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Abstract: The effect of ice ages in speciation and diversification is well established in the 

literature. In Europe, the Iberian, the Italian and the Balkan peninsulas comprise the main 

glacial refugia, where the subsequent re-population of Europe started. Though not studied 

as extensively, Anatolia has also been hinted to be a potential glacial refugium for Europe, 

and with its proximity to the Caucasus and the Middle East at the same time, has potential 

to exhibit high levels of intraspecific diversity. The more ubiquitous use and cheaper 

availability of molecular methods globally now makes it possible to better understand 

molecular ecology and evolution of the fauna and flora in the genetically understudied 

regions of the world, such as Anatolia. In this review, the molecular genetic studies 

undertaken in Anatolia in the last decade, for 29 species of plants and animals, are 

examined to determine general phylogeographic patterns. In this regard, two major patterns 

are observed and defined, showing genetic breaks within Anatolia and between Anatolia 

and the Balkans. A third pattern is also outlined, which suggests Anatolia may be a center 

of diversity for the surrounding regions. The patterns observed are discussed in terms of 

their relevance to the location of suture zones, postglacial expansion scenarios, the effect of 

geographic barriers to gene flow and divergence time estimates, in order to better 

understand the effect of the geological history of Anatolia on the evolutionary history of 

the inhabitant species. In view of the current state of knowledge delineated in the review, 

future research directions are suggested. 
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1. Introduction 

The effects of ice age glacial maxima in causing intraspecific genetic differentiation of terrestrial 

biota have been well established in the literature. Observations of this phenomenon have been 

documented on almost all continents. In South America, the distribution of intraspecific diversity has 

been attributed to differentiation in refugial areas during ice ages, with the isolation and subsequent 

differentiation processes being referred to as ―speciation pumps‖ [1]. In Africa, consecutive phases of 

glacial contractions and expansions are considered to have existed during the Pliocene and Pleistocene, 

with the exceptionally dry-cold spells creating refuges in montane areas in the form of small isolated 

forests [2]. Late Quaternary changes have also caused substantial geographic range shifts and 

phylogeographic breaks for various animal and plant species in North America [3].  

In terms of the intensity of such research, Europe is probably the continent where the 

phylogeography of various taxa have been investigated most thoroughly [4,5] in the context of 

isolation during the ice ages. Studies on various animal and plant species in Europe indicate that, 

during the Pleistocene and Pliocene, the three main peninsulas (the Iberian, the Italian and the Balkan) 

acted as refugia from glacial conditions, sheltering various species during the glacial maxima, but at 

the same time they isolated populations of species, culminating in their genetic differentiation [6].  

In Europe, subsequent post-glacial range expansions from these peninsular refugia affected the 

distribution of intraspecific genetic diversity for many organisms, resulting in the formation of hybrid 

zones where two divergent genomes met, and suture zones that formed as geographic clusters of 

hybrid zones for various species. Remington [7] defines a suture zone as ―a band of geographic 

overlap between major biotic assemblages, including some pairs of species or semispecies which 

hybridize in the zone‖. The definition of suture zones has also been expanded in some recent analyses 

to also include intraspecific phylogeographic breaks and contact zones. For instance, Swenson and 

Howard [8], through rigorous tests have statistically shown the convergence of these phylogeographic 

breaks, hybrid zones and contacts zone in particular regions of North America, forming suture zones.  

Focusing on Europe, though not without exceptions, three main paradigms have been outlined 

corresponding to the general course of expansions of differentiated populations or subspecies, which 

produced the distribution of hybrid zones, and suture zones where they converged [5]. The grasshopper 

paradigm represents an initial rapid migration front out of the Balkans and Anatolia, with the 

colonizing populations limiting the expansion of the Iberian and Italian populations past the Pyrenees 

and the Alps, respectively, and causing hybrid zones in between. The bear paradigm represents a faster 

emigration rate out of the Balkans, Eastern Europe and the Iberian Peninsula towards central Europe, 

with the lineages from the Italian Peninsula not being able to expand and subsequently increase their 

frequency in the rest of Europe. The third—the hedgehog paradigm—is less common, and represents 

northward expansion of the three lineages that diverged in the Iberian, Italian and the Balkan 

Peninsulas, at a similar rate of expansion, without blocking each other, and forming Iberian/Italian and 

Italian/Balkan hybrid zones. 

Although the European hybrid and suture zones have been studied in detail, the nature, extent and 

geographic positioning of the possible zones to the east, firstly in Anatolia and the surrounding regions 

(Figure 1), have not been investigated as thoroughly. Many studies acknowledge the potential 

importance of Anatolia as a source and refugium of genetic diversity for European biota, but a detailed 



Int. J. Mol. Sci. 2011, 12 4082 

 

 

analysis of the patterns in the region is lacking. However the recent data generated by the more 

common use and availability of molecular methods now makes it possible to better explore the 

molecular ecology and evolution of the fauna and flora in many understudied regions of the world, and 

Anatolia is no exception. 

Figure 1. The geographic positioning of Anatolia and surrounding regions, and the major 

topographic features. The Central Anatolian Plateau, delimited by the major geographic 

barriers in Anatolia: the Taurus, the Anatolian Diagonal, the Black Sea Mountains, the 

western Anatolia Mountains. The dashed line represents the area covered by the Central 

Anatolian Lake System during the Pleistocene [9]. 

 

Politically speaking, Anatolia is a peninsula, surrounded by the Black Sea, the Aegean and the 

Mediterranean, comprising Asia Minor and the adjacent eastern areas that are within the territory of 

Turkey. In a biogeographical perspective, it is considered to include Levant, western Iran and northern 

Iraq [9]. It also contains multiple current and past barriers to gene flow, such as mountain chains (the 

Anatolian Diagonal (Davis [10]), the Taurus and the Black Sea Mountains), the Central Anatolian 

Plateau, the Sea of Marmara, and the Central Anatolian Lake system (Figure 1). The formation of the 

mountain chains in Anatolia can be traced back to the Tertiary, when the northward movement of 

Europe resulted in the formation of the Alps. This was also when the Central Anatolian lake system, 

between the Taurus and the Black Sea Mountains, was also initially formed and persisted cyclically 

until the end of the Pliocene [11]. These various barriers make Anatolia a good candidate for 

observation of intraspecific genetic differentiation. Being situated between Europe, Asia and Africa, 
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Anatolia also comprises a convergence area for distribution of many species. Placed in such an area of 

overlap, it hosts parts of three hotspots, the Mediterranean, the Irano-Anatolian and the Caucasus [12], 

and as such the presence of multiple hybrid zones and local refugial areas within Anatolia can  

be expected.  

In many studies exploring the genetic differentiation in Europe, sampling has been undertaken from 

the Balkans, but not in Anatolia [5]. Those studies in which samples from Anatolia were included have 

generally relied on a small number of sampling sites in this region, and followed a broad continental 

and/or global sampling strategy, to answer phylogeographic questions with samples from a wide 

geographical range [13,14]. This approach generally involved samples from a few localities per region, 

and Anatolia was no exception. These studies have provided invaluable information, especially in 

terms of comparing the genetic make-up of populations from Anatolia to those from the Balkans and 

the Caucasus, and even beyond, but due to the limited sampling could not capture clear patterns of 

genetic diversity within Anatolia. Although the results hint at the presence of hybrid zones associated 

with Anatolia, precise mapping of the borders of these zones has not been possible. Rokas et al. [15] 

point out that the relative lack of zones from Anatolia may represent the relatively greater importance 

of post-glacial latitudinal expansions when compared to longitudinal movements when these hybrid 

zones are formed in Europe. As Anatolia comprises a southeastern refugium for Europe, the  

post-glacial dispersals might have not resulted in the formation of many latitudinal hybrid zones in this 

region. This deficiency is probably also related to the smaller amount of research effort put into 

studying the phylogeography of species in Anatolia. Whatever its cause, the deficiency has resulted in 

little estimation of the effect of easterly refugia in shaping the distribution of genetic variation in 

Europe [15]. 

In the last 15 years, more elaborate studies with greater sampling intensity were undertaken within 

Anatolia. Instead of broad geographic sampling strategies, resulting in a small number of sampling 

points in Anatolia, these recent studies employed a denser sampling regime over a narrower 

geographic range within Anatolia and the neighboring regions. Consequently, the distribution of 

genetic diversity within Anatolia and the differences between Anatolia and the neighboring areas have 

been revealed in greater detail. A variety of organisms, such as amphibians [16], fish [17], and 

mammals [18] have been evaluated in this manner. The research on these diverse groups of organisms 

has predominantly indicated the presence of genetic differentiation within Anatolia resulting from 

isolation in the neighboring Pleistocene refugial areas, such as the Balkans and the Caucasus, with 

subsequent range expansions into Anatolia after the end of the Pleistocene. 

This review outlines the general patterns that emerge when the two categories of research, large and 

small geographic scales, with their respective sampling intensities, are examined. With this approach, 

the general patterns of phylogeographic breaks, hybrid and suture zones, postglacial expansion 

scenarios, the effect of geographic barriers in the region in influencing genetic differentiation, and 

times of divergence for taxa exhibiting different phylogeographic patterns are investigated. It should 

be noted that from this point forward, ―hybrid zones‖ are used in a broad sense to refer to areas where 

two divergent genomes meet, and include phylogeographic breaks/overlaps and contact zones. The 

species/studies that were reviewed were found based on a literature search that included the Google 

Scholar and Web of Science databases. As the initial search with Anatolia and genetics  

gave around 12,000 hits, the search was narrowed down by excluding the following terms:  
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domestication-cultivated-human-language-disease-economic. The resulting, approximately 600, hits 

were evaluated to be used in the review. Note that only species with natural dispersal modes have been 

included in this evaluation. Species like the house mouse [19,20], wheat [21], water buffalo [22], 

honey bee [23] or ocellated skink [24], which have genetic data available from Anatolia, but  

human-mediated dispersal modes, have been excluded from the procedure of pattern determination 

undertaken in this review, as they might bias the conclusions to be made regarding natural 

phylogeographic processes. Also species for which genetic data is available as interspecific 

phylogenetic comparisons (e.g., water frogs [25], tree frogs [26]) were excluded, as these are not the 

focus of this study. In a similar manner, studies of species for which genetic data was available from 

less than five sites from Anatolia (e.g., legless skink [27], Black Sea roach [28], European snow  

vole [29], and long-eared bat [30]) or those sampled from a very narrow and local geographic range  

(e.g., Strauch‘s spotted newt [31]) have also been excluded. 

2. Phylogeographic Patterns 

In order to elucidate the general phylogeographic patterns in Anatolia, the intraspecific genetic 

patterns were evaluated for 29 species for which such data were available (Table 1), based on the 

criteria outlined above. The ranges for various intraspecific groups (clades) were mapped by extracting 

the approximate location of sampling sites from the various studies and making subsequent minimum 

spanning curves around the sites (Figures 2–4). A consistent pattern regarding differentiation of 

various species involved intraspecific phylogeographic breaks that were longitudinally oriented, 

differentiating the populations on the east and west. The nature of the boundaries formed by these 

intraspecific clades/groups defined by these breaks was idiosyncratic for each species. For instance, for 

the greater horse-shoe bat, Rhinolophus ferrumequinum, the minimum spanning curves of the eastern 

and western clades overlapped, forming a zone of parapatry, a potential hybrid zone, shown as a 

dashed area in Figure 3b. On the other hand, the eastern and western clades of the bent-winged bat, 

Miniopterus schreibersii, were allopatric, and the curves for each clade do not meet, as the individuals 

belonging to different clades did not co-occur in a particular site. The boundary between these two 

clades has been shown with a dashed line (Figure 3f). A general examination of the geographic 

distribution of the intraspecific genetic diversity in Anatolia as such shows three major patterns. One 

pattern (pattern I) involves breaks that differentiate the populations in the Balkans and Anatolia. 

Another set of phylogeographic breaks is seen within Anatolia, differentiating the populations in 

western Anatolia and the Balkans from those in eastern Anatolia (pattern II). An examination of the 

intraspecific diversity of the region in a broader geographic context, also including populations from 

Europe, Africa and Asia also defined another pattern, which I refer to as the ―star‖ (*) pattern. For 

seven species, the Anatolian region comprises an area of elevated genetic diversity when compared to 

the surrounding regions, indicating that the populations in Anatolia were the most likely source from 

which Europe, Africa and/or Asia were subsequently populated, or populations that got differentiated 

during glacial maxima in these continents subsequently converged in Anatolia post-glacially. This star 

pattern is not mutually exclusive from the pattern I and pattern II, as the species that provide evidence 

for Anatolia being a center of diversity for the neighboring continents, usually also show hybrid zones 

in the areas that define these first two patterns. In addition, some other patterns were observed, though 

in relatively fewer species, so that they are considered as ―special cases‖. For instance, in four species 
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the amalgamation of patterns I and II was observed. For these species, phylogeographic breaks were 

seen both in the Balkans and in central Anatolia such that the Balkan, western Anatolian and eastern 

Anatolian populations of these species are all differentiated from each other. In one species, 

intraspecific clades were seen, but they showed an almost complete overlap of geographic distribution 

within Anatolia. These patterns and cases are discussed in greater detail below. 

Table 1. An overview of the species examined in the review, showing the markers used, 

age of divergence of intraspecific splits, the pattern and respective references. 

Species Marker Age of Divergence Pattern Reference 

Killifish, Aphanius fasciatus RFLPs and mtDNA sequencing Pliocene (4 Mya) I [32,33] 

Love-in-a-mist, Nigella arvensis 

alliance 
PCR-RFLP Pleistocene (<1 Mya) I [34] 

Long fingered bat, Myotis capaccinnii 
mtDNA sequencing and 

microsatellites 
Pleistocene (500 Kya) I [35] 

The European green toad, Bufo viridis 

(2n) 
mtDNA sequencing Pliocene (4.8–3.6 Mya) I [36] 

Snake-eyed skink, Ablepharus 

kitaibelii 
mtDNA sequencing Pliocene (5.9–5.7 Mya) I [37] 

Brown Hare, Lepus europaeus RFLPs and mtDNA seqeuncing 
Pleistocene (490–105 

Kya) 
I* [38,39] 

Black Alder, Alnus glutinosa RFLPs N/A I [40] 

Eurasian shrub, Frangula alnus RFLPs N/A I [41] 

Yellow-necked fieldmouse, 

Apodemus flavicollis 
mtDNA sequencing Pliocene (2.4–2.2 Mya) I [42] 

Bicolored shrew, Crocidura leucodon mtDNA and nuclear sequencing 
0.691 Mya (CI: 0.510–

0.980) 
I [43] 

European grasshopper, Chorthippus 

parallelus 
nuclear sequencing N/A I [44] 

Ground squirrels, Spermophilus spp 
mtDNA, sequencing (X and Y 

chrom.) 
N/A II [45] 

Mountain frog, Rana macrocnemis mtDNA sequencing Pliocene (2.4 Mya) II [16] 

Greater horseshoe bat, Rhinolophus 

ferrumequinum 

mtDNA sequencing and 

microsatellites 

Pleistocene (350–750 

Kya) 
II [46,47] 

Bent-winged bat, Miniopterus 

schreibersii 

mtDNA sequencing and 

microsatellites 

Pleistocene (170–300 

Kya) 
II 

[48,49,50,

51] 

The crested newt, Triturus karelinii mtDNA sequencing Pliocene (5.5 Mya) II [52] 

Glanville fritillary, Melitaea cinxia mtDNA sequencing N/A II [53] 

Annual grass, Hordeum gussoneanum 
Chloroplast sequencing, 

microsatellites 
N/A II* [54] 

Pine processionary moth, 

Thaumetopoea wilkinsoni 

mtDNA sequencing, AFLPs, 

microsats 
Pleistocene (1.5–0.5 Mya) II [55] 

Lesser white-toothed shrew, 

Crocidura suaveolens 

mtDNA and nuclear gene 

sequencing 
Pleistocene (940 Kya) I&II [56,57,58] 

Tree frog, Hyla arborea mtDNA and nDNA sequencing N/A I&II [59] 

White-breasted hedgehog, Erinaceous 

concolor 

Allozymes and mtDNA 

sequencing 
Pliocene 3 Mya (B-A) I & II [60,61,62] 
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Table 1. Cont. 

Species Marker Age of Divergence Pattern Reference 

Anterastes serbicus group mtDNA sequencing Plesitocene, <1.56 Mya I&II [63] 

Oak-gallwasp, Andricus quercutozae mtDNA sequencing and allozymes Pliocene (7 Mya) I&II* [15] 

Brown trout, Salmo trutta RFLPs Late Pleistocene I&II* [17,64] 

Chub, Leuciscus cephalus mtDNA sequencing Pliocene 3–2.5 Mya I&II* [65] 

Alpine rockcress, Arabis alpina C.plast and nDNA sequencing N/A * [13] 

European ash, Fraxinus angustifolia Chloroplast microsatellites N/A * [66] 

Figure 2. The clade distribution maps for species exhibiting the Pattern I. The white and 

black shades represent the eastern and western clades, respectively. When present, the grey 

shaded areas represent the zones of parapatry for the two clades, and the dashed  

lines represent the allopatric borders between clades. (a) The European green toad;  

(b) Long-fingered bat; (c) Brown hare; (d) Killifish; (e) Love-in-a-mist; (f) Black alder;  

(g) Yellow-necked fieldmouse; (h) Bi-colored shrew; (i) Snake-eyed skink. 
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Figure 3. The clade distribution maps for species exhibiting the Pattern II. The white and 

black shades represent the eastern and western clades, respectively. When present, the grey 

shaded areas represent the zones of parapatry for the two clades, and the dashed lines 

represent the allopatric borders between clades. (a) Crested newt; (b) Greater horse-shoe 

bat; (c) Ground squirrels; (d) Mountain frog; (e) Annual grass; (f) Bent-winged bat;  

(g) Glanville fritillary; (h) Pine processary moth.  

 

Figure 4. The clade distribution maps for the ―other cases‖. The white, gray and black 

shades represent the eastern, central and western clades, respectively. When present, the 

shaded areas represent the zones of overlap for the different clades, and the dashed lines 

represent the allopatric borders between clades. (a) Oak-gallwasp; (b) European tree frog; 

(c) White-breasted hedgehog; (d) Lesser white-toothed shrew. (e) Anterastes  

serbicus species group—the black triangle, square and rhombus represent locally  

differentiated populations. 
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3. Patterns and Representative Case Studies 

3.1. Pattern I: Anatolian-Balkan Suture Zone 

Of the 29 studies included in this review, ten species (including four mammal, two plant, one fish, 

one insect, one reptile and one amphibian species) showed the presence of a genetic break at the 

margin between Anatolia and the Balkans, and also within the Balkans (Figures 2a–i, Table 1). This 

group includes terrestrial, aquatic and volant species. The break can be biogeographically associated 

with the Aegean trench, which comprises a geographic barrier for various taxa on the Greek mainland 

and in Anatolia [67], and corresponds to the so-called Rechinger‘s line. 

In five species the presence of pattern I is relatively clear, with good sampling distribution from the 

entire Anatolia and the Balkans. Three of these species show a parapatry of the distribution of the 

eastern and western clades. These are the European green toad (Figure 2a) [36], the long-fingered bat 

(Figure 2b) [35] and the brown hare (Figure 2c) [38,39]. The two other species with a thorough 

sampling distribution show an allopatric distribution for their respective eastern and western clades. In 

the yellow-necked fieldmouse (Figure 2g) [42], the line of allopatry runs parallel to and overlaps with 

the Bosphorus Strait. On the other hand, in the bi-colored shrew, the line of allopatry is perpendicular 

to the Bosphorus Strait (Figure 2h) [43] and some of the western haplotypes are seen in western 

Anatolia and some of the eastern haplotypes in the Balkans. Another species, the European 

grasshopper also shows a differentiation between the Balkan and Anatolian populations [44], with no 

obvious differentiation within Anatolia [68]. However, the geographic distribution of these haplotypes 

have not been explicitly mapped in the original publications [44,68], hence it was not possible to 

recreate a distributional map for this species in this review. 

In one of the remaining four species that fit pattern I, sampling was only done in the Balkans and 

northern Anatolia. This species is the black alder (Figure 2f) [40], and the western and eastern clades 

are allopatric with the dividing line being within the Balkans. In remaining three, sampling in  

Anatolia was only done from Balkans and western Anatolia. In two of these species (killifish [33] and 

love-in-a-mist [34], Figures 2d and 2e, respectively), there exist parapatric overlap of the eastern and 

western groups. In the killifish the zone of parapatry is in the Balkans, whereas in love-in-a-mist, it can 

be seen both in the Balkans and partially in western Anatolia. In the third species, the snake-eyed skink 

(Figure 2i) [37] there are different clades in western Anatolia and the Balkans, without overlap, 

however as the sampling distribution is disjunct, a parapatric or allopatric boundary could not be 

determined. More detailed discussions for two representative case studies are presented below.  

3.2. Long-Fingered Bat (Myotis capacinnii) 

Bilgin et al. [35] investigated the genetic differentiation of the long-fingered bat, with sampling 

from 14 locations in Bulgaria, Greece and Turkey, and examining the cyt-b region of mtDNA and 

eight microsatellite loci. The results showed potential isolation of the populations with a mitochondrial 

break, differentiating the western and eastern populations as two clades, located between Turkey and 

Greece & Bulgaria (Figure 2b). The divergence was dated to around 500 Kya, in the Pleistocene. The 

individuals belonging to the two clades were found in sympatry in certain caves in Bulgaria and 

Greece, indicating a hybrid/contact zone. However, the differentiation was not reflected in the nuclear 



Int. J. Mol. Sci. 2011, 12 4089 

 

 

microsatellites, suggesting that the differentiation in glacial refugia in mtDNA probably did not result 

in biological speciation. A similar pattern of differentiation of the Balkan and Turkish populations, in 

mtDNA, was also partly seen in the two large Myotis species, Myotis and M. blyhtii. 

3.3. Killifish (Aphanius fasciatus) 

This species is an example of pattern I being observed beyond the terrestrial environment in the 

brackish waters (Figure 2d). Using RFLP and direct sequencing methods, Triantafyllidis et al. [33] 

evaluated the 16S rRNA, tRNA-Leu, NADH-1 and tRNA-Ile regions of mitochondrial DNA for a total 

of 158 samples of killifish from 13 sites in Greece and Turkey. The results indicated a high degree of 

population genetic structure and two main phylogenetic lineages, divided along a western and eastern 

axis, with a hybrid zone passing through Greece. The eastern group was comprised of the populations 

from water bodies draining into the Aegean, and the western group was comprised of localities 

draining into other areas in the Mediterranean. Interestingly, based on the study of Hrbek and  

Meyer [32], also using mitochondrial DNA, a sample from southern Turkey was seen to be more 

similar to the western group, indicating a potentially more complex evolutionary history within 

Anatolia. The mean sequence divergence between the two lineages was 3.45%, which corresponded to 

a divergence date of about 4 Mya. The results of these two studies suggest that vicariant events 

affected the evolution of the whole Aphanius genus [32,33]. 

4. Pattern II: Intra-Anatolian Suture Zone 

The presence of a suture zone within Anatolia can be associated with refugial areas in western and 

eastern Anatolia [9]. Also postglacial expansion from refugia located more to the west, out of the 

Balkans, and more to the east from the Caucasus and the Caspian Sea [69], or even beyond are 

possible. Out of the 29 species investigated, eight showed the presence of potential hybrid zones 

within Anatolia (Figures 3a–h, Table 1). The species included three mammals, two insects, two 

amphibians and one plant.  

In three species, the divergent clades in the east and west showed a parapatric distributional  

overlap within Anatolia. These were the crested newt (Figure 3a) [52], the greater horseshoe bat  

(Figure 3b) [46,47] and the ground squirrel (Figure 3c) [45]. In four other species, although 

distributions of the divergent clades came very close to each other, there was no evidence for an 

overlap. In the annual grass Hordeum spp. [54], the bent-winged bat [48,49,50,51] and the pine 

processary moth [55] (Figures 3e, 3f and 3h, respectively), the border of the allopatric distributions 

passes through central Anatolia. In the mountain frog (Figure 3d) [16], this boundary is within 

southwestern Anatolia. Finally, in Figure 3g, the pattern for the Glanville fritillary moth [55] can be 

seen. In this species, as the western and eastern clades were geographically far from each other (in 

central Anatolia and Iran, due to a sampling bias), a zone of allopatry or parapatry was not indicated. 

The details for two of the representative species are presented below.  

4.1. Ground Squirrels (Spermophilus spp.) 

As an example of a species complex with parapatric overlap within Anatolia, ground squirrels, 

Spermophilus spp., can be given. In this complex, Gündüz et al. [45] defined a new species  
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(S. taurensis) in the Taurus Mountains within Anatolia. They took samples from 183 individuals and 

86 localities, and used complete tRNA-Thr, tRNA-Pro and cytochrome-b, and partial D-loop, and X 

and Y chromosome sequences. The complete molecular data set, combined with morphology 

supported the diagnosis of the Taurus populations as a separate biological species. The cytochrome-b 

data provided evidence for the presence of five phylogroups within Anatolia. The authors suggest that 

these lineages correspond to differentiation in local refugia within Anatolia, and lack of any significant 

dispersal subsequently. A closer examination of the phylogenetic trees indicates two main clades with 

lineages 1, 2 and 3 being reciprocally monophyletic with lineages 4 and 5. Mapping the geographic 

distribution of these clades shows a main parapatric zone within central Anatolia, suggesting a western 

and eastern refugial area for these two clades, presumably on the two sides of the Anatolian Diagonal 

(Figure 3c). 

4.2. Bent-winged Bat (Miniopterus schreibersii) 

The bent-winged bat, Miniopterus schreibersii, is one of the species that shows an allopatric distribution 

of intraspecific clades. This species was investigated with samples from Bulgaria, Greece, Turkey, 

Georgia, Armenia and Iran and utilizing mtDNA, microsatellite and morphological data [48-51]. The 

mtDNA results indicated a western and eastern division, but with a slight twist. The ―western‖ clade 

was predominantly found to the east in humid coastal regions, whereas the ―eastern clade‖ was 

predominantly found entirely in drier inland areas (Figure 3f). This suggests that climate might have 

played a role in the differentiation of these clades, or that the glacial climatic preferences of the 

ancestral populations were conserved in the more recent generations. The divergence was dated to 

around 230 Kya, in the Pleistocene. The results also indicated significant genetic differentiation in 

microsatellites. Statistically significant differences were also seen in the morphology of the clades, 

measured as the forearm length. The bats in the eastern clade had longer forearms than those in the 

western clade [49,51]. If in any cave, individuals belonging to the two different clades were to be 

found in sympatry, this would indicate that the two clades represent two separate biological species. 

5. The Star (*) Pattern 

Another pattern category can be defined for seven species that were investigated in a broad 

geographic context, with populations from Europe, Asia and sometimes Africa being included, in 

addition to those from Anatolia. These studies indicated that Anatolia is probably the center of origin 

for the species. Sometimes this pattern overlaps with the previous two patterns; as the species that have 

hybrid zones in the region also exhibit high levels of diversity. These have been represented with a star 

next to the pattern with the corresponding potential hybrid zone in Table 1. For example, for the brown 

hare ‗I*‘ indicates that the species shows a hybrid zone between Anatolia and the Balkans, and also 

that Anatolia represents the center of origin for this species [38,39]. On the other hand, there are 

species, such as Alpine rockcress, which do not show the presence of a hybrid zone, but shows the highest 

levels of diversity in Anatolia [13], and is depicted by a star ‗*‘ only. In this regard the brown hare showed 

the I*, the annual grass (Hordeum gussoneanum) showed the II* [54], the oak-gallwasp [15], the brown 

trout [17,64] and the chub [65] showed the (I&II)* patterns (cases of species exhibiting both patterns I &II, 

but also Anatolia being a center of diversity). In addition, the European ash (Fraxinus angustifolia) [66] fits 
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the pure star pattern, without any breaks within Anatolia or between Anatolia and the Balkans. The 

details for two species are presented below for the star pattern.  

5.1. Oak-gallwasp (Andricus quercustozae) 

In their study on the oak-gallwasp, Rokas et al. [15] sampled 42 locations from Morocco, 

continental Europe and Anatolia. They sequenced 47 individuals at the mitochondrial cytochrome b 

gene, and also screened 609 individuals at 12 allozyme loci. Both analyses showed a deep split  

(7 Mya) between the northeastern/central and the southwestern Anatolian populations (Figure 3a), 

although the clustering pattern of the central Anatolian populations differed in the two methods. In the 

sequence analysis, the central Anatolian haplotypes clustered with those from Europe, whereas in the 

allozyme analyses they clustered together with the populations from northeastern Turkey. In general 

the allozyme data seemed to provide higher resolution than the sequence data, with refugial 

populations in Iberia, Italy and Balkans. The allozyme allele frequency data also indicated gene flow 

from Anatolia to the populations in Greece and Italy. The results showed that the highest levels of 

genetic diversity among the populations sampled were found in Anatolia, suggesting that this region 

comprised a center of origin for the European populations, and the source for the pre-Pleistocene 

colonization of Europe.  

5.2. Alpine Rockcress (Arabis alpina) 

Koch et al. [13] investigated the phylogeography of the Alpine rockcress, Arabis alpina, using 

sequence data from trnL-F chloroplast DNA and the ITS of nuclear encoded ribosomal DNA regions. 

Samples were collected from 142 locations, including all European mountain systems, the Canary 

Islands, North Africa, eastern Africa, the Arabian Peninsula, the Middle East and Anatolia. The data 

suggested that the region between the Balkans, the Caucasus and the Middle East (in essence Anatolia) 

represents the center of origin for Arabis alpina. The date of origin of the species in Anatolia was 

calculated to be around 2 Mya, with three migration fronts expanding out. These included one group 

migrating to east African mountains, through the Arabian Peninsula. A second group gave rise to the 

European and northwest African populations. The third group was centered in Asia, and came in 

secondary contact with the east African populations. Although the species is also found in northern and 

eastern Anatolia, these regions were not sampled in this study of Koch et al. Therefore, further 

sampling in these regions will be necessary to determine the presence and absence of a hybrid zone  

in Anatolia. 

6. Special Cases 

Other than the species that fall under the above patterns I and II, in five species, a juxtaposition of 

Pattern I and Pattern II can be seen. In the oak gallwasp (Figure 4a) [15] and the European tree frog 

(Figure 4b) [59], the Balkan and western Anatolian populations are differentiated from each other, 

however a zone of parapatry or allopatry could not be determined, due to sampling gaps. However, 

between the western and eastern Anatolian samples, a zone of allopatry within central Anatolia can be 

seen for these two species. On the other hand, in the white-breasted hedgehog (Figure 4c) [60-62], a 

break is seen between the Balkan and Anatolian populations that coincide with the Bosphorus, 
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suggesting that the strait may be a barrier to gene flow for this species. There is another line of 

allopatry in this species that is in eastern Anatolia, separating the Anatolian and the Caucasus 

populations. In addition to these cases, the lesser white-toothed shrew shows a modified version of 

pattern I (Figure 4d) [56-58]. In this species, intraspecific breaks where two of the three groups have 

complete overlap within Anatolia, and one of these groups has a parapatric distributional overlap with 

a third clade in the Balkans. Finally phylogroups within Anterastes serbicus species group [63]  

(Figure 4e) show local differentiation within different regions of Anatolia and between Anatolia and 

Bulgaria, as another example to a special case. 

7. Discussion 

7.1. Suture Zones 

As mentioned above, in a relaxed sense, suture zones can be defined as areas where multiple hybrid 

zones, contact zones or phylogeographic breaks meet. The mapping of various allopatric and parapatric 

phylogeographic breaks and from different species (Figures 2, 3 and 4) onto the same map (Figure 5) 

outlines the presence of two suture zones, one between the Balkans and Anatolia and another within 

Anatolia. These suture zones show that although the patterns of differentiation and geographic 

orientation of intraspecific groups are idiosyncratic for each taxon, general patterns do emerge due to 

the glacial history of the region. 

Figure 5. The suture zones as defined by the overlap of the paraptric zones (gray shades) 

and allopatric borders (dashed lines) of the clades in Figures 2, 3 and 4. 

 

The prevalence of two suture zones associated with Anatolia suggests that the conditions for 

maintaining these zones are being satisfied for multiple taxa. The point that these intraspecific lineages 

do not geographically mix is interesting considering the wide time ranges of the split of these clades. 
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Clades that split during Pleistocene show very similar distribution patterns with clades that diverged 

during the Pliocene. This discrepancy suggests that the interglacial periods in the Pliocene and 

Pleistocene did not cause the mixing of the divergent clades. There are two possible scenarios 

regarding the maintenance of the distribution we observe. One is that a narrow hybrid tension zone 

between the two clades was preserved through the classical cases of hybrid unfitness [5]. However, the 

initial phase of isolation also had to be long enough for enough differentiation to accumulate to cause 

hybrid unfitness. It is also possible that after clades started to diverge, the previous interglacials did not 

provide enough time for the ranges of the divergent populations to expand, even though there might 

not have been any hybrid unfitness. Hence although the populations were isolated in different refugia 

at various glacial maxima, the interglacial periods could have caused oscillatory range expansions not 

culminating in range overlaps of the western and eastern clades for any given species. 

Considering that the current distribution of the various intraspecific clades was a result of the 

expansion after the end of the last glacial maximum, around 15,000 years ago, the diverging clades in 

each species would have had to not be mixed in the previous interglacials. If any mixing took place in 

the previous interglacials (for instance, a western clade expanding way to the east and mixing with the 

eastern clade) then the geographic orientation of the clades would not be as clear cut as it is observed 

now. As the previous interglacials in the Pleistocene lasted around 20,000–26,000 years [70], which is 

more than the current 15,000 years since the last glacial maximum and can be considered as a 

benchmark timeframe under which two divergent clades can meet, the pre-Holocene interglacials 

would have provided enough time for the ranges of the divergent clades to overlap and mix. However, 

we do not observe evidence for such a mixture. Hence, rather than non-meeting oscillatory movement 

of divergent clades, the hybrid tension zones, formed by hybrid unfitness could be the dominant 

mechanism that did not allow the mixing of the divergent clades across their respective suture zones. 

Hybrid unfitness has proven to be an important causal factor in the formation of hybrid zones and 

speciation for many species [71]. With its geographical location between glacial refuge areas, Anatolia 

can be a region where hybrid unfitness is a potentially dominant mechanism in maintaining intraspecific 

boundaries, which might ultimately result in or resulted in speciation. More detailed investigations in the 

zones of overlap between these intraspecifically divergent clades will be necessary to determine the 

effect of hybrid unfitness in maintaining the disjunct distributions that are observed. 

7.2. Postglacial Expansion Scenarios 

Based on genetic data, the role of the Balkan peninsula as a glacial refugium and source of 

postglacial colonization of Europe has been well established in the literature [5]. Two Anatolian 

glacial refugia, one in western Anatolia and one in eastern Anatolia, have also been suggested based on 

non-genetic data  [9]. The lake system present in central Anatolia during the Pliocene (Figure 1), and 

the inhabitability of the Central Anatolian Plateau in the glacial maxima during the Pleistocene [72] 

present themselves as potential geological causes for intraspecific differentiation in these epochs. The 

differences between the Balkan and Anatolian populations can mainly be associated with the formation 

of the Aegean in the late Pliocene [9]. The presence of intraspecific suture zones between Anatolia and 

the Balkans (Pattern I) and within Anatolia (Pattern II), supports these geological scenarios. In total, 26 

out of the 29 studies reviewed here showed some sort of intraspecific genetic break in either one or 

both of these suture zones. These patterns were seen differently in various groups of species; for 
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instance, some fish species (e.g., killifish) fit Pattern I, whereas in others (e.g., chub) we see evidence 

for both pattern I and pattern II. Pattern I was observed for a Vespertilinoid bat (Bent-winged bat) and a 

Rhinolophid bat (Greater Horse-Shoe bat), but Pattern II was observed for another Vespertilionid bat 

(Long-fingered bat). Pattern I was observed in a plant, a fish and a mammal. These results suggest that 

commonalities cannot be seen in terms of life histories of the organisms and patterns cut through phyla. 

It is likely that in the species that fit both pattern I and II, a refugial population survived in western 

Anatolia, as well as the Balkans (and possibly more to the west), and eastern Anatolia (and possibly 

more to the east). Consequently, the western Anatolia acted as a buffer, limiting the postglacial 

dispersal of the Balkan and the eastern Anatolian populations. In species that fit Pattern I, of only the 

Balkan-Anatolian suture zone, either no refugial populations existed in western Anatolia, or the ones 

that existed went extinct. Subsequently, this area could have been colonized from the eastern 

Anatolian, Caucasian or Iranian refugial populations. As an alternative explanation, it is also possible 

that the western Anatolian population expanded postglacially to the east, and the eastern Anatolian 

population went extinct. In terms of the geographic placement of hybrid zones, when two 

differentiated clades meet with each other, they form tension zones, which cannot be easily be 

penetrated by the other once it is formed [73]. Assuming that post-glacially the Balkan, the western 

Anatolian and eastern Anatolian populations started their expansion at similar geological times, it 

seems more plausible that the western Anatolian, rather than the eastern Anatolian population 

expanded to meet with the Balkan populations. If this was not the case, and the western Anatolian 

population had gone extinct, we would probably see hybrid zones pre-dominantly within Anatolia 

(pattern II), with the Balkan populations expanding into Anatolia.  

For Pattern II, with one suture zone existing in Anatolia, the explanations are slightly more 

straightforward. With the eastern clades having originated in eastern Anatolia, the Caucasus or south 

of the Caspian Sea, the western clade either originated in western Anatolia or in the Balkans. 

Consequently the two clades expanded and met around central Anatolia. As the western Anatolian and 

the Balkan populations are genetically similar to each other, it is likely that only one panmictic 

population survived in these regions, for each species. For any given species under this category, it is 

possible that there was only a Balkan population with western Anatolia initially vacant during the ice 

age, which was subsequently colonized postglacially; or vice versa.  

7.3. Geographic Barriers 

One commonality in the various studies seems to be about the effects of geographic barriers on 

intraspecific differentiation. In most of the cases, clades of species were seen on both sides of a barrier 

such as the Taurus, the Anatolian Diagonal and the Sea of Marmara, implying that the geographic 

barriers probably did not cause differentiation of populations, or limit their postglacial expansions. In 

only three cases did the distribution of genetic differences overlap with a geographic barrier. These 

species were the yellow-necked fieldmouse (Figure 2g), the white-breasted hedgehog (Figure 4b), and 

the Anterastes serbicus species group (Figure 4e), which had distinct clades/phylogroups distributed 

on either side of the Bosphorus Strait, which appears to have acted as a barrier to gene flow. Also, for 

the greater horse-shoe bat, Rossiter et al. [47] suggested that the Sea of Marmara might be a barrier to 

gene flow, indicating a break that fits Pattern I. However, more thorough sampling in Anatolia by  

Bilgin et al. [51] suggested that this break passes from within Anatolia, in concordance with Pattern II, 
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and provided no evidence of the Sea of Marmara or other geographic barriers causing genetic 

differentiation between populations of this species. 

Hence, although ice ages seem to have caused genetic differentiation within species, during their 

subsequent postglacial range expansions, these species seem to have gradually dispersed over these 

geographic barriers with time. As speciation or genetic differentiation generally requires allopatric 

separation [74], the point that various intraspecific clades are not currently divided due to geographic 

barriers supports the view that intraspecific differentiation in Anatolia is due to isolation in the form of 

historically impassable/uninhabitable areas in the region (in this case the Central Anatolian Plateau 

and/or lake system), separating the refugia. It is possible that the corridor referred to as the ―Taurus 

way‖ [75], connecting the Anatolian Diagonal, the Taurus and the western Aegean mountains may 

have been instrumental in the dispersal of some of these species, especially those adapted to colder 

climates. This explanation does not completely support the view proposed by Demirsoy [11] and 

Çıplak et al. [76] that geographic barriers, especially the Anatolian Diagonal, served as a barrier 

causing differentiation of taxa at the species and subspecies level. The effect of the Anatolian Diagonal 

may be more important for species with limited dispersal potential (e.g., insects of the family 

Pamphaginae) as pointed by Demirsoy. However, for the species reviewed here, except the three 

mentioned above, the multiple chains of mountains including the Anatolian Diagonal, and the Sea of 

Marmara, do not seem to have been impermeable boundaries for the postglacial expansion of 

populations or to have significantly contributed to the differentiation of the populations.  

7.4. Times of Divergence 

Before the utilization of genetic markers, reconstruction of the temporal dimension of invasion 

processes in Anatolia was not possible due to lack of sufficient data, even for mammals with their rich 

fossil record [77]. The genetic data now available helps us to infer some of these details of the 

recolonization of Anatolia. Still, our power of inference is limited. For instance, there was no 

concordance in divergence times of species or subspecies among the different organismal groups, 

which was also the case in many European species [5]. In Anatolia, of the 19 species for which clade 

divergence times were computed, 10 were dated to within the Pleistocene, and nine to the Pliocene. 

Some patterns were seen in certain groups, nonetheless. For instance, clades in five out of seven 

mammals (except the yellow-necked fieldmouse and the white-breasted hedgehog) were observed to 

have split during the Pleistocene. Also, regarding the species that show pattern II, of differentiation 

within Anatolia, the Pliocene split could have been expected to be associated with the freshwater 

species, as the brackish water Pliocene lake system in central Anatolia [9] could have acted as a barrier 

to gene flow. The species with divergences dating to the Pliocene included two anuran species (the 

mountain frog and the European great toad), one urodeles species (the crested newt), as well as two 

fish species (killifish and chub) that live in freshwater, suggesting that this lake system could have 

been instrumental in the differentiation of these species. 

Comparing the divergence times of species that were studied in Europe with the estimates for the 

Balkan/Anatolian region shows compatibility in some species, and helps to elucidate the details of the 

evolutionary history of these species at a larger geographic scale. Two species that were investigated in 

both Europe and the Balkan/Anatolian transition zone also had their divergence dates estimated. In the 

hedgehog, Erinaceus spp., the times of divergence calculated around 3–6 Mya for the Iberian, Italian 
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and Balkan peninsulas are comparable to the divergence date (~3 Mya) within Anatolia. This shows 

that the entire split of the species into various lineages took place in the same epoch, the Pliocene, in a 

parallel manner. In the lesser white-toothed shrew, C. suaveolens, the European split took place about 

1.72 Mya (1.40–2.23 Mya). The split between western Anatolia and Europe was dated to around  

940 Kya (760 Kya–1.21 Mya). Hence, in this species, the split in Anatolia took place later than that in 

Europe. It is possible that the expansion of the European population was halted in the Balkans due to 

the Anatolian population, which had already differentiated in isolation during the Pleistocene and 

already existed in Anatolia when the European populations arrived. 

7.5. Anatolia as a Center of Diversity 

Non-genetic methods of analyses, such as species richness maps [78] and presence of three hotspots 

in Anatolia have shown it to be an area with high levels of species diversity. In a parallel manner, 

Anatolia comprises a region exhibiting high levels of genetic diversity. As Rokas et al. [15] indicate, 

important populations of many western Palaearctic taxa are indeed located to the east of Europe, and 

―although these more easterly populations are rarely considered, they may not only represent 

significant centers of genetic diversity, but also potential origin of populations now occupying 

Europe‖. This was seen to be the case for some species that were studied with broad genetic sampling 

from Europe and other neighboring regions. The brown trout, the oak gallwasp and Alpine rockcress 

were species that provided evidence for Anatolia being such a center of diversity. It is also likely that 

the other species that fit to patterns I and II, and which were investigated at local scales, if studied at 

more continental geographic scales, could provide evidence for high levels of genetic diversity in 

Anatolia, when compared to the neighboring regions, and give further support to the region being a 

center/origin of genetic richness. Also, even at a local scale, the suture zones also define areas where 

divergent clades meet, and by definition comprise regions containing high levels of genetic diversity. 

This would also have important conservation implications, as these suture zones can be prioritized as 

areas for protection of the populations of individual species.  

7.6. Conclusions and Future Research 

Although generally considered to be a single refuge, the idea of ―refugia within refugia‖ have been 

proposed formerly for the Iberian peninsula [79]. This view suggested that multiple smaller areas have 

existed within Iberia, where isolated populations persisted, resulting in elevated levels of cryptic 

genetic diversity [80]. The overview of the genetic studies in Anatolia undertaken in this review 

suggests that, in a similar manner and as suggested by Medial and Diadema [81] and Çıplak et al. [76], 

treating Anatolia as a single refugium is an over-simplification. In addition to some very local 

differentiation such as that seen in the Anterates serbicus group, an examination of intraspecific 

genetic differentiation from various taxa show at least two main refugial regions in and/or around 

Anatolia, in the west and east, with the shapes of hybrid zones and their geographic patterns changing 

based on individual species. The patterns observed for various species also suggest that isolation of 

populations of species during the ice ages and their subsequent genetic differentiation is the most  

over-arching process of intraspecific evolution in Anatolia and its surrounding regions. The numerous 

geographic barriers present in the region have not necessarily acted as major impediments to 
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postglacial expansion for most of the species. There is also evidence for Anatolia being a general 

hotspot of genetic diversity in a continental perspective.  

Further research in Anatolia should also include species like the brown bear and the oak, which 

have been extensively studied in Europe, to complete the general picture in terms of the intraspecific 

evolution of these species more comprehensively. On the flip side, it will also be informative to 

investigate species with European distributions that have been examined regionally in Anatolia  

(e.g., bent-winged bat, mountain frog), at a more continental scale. These complementary lines of 

research will help to complete our understanding of the evolutionary differentiation of populations in 

Asia Minor and Europe during the ice ages, and explain the origins of the high genetic and species 

diversity found in Anatolia. Thorough geographic sampling in Anatolia will also help to avoid 

inferential problems, such as those mentioned above for the greater horse-shoe bat, where the denser 

sampling within Anatolia indicated that the Sea of Marmara was unlikely to be a barrier to gene flow, 

an earlier suggestion made based on limited distribution data from Anatolia.  

Due to its location at the junction of Europe, the Caucasus and the Middle-East, the biogeography 

of Anatolia is also affected by the Middle Eastern geographic history. For instance, research has shown 

that the Israeli populations of some species are differentiated from the Balkan/Anatolian ones [62]. 

Concordantly for the species investigated in this review, it will be interesting to make comparisons 

with those in the Caucasus and the Middle East, in a broad sense, including populations from Georgia, 

Iran, Syria, Israel, Jordan. Organismally speaking, it will be informative to look at other species in 

genera like the bat Myotis, where different species have shown congruent patterns (e.g., both Myotis 

myotis/blythii and Myotis capaccinii conform to pattern I). Also, the possibility of multiple smaller 

refugia within Anatolia needs to be investigated with more fine-tuned sampling. Working with species 

that have limited dispersal capabilities, these investigations could pinpoint the exact locations of these 

local refugia within Anatolia. As Tolkien once said ―Little by little one travels far‖, and new data 

being produced in the genetically under-studied regions of the world, such as Anatolia, is advancing 

the field of molecular ecology by helping come up with general conclusions on the intraspecific 

evolution of various species and untangle regional details of their biogeographic histories. The missing 

pieces of a big jigsaw puzzle are being found as we speak and the next little steps are eagerly awaited. 
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