
Academic Editor: Tomislav Bulum

Received: 21 March 2025

Revised: 24 April 2025

Accepted: 27 April 2025

Published: 29 April 2025

Citation: Sartore, G.; Ragazzi, E.;

Pegoraro, F.; Pagno, M.G.; Lapolla, A.;

Piarulli, F. Artificial Intelligence

Algorithm to Screen for Diabetic

Neuropathy: A Pilot Study.

Biomedicines 2025, 13, 1075.

https://doi.org/10.3390/

biomedicines13051075

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Artificial Intelligence Algorithm to Screen for Diabetic
Neuropathy: A Pilot Study
Giovanni Sartore 1 , Eugenio Ragazzi 2,* , Francesco Pegoraro 1 , Mario German Pagno 1 , Annunziata Lapolla 1

and Francesco Piarulli 1

1 Department of Medicine-DIMED, University of Padova, 35122 Padova, Italy; g.sartore@unipd.it (G.S.);
f.pegoraro@icloud.com (F.P.); mariogerman.pagno@studenti.unipd.it (M.G.P.);
annunziata.lapolla@unipd.it (A.L.); francesco.piarulli@unipd.it (F.P.)

2 Studium Patavinum, University of Padova, 35122 Padova, Italy
* Correspondence: eugenio.ragazzi@unipd.it

Abstract: Background/Objectives: Patients with type 2 diabetes (T2D) are at risk of
developing multiple complications, and diabetic polyneuropathy (DPN) is by far the most
common. The purpose of the present study was to assess the ability of a new algorithm
based on artificial intelligence (AI) to identify patients with T2D who are at risk of DPN
in order to move on to further instrumental evaluation with the biothesiometer method.
Methods: This is a single-centre, cross-sectional study with 201 consecutive T2D patients
recruited at the Diabetes Operating Unit of the ULSS 6 of Padua (Northeast Italy). The
individual risk of developing DPN was calculated using the AI-based MetaClinic Prediction
Algorithm and compared with the DPN diagnosis provided by the digital biothesiometer
method, which measures the vibratory perception threshold (VPT) on both feet. Results: Of
the enrolled patients, 107 (53.23%) were classified by AI software as having a low probability
of developing DPN, 39 (19.40%) as having a moderate probability, 29 (14.43%) as having
a high probability, and 26 (12.94%) as having a very high probability. In 63 of the total
patients, biothesiometer measurement showed a VPT ≥ 25 V, indicative of DPN, while
138 patients had a non-pathological VPT value (< 25 V) (prevalence of abnormal VPT
31.34%; prevalence of normal VPT 68.66%). The overall agreement between biothesiometer
results and AI risk attribution was 65%. Cohen’s κ was 0.162, and Gwet’s AC1 coefficient
0.405. Conclusions: The use of an optimized AI algorithm can help estimate the risk
of developing DPN, thereby guiding more targeted and in-depth screening, including
instrumental assessment using the biothesiometer method.

Keywords: type 2 diabetes; diabetic polyneuropathy; biothesiometry; artificial intelligence;
risk evaluation; Cohen’s kappa

1. Introduction
Patients with type 2 diabetes (T2D) are often at risk of developing multiple comorbidi-

ties [1], such as stroke, heart attack, blindness, and amputation [2], lowering life expectancy.
The global diabetes epidemic has led to a corresponding exponential increase in its com-
plications, and among these is neuropathy, of which distal symmetric polyneuropathy
(diabetic polyneuropathy, DPN) is by far the most common. This complication, particularly
when it leads to foot ulcers or painful neuropathy, has a profound impact on the patient’s
quality of life [3,4]. DPN may be associated with other diffuse neuropathies secondary to
diabetes, which include a variety of autonomic neuropathies (such as cardiac autonomic
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neuropathy, gastrointestinal dysmotility, or diabetic cystopathy) [5]. During their lifetime,
at least 50% of individuals with diabetes mellitus develop DPN [5].

The incidence of DPN is higher in people with T2D (6100 per 100,000 person-years)
than in those with type 1 diabetes (T1D) (2800 per 100,000 person-years) [6,7]. In contrast,
neuropathy prevalence appears comparable between patients with T1D (11–50%) [8–10]
and those with T2D (8–51%) [9,11,12]. The prevalence is even higher if asymptomatic
diabetic neuropathy is included. In this case, 45% of patients with T2D and 54% of those
with T1D would be affected [9]. The prevalence of diabetic neuropathy also varies with
the duration of the disease. For example, during a 10-year follow-up, the prevalence of
DPN increased from 8% to 42% in patients with T2D [10]. Without radical intervention, it
is estimated that by 2050, out of the projected 9.7 billion people worldwide, 1/6 will suffer
from DPN [13].

The American Diabetes Association and the Canadian Diabetes Association currently
recommend screening for DPN at diagnosis for T2D patients and five years after diagnosis
for T1D patients; thereafter, screening is annual for all patients [7,14,15]. Screening tests
must be rapid, reliable, simple, and reproducible. In DPN, a very early clinical sign is the
loss of vibratory sensitivity (carried by larger nerve fibres). One of the most widely used
tools to evaluate quantitative data is the biothesiometer, consisting of a probe applied to
the skin that generates increasing intensities of vibration [16,17].

Given the complex and multifactorial nature of DPN, a promising strategy for the
early diagnosis of diabetic complications involves the use of artificial intelligence (AI)
algorithms to identify the patients most at risk of complications [18]. Subjects most at risk
can be enrolled in more stringent screening, therefore avoiding or at least delaying the
onset of complications [19–21]. Nowadays, the use of AI models or algorithms is still at
an embryonic stage. Such tools are not routinely used in daily clinical practice [22]. Few
studies in the literature have explored the role of AI in the diagnosis and management of
diabetes mellitus complications [23]. Even fewer studies have investigated the use of AI for
the screening of DPN or diabetic foot ulcers [24]. Deep learning algorithms have been suc-
cessfully applied to classify DPN using imaging data such as corneal confocal microscopy,
demonstrating high performance in both development and validation cohorts [25–27].
Beyond imaging, AI models have been integrated with clinical neurophysiological data and
metabolic parameters to diagnose and predict the future occurrence of polyneuropathy in
individuals with diabetes and prediabetes, offering a non-invasive and scalable approach
to early intervention [28]. Moreover, AI combined with neuroimaging techniques has
shown promise in assessing treatment response in painful DPN, pointing to its potential in
personalized care [29]. Additional studies have explored clinical decision-support systems
and automated diagnostic tools based on deep learning, further underscoring the versatility
of AI in addressing the complexities of DPN diagnosis and prognosis [30,31].

The purpose of the present study was to assess the ability of a new AI-based algo-
rithm [23] in identifying patients with T2D who are at risk of DPN in order to proceed
with further instrumental evaluation using the biothesiometer method. The AI tool used
in our study is designed primarily for early risk stratification, with the goal of identifying
individuals at increased risk of developing DPN even before clinical symptoms become
evident, with an estimated risk horizon of approximately 12 to 24 months. The AI model
is intended not only to aid in the diagnosis of established DPN but, more importantly,
to support proactive care by identifying patients at risk prior to symptom onset, thus
contributing to improved clinical outcomes and healthcare efficiency.
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2. Materials and Methods
2.1. Patients

This is a single-centre, cross-sectional study in which consecutive patients were re-
cruited at the Diabetes Operating Unit of the ULSS 6 of Padua (Northeast Italy). Individuals
who met the following inclusion criteria at the visit were considered eligible: age between
18 and 80 years, diagnosis of T2D, absence of symptoms or diagnosis of peripheral neu-
ropathy, Caucasian ethnicity, availability of clinical and biochemical data to calculate the
probability of onset of DPN. Subjects who met the following criteria were excluded from the
study: central or peripheral neurological diseases of any type, diagnosis or symptoms of pe-
ripheral neuropathy, alcohol abuse, chronic therapy with neuroleptics or other neurotropic
drugs, pregnancy, or breastfeeding. To align with the intended use of the AI prediction tool
as a screening instrument for asymptomatic patients, we excluded individuals with any
self-reported or clinically documented symptoms of peripheral neuropathy. This design
choice was made to reduce diagnostic bias and to ensure a more objective evaluation of
the tool’s ability to flag risk prior to overt clinical manifestation. The goal was not to
confirm neuropathy in already-symptomatic patients, but rather to assess the model’s per-
formance in identifying those who may benefit from early diagnostic follow-up. The study
was conducted in accordance with the Declaration of Helsinki and its later amendments
and was approved by the local ethics committee of the province of Padova (study No.
3884/U16/16, protocol No. 0045112, approval date 14 July 2016). The study was conducted
in accordance with applicable data protection regulations, including the principles outlined
in the General Data Protection Regulation (GDPR). The data used consisted exclusively of
already available clinical records (anthropometric and biochemical parameters), along with
the biothesiometer non-invasive measurement of peripheral nerve sensitivity performed
at a single time point. No additional procedures or data collection beyond standard care
were involved. All data were anonymized prior to analysis, and no identifiable personal
information was used in the AI evaluation. This cross-sectional, observational study design
ensured minimal risk to participants, and appropriate safeguards were implemented to
maintain data security and confidentiality throughout. Informed consent was obtained
from all subjects involved in the study.

2.2. Anthropometric and Biochemical Parameters

At the medical visit, the following data were collected: age, sex, disease duration, body
mass index, systolic and diastolic blood pressure, glycated haemoglobin (HbA1c), fasting
blood glucose, total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, aspartate
aminotransferase (AST), alanine aminotransferase (ALT), creatininemia, albuminuria. The
biochemical parameters were measured, according to standard laboratory procedures, in
the morning after an overnight fast. Albuminuria was measured in morning spot urine.

2.3. Artificial Intelligence (AI) Software

MetaClinic (METEDA S.r.l., Rome, Italy) is an artificial intelligence software that cal-
culates a probability of organ damage onset within 2 years relative to the six main target
organs (heart, peripheral vessels, cerebral vessels, eyes, kidney, peripheral nerves) involved
in diabetes complications. The tool is implemented in the electronic medical record system
available at diabetes care centres in Italy and aims to support the physician in the early
identification of subjects potentially at risk of complications. The AI software for predicting
diabetes complications was originally described by Nicolucci and colleagues [23], who used
XGBoost-based models [32] that were trained on the Smart Digital Clinic EMR data (Smart
Digital Clinic, METEDA S.r.l., Rome, Italy) from 147,664 patients across 23 Italian diabetes
centres over 15 years. To ensure true independence, models were externally validated on
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five additional different diabetes centres whose data were never part of the training set,
thereby preserving generalizability and preventing data leakage. The sample size of the
validation cohorts ranged from 3912 to 20,007 patients. Our study considered a totally inde-
pendent population. The algorithm operates for patients aged ≥ 18 years with a diagnosis
of T2D using at least 40% of a predefined pool of 25 clinical or biochemical parameters
available in the last year: height, weight, BMI, waist circumference, diastolic pressure,
systolic pressure, fasting blood glucose, post-breakfast blood glucose, post-lunch blood
glucose, platelets, haemoglobin, glycated haemoglobin (HbA1c), creatinine, creatinine
clearance, microalbuminuria, creatine phosphokinase (CPK), LDL cholesterol, estimated
LDL cholesterol, HDL cholesterol, total cholesterol, triglycerides, aspartate aminotrans-
ferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), and
uric acid. The AI prediction of diabetes-related complication is presented according to four
levels: low (risk < 10%), moderate (risk 10% to 25%), high (risk > 25% to 50%), very high
(risk > 50%) [33]. These categories are defined by applying 3 percentile cutoffs (the 50th,
75th, and 90th percentiles) to the calibrated risk probabilities in the short term (2 years)
and medium term (3–5 years) for each complication, as described in the training and
validation workflow [23]. The AI prediction in this study was focused on somatosensory
peripheral diabetic neuropathy; since the comparison was performed with instrumental
biothesiometer measurement, the autonomic diabetic neuropathy was not considered.

2.4. Peripheral Neuropathy Measurement

Once patients were enrolled, the individual risk of developing DPN was calculated
using the tool integrated into the clinical program MetaClinic Prediction Algorithm for
Windows (version 10.13.8.0 or later, METEDA S.r.l., Rome, Italy). Subsequently, during
the same medical examination, the presence or absence of DPN was confirmed by measur-
ing the vibratory perception threshold (VPT) on both feet using a digital biothesiometer
(METEDA S.r.l., Rome, Italy). This is a portable, hand-held medical device with a plastic
tip that vibrates at 100 Hertz. Vibration is electronically calibrated to ensure constant
amplitude, avoiding the variable represented by tissue density at the measurement site.
Vibration amplitude (1 to 10.5 microns, proportional to the voltage, 5–32 V) may be set by
the operator or automatically regulated in order to assess the patient’s sensitivity. After
familiarizing the patient with the sensation of vibration by holding the instrument turned
on with the tip on the surface of the palm of the hand, the tip was then placed perpendicu-
larly to the metatarsophalangeal joint of the first toe. The vibration amplitude was slowly
and steadily increased (1 mV/s), and the VPT value was defined as the value at which the
patient reported perceiving the vibratory sensation. This process was repeated three times,
for each of the feet. The patient’s global VPT was defined as the arithmetic mean of the
measurements performed. A global VPT value greater than or equal to 6.4 micron/25 V
was considered indicative of DPN [34–36]. If the patient did not perceive the vibratory
sensation at the maximum of the scale (10.5 micron/32 V), the value was set as 32 V for sta-
tistical analysis. Patients with a difference of more than 7 V between the two feet or with an
abnormal VPT on one foot and normal on the other were excluded from the study. Among
the patients who accessed the centre, 201 met the inclusion criteria and were therefore
enrolled in the study.

2.5. Statistical Analysis

Data were analysed with JMP® Version Pro 17 software for Windows (SAS Institute
Inc., Cary, NC, USA), JASP computer software (Version 0.18.3, JASP Team, University
of Amsterdam, The Netherlands, 2024), and jamovi computer software (Version 2.5, The
jamovi project, Sydney, Australia, 2024) with the latter two working in the R language
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(Version 4.3, R Core Team, Vienna, Austria, 2023). Continuous quantitative variables are
expressed as means ± standard deviation. Missing data were handled using pairwise
deletion to maximize the use of all available data. Statistical significance was assessed by
one-way ANOVA or Student’s t-test for continuous data and by Pearson’s chi-square test
for categorical variables. A p value < 0.05 was deemed statistically significant. Agreement
between risk assessment obtained with AI software was tested against biothesiometer
result (VPT), which was considered as reference for diagnosis of DPN. The percentage
agreement between the two methods was calculated, as well as the Cohen’s κ value [37]
and Gwet’s AC1 coefficient [38]. Benchmark references for Cohen’s κ were from Landis
and Koch [39].

3. Results
Of the 201 patients enrolled, 107 (53.23%) were classified by AI software as having a low

probability of developing DPN, 39 (19.40%) as having a moderate probability, 29 (14.43%)
as having a high probability, and 26 (12.94%) as having a very high probability. In 63 of the
total patients, biothesiometer measurements gave a VPT ≥ 25 V, indicative of DPN, while
138 patients presented a non-pathological VPT value (<25 V) (prevalence of abnormal VPT
31.34%; prevalence of normal VPT 68.66%). The mean VPT was significantly higher in the
DPN group (29.7 ± 2.6 V) compared with the non-neuropathy group (mean VPT 14.9 ± 4.6
V, p < 0.0001).

The distribution of patients according to AI DPN risk classification and biothesiometer
result is presented in Table 1. The overall distribution of patients with or without DPN,
according to biothesiometer results, did not differ significantly across the four AI risk
classifications (p = 0.0920, chi-square test). The VPT value did not differ as well, according
to the AI risk classes within each group with or without DPN (p = 0.3093 and p = 0.9895,
respectively, one-way ANOVA).

Table 1. Classification of patients in two cohorts, with or without DPN, according to biothesiometer
results, and attribution of DPN risk by AI algorithm.

DPN Risk
(AI Algorithm)

DPN Present (VPT ≥ 25 V) DPN Absent (VPT < 25 V) p *
n VPT (V) n VPT (V)

Low 26 (41.27%) 29.23 ± 2.80
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p
=

0.9895
†

p
=

0.0920

Moderate 13 (20.63%) 30.23 ± 2.62 26 (18.84%) 14.88 ± 4.42
High 13 (20.63%) 30.69 ± 1.84 16 (11.59%) 14.87 ± 4.29
Very high 11 (17.46%) 29.18 ± 2.89 15 (10.87%) 14.47 ± 4.58

Total 63 (100%) 29.73 ± 2.63 138 (100%) 14.86 ± 4.62

* Significance in the distribution of patients across DPN risk groups based on the two biothesiometer cohorts,
chi-square test. † Comparison of VPT values across DPN risk groups defined by AI algorithm, one-way ANOVA.

The clinical and biochemical characteristics of patients, divided by the presence or
absence of neuropathy assessed with the biothesiometer, are illustrated in Table 2. Subjects
with DPN showed a significantly longer mean disease duration than subjects without
neuropathy (14.4 ± 8.9 y vs. 11.0 ± 8.4 y, respectively; p = 0.0110). A higher mean age was
also observed in the DPN group (72.7 ± 6.7 y vs. 66.6 ± 9.9 y, respectively; p < 0.0001).
Diastolic blood pressure was significantly lower in the DPN group compared with the
non-neuropathy group (77.2 ± 10.5 mmHg vs. 80.5 ± 10.3 mmHg, respectively; p = 0.0356).
No statistically significant differences were found in biochemical parameters.
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Table 2. Clinical and biochemical parameters of the patients divided by presence or absence of
neuropathy assessed with the biothesiometer.

Parameter DPN Present
(n = 63)

DPN Absent
(n = 138) p *

Age, y 72.7 ± 6.7 66.6 ± 9.9 <0.0001
Sex, M/F 41/22 77/61 0.2150
Disease duration, y 14.4 ± 8.9 11.0 ± 8.4 0.0110
BMI, kg/m2 28.9 ± 4.8 28.3 ± 4.7 0.4369
Systolic blood pressure, mmHg 144.3 ± 18.5 139.6 ± 18.4 0.0910
Diastolic blood pressure, mmHg 77.2 ± 10.5 80.5 ± 10.3 0.0356
HbA1c, mmol/mol 52.6 ± 10.8 56.0 ± 14.1 0.0927
Fasting blood glucose, mg/dL 139.1 ± 38.0 137.6 ± 39.1 0.8023
Total cholesterol, mg/dL 161.6 ± 44.6 159.2 ± 39.0 0.7026
HDL cholesterol, mg/dL 50.0 ± 13.2 51.1 ± 14.6 0.6050
LDL cholesterol, mg/dL 91.5 ± 40.9 88.7 ± 29.9 0.5954
Triglycerides, mg/dL 114.7 ± 51.9 112.5 ± 58.3 0.7951
AST, IU/L 23.5 ± 10.0 24.9 ± 10.7 0.4560
ALT, IU/L 22.5 ± 10.9 25.1 ± 14.5 0.2709
Serum creatinine, mg/dL 0.97 ± 0.36 0.88 ± 0.30 0.0788
Microalbuminuria, mg/L 62.5 ± 136.1 53.2 ± 230.0 0.7811

* Significance was assessed with Student’s t-test for continuous variables and with Pearson’s chi-square test for
categorical variables. Significant values are indicated in bold.

In order to evaluate the concordance between the clinical outcome of DPN as a
result of the biothesiometer test taken as reference method and the AI risk prediction
of DPN, Cohen’s κ was calculated between the two parameters for each patient. The
comparison was obtained, grouping the two classes “very high” and “high” risk (considered
as positive—Yes code—for DPN occurrence) opposed to the other two classes, “medium”
and “low” risk (considered as negative—No code—for DPN occurrence) according to
the AI algorithm. Figure 1 presents the distribution of the concordance, with an overall
agreement of 65% between biothesiometer result (positive—Yes code—if VPT ≥ 25 V) and
AI risk attribution. Cohen’s κ was 0.162, a level significantly different from 0 (p = 0.021),
but that must be considered as “slight” agreement if compared with the benchmarking
proposed by Landis and Koch [39]. A “fair” degree of agreement was obtained with Gwet’s
AC1 coefficient (0.405; 95%CI: 0.269–0.541), which is corrected in order to account for an
expected disagreement rate as comparator [40].
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Figure 1. Agreement between the two methods used to evaluate DPN: AI software (Method 1) and
biothesiometer testing (Method 2). Y1 (Yes-1) indicates a high probability of DPN, and N1 (No-1)
indicates a low probability of DPN, according to the AI algorithm. Y2 (Yes-2) indicates the presence
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of DPN, and N2 (No-2) indicates the absence of DPN, as determined by the biothesiometer test
(based on vibratory perception threshold, VPT, used as clinical reference). The percentage above each
column in the graph represents the proportion of cases for each possible combination of agreement
between the two methods. Red columns indicate agreement between the methods; grey columns
indicate disagreement.

4. Discussion
The prevalence of DPN in the subjects of this study (31.34%) is in line with the global

epidemiology of the complication, the literature data being from 32% to 50% [5]. All the pa-
tients enrolled were asymptomatic for peripheral neuropathy, and approximately one-third
of them showed an altered VPT despite the asymptomatic appearance, even with optimal
glycaemic control. This is likely because DPN is more often characterized by negative symp-
toms (such as reduced pain, thermal, or vibration sensation), which patients frequently do
not identify clearly on a subjective basis [5]. This finding suggests that virtually any patient
with diabetes is at risk of developing DPN. The present study highlights the importance of
regular instrumental screening to accurately assess the patient’s condition.

The main aim of the study was to assess the actual presence of neuropathy based on the
risk assessment suggested by an algorithm of AI currently available as clinical support in
Italian diabetology units. Overall, the classical indicators of concordance, namely, Cohen’s
κ and Gwet’s AC1, indicate only a slight to fair agreement between the two rating methods.
These indicators are very sensitive and able to correct for how often the raters may agree
by chance [41], so it is not surprising that the level of concordance here estimated is quite
low, possibly in part due to the intentionally wide margin of probability declared for risk
estimation by the AI procedure. However, the degree of concordance between AI and the
presence or absence of DPN, although not high (65%), was not due to chance.

Cohen’s κ is known to be influenced by the prevalence of the condition and by
imbalanced marginal distributions. In settings with low to moderate DPN prevalence, κ
can underestimate practical utility. Gwet’s AC1 adjusts for prevalence, and thus, provides
a somewhat higher and possibly more stable estimate of the agreement. Taken together, the
two measures frame the spectrum of “real-world” concordance. While perfect concordance
with biothesiometry is neither expected nor required for a risk prediction tool, the observed
performance suggests the AI module can serve as a triage instrument: patients flagged as
“high” or “very high” risk can be prioritized for confirmatory biothesiometer testing and
early intervention.

The likely low number of patients at high or very high risk may be one of the reasons
why a strong concordance between the probability of onset and altered VPT was not found.
A thorough exploration of these misclassifications will be the subject of future studies. We
hypothesize that comorbid microvascular conditions may elevate the AI-predicted risk
before sensory loss is clinically detectable and that the set of 25 clinical and biochemical
parameters used by the algorithm [33] may have only moderate specificity. It should
be noted that the calculation of the risk for DPN was based on traditional risk factors,
which are not specific for neuropathy. In fact, comparing clinically defined DPN patients
(diagnosed by biothesiometer) with non-neuropathic patients, the whole cluster of explored
biochemical parameters (such as BMI, glycated haemoglobin, fasting blood glucose, total
cholesterol, HDL cholesterol, LDL cholesterol, triglycerides), did not present any significant
differences. In our study, the parameters (not used by the AI algorithm) that distinguished
the two cohorts were the duration of disease and an older age, both significantly higher in
patients with DPN. This result confirms what has been described in the literature, that the
duration of disease and age are parameters significantly associated with the development
of DPN, independently of other possible risk factors [12]. Our results align with a cross-
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sectional study utilizing magnetic resonance neurography in patients affected by T2D [42],
which demonstrated that a longer duration of diabetes correlates with an increased burden
of nerve lesions, indicating that such lesions may progressively accumulate and reach
clinical significance when a critical number of nerve fascicles are involved.

In the literature, there are few references to the use of AI for DPN screening. Some
authors have explored the classification of DPN using corneal confocal microscopy imaging
data, showing high performance [25–27]. An AI-based study using high-resolution corneal
confocal microscopy images to estimate the risk of diabetic neuropathy achieved promising
results with an accuracy exceeding 80% [43]. However, the authors concluded that further
multi-centre validation studies are needed. A recent study by Xiao et al. [44] proposed the
use of toe photoplethysmography (PPG) signals, which reflect vascular dynamics and can
predict both T2D and risk of peripheral neuropathy with accuracies rising from ~75–86%
(Fisher, logistic regression) to ~93% (using artificial neural network learning method, ANN).
However, the method is focused on vascular signals and not directly on nerve function, and
PPG requires data acquisition for over 30 min, which can be difficult to achieve, especially
with older subjects. Additionally, the study’s elderly cohort and single modality data
may limit its generalizability to broader diabetic populations. Conversely, our approach
combines the use of a well-trained AI algorithm on patients of different ages with fully
independent external validation, here linked to a biothesiometer measurement that directly
assesses large-fibre peripheral nerve function by testing vibration sense, therefore providing
a quick neuropathy screening (loss of sensation). Moreover, the biothesiometer is an already
validated method for neuropathy [17]; it is simple, immediate, easy read, and low-cost.

Regarding the present investigation, since the risk estimate is based on self-learning
AI, it is possible that increasing the sample size could improve the algorithm performance,
leading to a better concordance between AI risk classification and the occurrence of clini-
cally diagnosed DPN. This study serves as a foundation for future research, particularly
emphasizing the integration of additional parameters—such as disease duration and pa-
tient age—into the AI algorithm to enhance the accuracy of DPN risk estimation. It is
also of note that the present study is among the first ones focused only on clinical and
blood chemistry data, which are often used by physicians in clinical practice to evaluate
the patient’s glyco-metabolic state and therefore are easily found in computerized medical
records, in order to predict the risk of diabetes-related complications. Patients found to be
at elevated risk of DPN may be prioritized for further evaluation using the biothesiometer
test as a very simple instrumental screening, which requires limited personnel resource,
also from non-medical healthcare professionals.

A limitation of this study is the use of biothesiometer as the sole reference method
for DPN diagnosis. While practical and widely used, it may miss early or small-fibre
neuropathy [36]. No additional confirmatory testing (e.g., nerve conduction studies) was
performed. Future validation studies should incorporate more comprehensive diagnostic
protocols to better assess the model’s performance across the full spectrum of DPN.

We acknowledge that excluding patients with symptoms of peripheral neuropathy
may reduce the overall pre-test probability of DPN in the study sample and limit the
generalizability to the broader clinical population. However, this was a deliberate choice
to simulate a screening scenario, where the objective is to flag at-risk individuals before
symptoms emerge. In such a context, high sensitivity and negative predictive value are
critical, and the AI tool’s performance in these metrics supports its potential utility as an
early risk stratification aid. The lack of significant differences in the distribution of AI risk
groups between the two cohorts, distinguished based on biothesiometer VPT data using a
25 V cutoff, is also a consequence of selecting asymptomatic subjects. This approach was
taken to allow for a more objective evaluation of the AI tool’s predictive performance, and
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it aligns with the tool’s intended clinical use: to support early risk stratification and prompt
follow-up diagnostic assessments (e.g., via biothesiometry or neurologic evaluation), rather
than to confirm DPN in symptomatic patients. Future studies in more heterogeneous
populations, including symptomatic patients, will be important to further validate and
refine the model.

While our results showed no significant differences in common biochemical mark-
ers between patients with and without neuropathy, this is consistent with previous evi-
dence indicating that such parameters have limited discriminatory power for detecting
DPN [45–47]. The AI algorithm applied in this study was developed and validated by
Nicolucci et al. [23] based on a comprehensive set of demographic, clinical, and labora-
tory variables routinely collected in diabetes care. Although this approach ensures broad
applicability in real-world settings, future iterations of the model could benefit from the
inclusion of additional features more directly related to neuropathic risk. These might
include assessments of small-fibre function, autonomic symptoms, long-term glycaemic
variability, or foot thermoregulation patterns. However, integrating such parameters would
require a new training and validation process using large, prospectively collected datasets.
This represents a valuable direction for future refinement of the algorithm.

The use of AI in predicting DPN is a rapidly evolving area, with several AI models
already being explored in the literature. Various machine learning techniques, such as
convolutional neural networks (CNNs) and support vector machines (SVMs), have been
applied to diverse datasets, including those based on photoplethysmography (PPG) signals,
to predict diabetes-related complications [44]. However, these models may rely on fea-
tures not routinely available in clinical settings, such as specialized imaging data or more
comprehensive biochemical markers. Comparatively, our model focuses on using com-
monly collected clinical and biochemical data, which increases its potential for real-world
applicability but may limit its predictive power in certain cases. Nonetheless, large-scale
validation of these models, using diverse datasets from multiple centres, remains crucial to
ensure their generalizability and robustness in clinical practice.

Practical implementation of AI tools in real-world diabetic clinics presents several
challenges. Despite the growing potential of AI, its integration into existing healthcare
systems faces barriers related to data privacy, interoperability with electronic health records,
and clinician training [48]. Moreover, concerns about the cost and accessibility of AI-
driven tools must be addressed to facilitate widespread adoption. Clinician acceptance
is also key, as healthcare professionals must trust AI recommendations and view them as
complementary to their clinical judgment rather than as replacements for human expertise.

From an ethical standpoint, the deployment of AI-based diagnostic tools raises im-
portant issues around bias in algorithmic predictions [49,50], especially when training
datasets may not represent diverse populations adequately. Transparency in the validation
of AI models and accountability for AI-driven decisions are essential for ensuring ethical
integrity and maintaining stakeholder confidence in clinical settings [51]. Further, the use
of AI in healthcare should ensure that clinicians remain central in the decision-making
process, preserving the human element in diagnosis and treatment planning.

Diabetic neuropathy is an often-unrecognized complication of diabetes and, if it results
in neuropathic ulcer, can significantly reduce the quality of life of patients [3,7]. The classical
risk factors do not accurately predict the probability of developing DPN, and therefore, even
a patient with optimal glycaemic control may still present with DPN. This complication of
diabetes is, in fact, often diagnosed in asymptomatic patients through instrumental tests.
The use of an optimized AI algorithm can help to estimate the risk of developing DPN by
means of an integrated approach, which takes into account both the probability of onset
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calculated with the algorithm and the duration of the disease and age in order to better
direct a more in-depth screening, including an instrumental approach by biothesiometer.
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