BoAstV is a
relevant primary pathogen, a potential cause of disease with
coinfections or a clinically irrelevant virus [15]. To the best of

our knowledge, ours is the first work in which the possible
role of BoAstV was evaluated as one of the agents of NCD
and calf mortality in a farm-matched case-control study con-
sidering multiple etiologies in the study design and statistical
analyses. Despite the relatively high frequency of BoAstV
infection (21.7% of the calves and 77.8% of the farms), no
association with diarrhea or disease was observed in our
study, as suggested by Sharp et al. in Scotland [58].
Conversely, in our study, the frequency of BoAstV infection
as an individual agent was significantly higher in non-
diarrheic than diarrheic calves (27 of the 31 calves that were
only infected with BoAstV were non-diarrheic). This not only
calls into question the causative role of enteric BoAstV in
NCD, but also suggests a possible beneficial infection with a
protective effect on diarrhea which should be further explored.
Recent molecular studies by our group indicate a high genetic
diversity for BoAstV infecting dairy calves in Uruguay, in-
cluding three different Mamastrovirus species, the most fre-
quent of which represented an unclassified species [59].
Whether cattle harbor Mamastrovirus species with zoonotic
potential, or whether enteric BoAstV share similarities with a
neurotropic BoAstV recently identified as a cause of enceph-
alitis in cattle in this country [60] needs further investigation.

Although the role of BCoV and BVDV as causes of diar-
rhea in cattle is well documented [13, 14, 61], these viruses
were not associated with NCD in our study. The lack of asso-
ciation may have been related to the low frequency of detec-
tion, as indicated in other works carried out in various coun-
tries [19–21]. However, it should be considered that both
agents can cause either enteric (BCoV and BVDV) or system-
ic disease (BVDV) in older cattle. We have occasionally di-
agnosed diseases and mortalities caused by BVDV in 3- to 4-
month-old heifers [61] and BCoV in neonate calves (unpub-
lished data) in dairy cattle in Uruguay through pathologic
examinations and molecular virology, and also detected
BVDV in aborted dairy fetuses [61]. In our study, 1.5% of
the calves and 18.5% of the farms were positive for BCoV,
and 1.3% of the calves and 14.8% of the farms were positive
for BVDV, demonstrating the circulation of these viruses at an
early age in dairy calves. However, Castells et al. 2019 report-
ed a higher detection rate (7.7%) of BCoV in feces of neonate
calves by RT-qPCR [62]. As with rotavirus, BCoV antigen-
capture ELISA has a lower sensitivity and limit of detection
than RT-qPCR, mainly in subclinical infections, and neutral-
izing antibodies derived from colostrum or active immune
responses may interfere with viral detection by antigen-
capture ELISA [47, 63]. Thus, the frequency of BCoV detec-
tion in our study is probably underestimated; in this context,
the lack of association between BCoV and diarrhea could
have been a consequence of the low detection frequency.
Regarding BVDV, the relatively low frequency of detection
at the calf level was not unexpected, as BVDV rarely causes
diarrhea in neonatal calves under field conditions.
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Additionally, it should be mentioned that the antigen-capture
ELISA performed to detect BVDV in 136 of the 480 calves
analyzed for this virus, is not suggested to detect BVDV in
sera from persistently infected calves, mainly those younger
than 3 months of age in which specific colostrum-derived
antibody titers are moderate or high [64, 65]. However, con-
sidering that 14.8% of the farms had at least one BVDV pos-
itive calf either by antigen-capture ELISA or RT-qPCR, and
that BVDV can be particularly responsible for severe econom-
ic losses [66], further investigations are needed to assess the
impact of this virus to the local livestock sector.

Salmonella entericawas detected in 3.9% of the calves (14
cases and 7 controls) and 29.6% of the farms in this study,
these proportions are probably underestimated considering the
relative low sensitivity and high specificity of the selective
culture for this agent [67]. Even though the proportion of
infected animals was more than double in diarrheic versus
non-diarrheic calves, the agent was not statistically associated
with diarrhea. However, S. enterica infection was associated
with the presence of fibrin in the feces of the calves.
Salmonella enterica causes severe intestinal lesions, as well
as invasive/septicemic infections leading to death [14]. The
intestinal damage induced by this bacterium can be so severe
to result in fibrin exudation into the intestinal lumen (fibri-
nous/necrotizing enteritis/enterocolitis) [68], even without or
before manifestation of diarrhea. The presence of fibrin in the
feces is suggestive, though not exclusive, of enteric salmonel-
losis, and should prompt the veterinary practitioners to stab-
lish an early medical treatment to avoid calf mortality.

The association between rotavirus infection and the
presence of fibrin in feces in our study was unexpected.
From a pathologic standpoint this virus causes superficial
enterocyte lysis and exfoliation in the small intestine
(mostly jejunum and ileum) resulting in shortening,
bluntin and fusion of the intestinal villi (atrophic enterop-
athy) [14], which is unlikely to result in significant ex-
travasation of fibrin from the propial blood vessels into
the intestinal lumen, unless there are secondary bacterial
complications leading to ulceration. We did not find
multicollinearity problems or confusion bias between ro-
tavirus and S. enterica infection and the presence of fibrin
in feces based on the statistical test parameters, suggesting
that this is not an spurious association between these two
pathogens. However, other bacterial pathogens that may
cause severe intestinal, colonic and/or cecal damage such
as attaching and effacing -enteropathogenic and
enterohemorrhagic- E. coli , were not assessed for in this
study. A study on virulence genes of E. coli isolated from
diarrheic and non-diarrheic dairy calves in Uruguay, using
samples of the dairy calves of this study, found a poor
representation of genes associated with the shiga toxin-
producing E. coli (STEC) / enterohemorrhagic E. coli
(EHEC) group, as well as enteropathogenic E. coli

(EPEC) [69]. Interestingly, a study on postmortem find-
ings and laboratory-based diagnosis of causes of death in
dairy calves in the USA found that calves with necrotizing
and ulcerative intestinal lesions were more likely to be
diagnosed with rotavirus infection [70].

All diarrheic S. enterica-positive calves that died before
weaning did so within 3 days of sampling at ages that ranged
between 9 and 18 days, while non-diarrheic S. enterica-posi-
tive calves, all of which survived after weaning at least until
day 122 of age (101 days after sampling, data not shown). The
diarrheic S. enterica-infected calves in our study had a signif-
icantly higher risk of dying during the preweaning period than
the diarrheic calves not infected with this agent. Thus, salmo-
nellosis should be considered a significant cause of calf mor-
tality in the rearing period in dairy farms in Uruguay. Besides
its impact on animal health, the role of cattle as sources of
human salmonellosis should be further studied, as
S. enterica has been recognized as a human pathogen in this
country [53, 71], where the cattle population per capita is the
highest in the world [72]. The predominant S. enterica sero-
type in our study was S. Typhimurium (19 calves in 7 farms),
followed by S. Anatum (2 calves from the same farm).
Because antibiotic resistance in animal and human pathogens
is of major global concern and multi-drug-resistant S.
Typhimurium strains have been identified in human patients
in Uruguay [71], we assessed antibiotic susceptibility of all the
Salmonella strains obtained in this study [73]. The minimum
inhibitory concentration to 14 antibiotics in 9 antibiotic clas-
ses was assessed by microdilution. All 21 strains were resis-
tant to at least one antibiotic class, and 11/21 strains were
resistant to ≥ 3 antibiotic classes (predominantly tetracyclines,
aminoglycosides and beta-lactams), and were thus considered
multi-drug resistant strains [73]. The phenotypic and molecu-
lar bases for antibiotic resistance need to be further explored.

E. coli F5+ was found in a relatively low frequency at
the individual (2.1% of the calves) and farm (18.5%)
levels and was not associated with NCD. The low fre-
quency of E. coli F5+ in neonatal calves had been previ-
ously documented in the region [74, 75], as well as in
other parts of the world [12, 20, 21]. It should be consid-
ered that enterotoxigenic E. coli affects calves < 1 week
of age [76], and our sampling frame included calves up to
4 weeks of age, which probably represents a bias. In our
study, of the 11 calves that tested positive for E. coli F5+,
9 were ≤ 5 days of life and the remainder two were 12 and
15 days old. No association with diarrhea was found even
when only calves within the first week of life were con-
sidered for the stat is t ical analysis (not shown).
Furthermore, it should be considered that even though
the expression of the fimbrial antigen F5 and the produc-
tion of heat-stable toxin (STa) are highly associated in
enterotoxigenic E. coli, some studies have found E. coli
F5+ strains without toxigenic potential (i.e., PCR negative
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for the STa-encoding gene). This could explain why diar-
rhea was not observed in some of the positive calves
[77–80]. In addition, it is not unexpected to have false
negative results using antigen-capture ELISA for F5, as
this test has a low sensitivity [12].

Determining the STP concentration in serum is an indirect
way of assessing the immune status of the calves, particularly
the transfer of passive immunity (colostral antibodies) in the
first week of life [23, 38]. Low concentrations of STP have
been associated with increased morbidity and mortality [5,
28]. In our study, almost half of the calves (47.4%) sampled
for STP determination had values < 5.6 g/dl consistent with
FTPI. A higher concentration of STP was observed in non-
diarrheic calves, as well as in calves that were negative for
rotavirus. Calves with higher STP concentrations had lower
odds of manifesting diarrhea as well as being positive for this
pathogen. This suggests that higher STP concentrations, in-
dicative of successful transfer of passive immunity, may have
had a protective effect against diarrhea and rotavirus infection.
Vaccines available to prevent NCD usually contain rotavirus
and other various viral and bacterial antigens (sometimes in-
cluding BCoV and E. coli F5+, depending on the manufactur-
ing laboratory) and aim at increasing specific colostral immu-
nity in the dams, so they require adequate colostrum manage-
ment practices to warrant successful transfer of immunity to
protect the calves. Whether rotavirus antigens included in the
vaccines available in Uruguay (all of which consist of
inactivated virus) protect against the predominant viral strains
needs to be addressed and deeper antigenic characterizations
of local rotavirus strains should be performed. Currently, there
are no commercially available vaccines for Cryptosporidium
spp.; however, it has been postulated that calves with an ade-
quate immune status, acquired through colostrum, are less
likely to shed this agent in feces [81] and to have clinical
cryptosporidiosis [82]. Interestingly, in our study, the mean
STP concentration was higher in Cryptosporidium spp.-nega-
tive (5.71 g/dl, n = 66) than -positive calves (5.47 g/dl, n = 29)
(data no shown). Although this difference was not statistically
significant, these mean STP concentrations were above and
below, respectively, of the cutoff value to determine FTPI
[38]. This highlights the importance of applying readily avail-
able and cost-effective management practices, such as vacci-
nation of the dams to obtain quality colostrum and its early
administration to calves to prevent NCD. Although vaccina-
tion to prevent NCD is recommended in all dairy farms, it is
most meaningful in those where colostrum management prac-
tices are adequate. Unfortunately, inadequate colostrum man-
agement practices are widespread among dairy farms in
Uruguay [4], which may partially explain the high percentage
of calves with low STP concentrations found in our study.
Regarding the lack of statistical association between STP
and preweaning death, it should be noted that among 31 calves
with STP values < 5.6 g/dl, 14 had missing data on

preweaning death. In addition, 22 calves with STP values ≥
5.6 g/dl had miss ing data on preweaning death
(Supplementary Material 1). This represents 37.9% (36/95)
of calves with missing data, which probably influenced the
outcome of the statistical analysis.

Conclusions

We generated reliable epidemiological information to apply
specific control and preventive measures to reduce NCD as-
sociated losses in Uruguay. This was achieved through a farm-
matched case-control study, evaluat ing mult iple
enteropathogens, clinical signs, preweaning death, FTPI, and
their associations. We conclude that NCD is an important
cause for mortality of dairy calves in Uruguay, regardless of
its cause. Cryptosporidium spp. and rotavirus cause NCD and
are frequent both at the calf and farm levels. Salmonella
enterica infection results in fibrinous stools and increases the
risk of preweaning mortality in diarrheic calves. BoAstV, de-
spite being frequent, is not a primary cause of diarrhea for
dairy calves in Uruguay. Although the frequencies of BCoV,
BVDV and E. coli F5+ are relatively low, these pathogens are
probably underestimated and their role in neonatal disease
should not be disregarded. The STP concentration in neonate
calves has a protective effect against diarrhea and rotavirus
infection, demonstrating the importance of applying adequate
colostrum management practices to improve neonatal calf
health and well-being and reduce diarrhea-associated mortal-
ity. Lastly, neonatal dairy calves in Uruguay are reservoirs of
potentially zoonotic pathogens, notably Salmonella
Typhimurium and Cryptosporidium spp. that have been iden-
tified in human patients in this country.
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