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Abstract

Motivation: Single-cell RNA sequencing (scRNA-seq) analysis reveals heterogeneity and dynamic cell transitions.
However, conventional gene-based analyses require intensive manual curation to interpret biological implications
of computational results. Hence, a theory for efficiently annotating individual cells remains warranted.

Results: We present ASURAT, a computational tool for simultaneously performing unsupervised clustering and
functional annotation of disease, cell type, biological process and signaling pathway activity for single-cell transcrip-
tomic data, using a correlation graph decomposition for genes in database-derived functional terms. We validated
the usability and clustering performance of ASURAT using scRNA-seq datasets for human peripheral blood mono-
nuclear cells, which required fewer manual curations than existing methods. Moreover, we applied ASURAT to
scRNA-seq and spatial transcriptome datasets for human small cell lung cancer and pancreatic ductal adenocarcin-
oma, respectively, identifying previously overlooked subpopulations and differentially expressed genes. ASURAT is
a powerful tool for dissecting cell subpopulations and improving biological interpretability of complex and noisy
transcriptomic data.

Availability and implementation: ASURAT is published on Bioconductor (https://doi.org/10.18129/B9.bioc.ASURAT).
The codes for analyzing data in this article are available at Github (https://github.com/keita-iida/ASURATBI) and fig-
share (https://doi.org/10.6084/m9.figshare.19200254.v4).

Contact: kiida@protein.osaka-u.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) has deepened our know-
ledge of biological complexity in terms of heterogeneity and dynam-
ic transition of cell populations, and this knowledge has immense
potential for helping elucidate the regulatory principles underlying
our body plans (La Manno et al., 2018). scRNA-seq has been widely
used to improve the molecular understanding of malignant cells in
lymphoma (Zhang et al., 2019), intra- and intertumoral heterogen-
eity in drug-treated cancer populations (Stewart et al., 2020), lig-
and–receptor interaction in tumor immune microenvironments
(Chen et al., 2020) and effects of viral infection on immune cell pop-
ulations (Devitt et al., 2019). Various clustering methods based on
gene expression similarity have been proposed (Pasquini et al.,
2021) and applied to annotate cell types (Kim et al., 2020).

However, conventional gene-based analyses require intensive man-
ual curation to annotate clustering results; hence, efficient and un-
biased interpretation of single-cell data remains challenging
(Andrews et al., 2021; Aran et al., 2019; Kiselev et al., 2019).

Conventionally, single-cell transcriptomes are analyzed and
interpreted by means of unsupervised clustering followed by manual
curation of marker genes selected from a large number of differen-
tially expressed genes (DEGs) (Andrews et al., 2021). Here, manual
curations are based on literature searches of biological functions of
DEGs. Today, several computational tools for cell type inference are
available, as detailed in a review by Pasquini et al. (2021). However,
manual curation is often difficult because a single gene is generally
multifunctional and therefore associated with multiple biological
function terms (Cancer Genome Atlas Research Network et al.,
2017). In cancer transcriptomics, this difficulty is exacerbated by
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the complex interdependence between disease-related genes and
their heterogeneous expressions, associated with numerous biologic-
al function terms.

A possible solution is to realize clustering and interpretation simul-
taneously. Recently, reference component analysis has been used for
accurate clustering of single-cell transcriptomes along with unbiased
cell-type annotation based on similarity to reference transcriptome pan-
els (Li et al., 2017). Yet, these methods require transcriptomic data of
well-characterized reference cells as learning datasets, which might not
always be available. Another approach is using functionally annotated
gene sets for scoring cells, implemented in R packages including
PAGODA (Fan et al., 2016) and ssGSEA (Subramanian et al., 2005).
Given single-cell transcriptome data, these methods use statistical
methods, such as principal component analysis (PCA) and gene set en-
richment analysis (GSEA), for providing each cell with scores of anno-
tations against functionally annotated gene sets, such as signaling
pathway modules. Nevertheless, correlations of gene expressions are
complex with positive and negative (Saxena et al., 2006), strong and
weak and non-linear relationships, which can be poorly captured using
the existing methods (see also Section 4).

To overcome these limitations, a nonlinear framework defining
biological terms in a more interpretable way is needed. Therefore,
we propose the computational tool, ASURAT (functional
annotation-driven unsupervised clustering of single-cell transcrip-
tomes), which simultaneously performs unsupervised clustering and
biological interpretation in terms of cell type, disease, biological
process and signaling pathway, using a nonlinear correlation graph
decomposition for functionally annotated gene sets. In this study,
we demonstrate the clustering performance of ASURAT using
scRNA-seq datasets for healthy and disease human peripheral blood
mononuclear cells (PBMCs), small cell lung cancer (SCLC) and spa-
tial transcriptome (ST) datasets for pancreatic ductal adenocarcin-
oma (PDAC). Our results suggest that ASURAT can greatly improve
functional understanding of single-cell transcriptomes, adding a new
layer of biological interpretability to conventional gene-based
analyses.

2 Materials and methods

2.1 Overview of ASURAT workflow
ASURAT is a computational tool for simultaneously clustering and
interpreting single-cell transcriptomes (Fig. 1) using functionally
annotated gene sets collected from knowledge-based databases for
cell type, disease, biological process and signaling pathway activity,
such as Cell Ontology (CO) (Diehl et al., 2016), Disease Ontology
(DO) (Yu et al., 2015), Gene Ontology (GO) (Yu et al., 2012) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and
Goto, 2000) (Fig. 1b). ASURAT creates multiple biological terms

using single-cell transcriptome data and annotated gene sets
(Fig. 1c). We called such biological terms ‘signs’. Then, ASURAT
creates sign-by-sample matrices (SSMs), in which rows and columns
stand for signs and samples (cells), respectively (Fig. 1d). SSM is
analogous to a read count table, where the rows represent signs with
biological meaning instead of individual genes and the values con-
tained are ‘sign scores’ instead of read counts. By analyzing SSMs,
individual cells can be characterized by various biological terms
(Fig. 1e).

2.2 Sign
Let A be a read count table of size p� n from single-cell transcrip-
tomic data, whose rows and columns are p genes, represented by
X ¼ f1; 2; � � � ; pg, and n cells, respectively, and R a ‘rapport’ (e.g.

correlation matrix) among X. Let F ¼ ðTk;Xk

�
ÞjXk � X; k ¼

1; 2; � � � ; qg be a set of ordered pairs, where Tk and Xk are
biological description and the annotated gene set, respectively.

Consider an R-dependent representation Xk ¼ [mk

j¼1X
ðjÞ
k , where mk is

an integer, for k ¼ 1; 2; � � � ; q; then, the triplet ðTk;X
ðjÞ
k ;RÞ is

termed a sign, in particular ðTk;Xk;RÞ a parent sign. Our definition
is based on Saussure’s semiology. According to Maruyama, the ori-
ginal notion of a signe is a segment of ‘a thing of interest’, created by
an arbitrary decomposition based on its relations. For example,
‘rainbow’ is a continuum of varying light input, from which we see
distinct colors of red, yellow, green and blue by our subjective de-
composition based on their spectral relationships (Couper, 2015).

2.3 Correlated gene set
Let R ¼ ðri;jÞ be a correlation matrix of size p� p defined by A and
a certain measure (e.g. Spearman’s measure), whose diagonal ele-
ments are 1s. Let a and b be positive and negative constants satisfy-
ing 0 < a � 1 and �1 � b < 0, respectively. Let us arbitrarily fix
ðTk; XkÞ 2 F and consider the following subsets of Xk:

UkðaÞ ¼ fi 2 Xkj9j 2 Xk such that ri;j � a; i 6¼ jg;
VkðbÞ ¼ fi 2 Xkj9j 2 Xk such that ri;j � b; i 6¼ jg;

Wkða;bÞ ¼ UkðaÞ[VkðbÞ:

Hereinafter we omit the arguments a and b for simplicity. Let

RWk
¼ ðr�i;jÞi; j2Wk

be a submatrix of R. Let us identify the row vec-

tors of RWk
with points in Wkj j-dimensional Euclidean space and de-

note the set of those points as W
�

k. Then, let us identify all the

elements in Wk with those in W
�

k through the subscripts of r
�

i; j,

i; j 2Wk. If Vk is not empty, decompose W
�

k into two disjoint sub-

sets XðsÞk and XðvÞk by Partitioning Around Medoids (PAM) clustering

(Schubert and Rousseeuw, 2019), from which we obtain

Wk ¼W
�

k ¼ XðsÞk [ X vð Þ
k :

Otherwise, if Vk is empty, let XðsÞk ¼ Uk and XðvÞk ¼ / (empty).
Thus, Xk is decomposed into three parts as follows:

Xk ¼ X sð Þ
k [ X vð Þ

k [ X wð Þ
k ; (1)

where XðwÞk ¼ Xk �Wk. Let R
XðsÞ

k

¼ ðri; jÞi; j2XðsÞ
k

and R
XðvÞ

k

¼

ðri; jÞi; j2XðvÞ
k

be submatrices of R and let lðsÞk (resp. lðvÞk ) be the mean

of off-diagonal elements of R
XðsÞ

k

(R
XðvÞ

k

). We assume lðsÞk � lðvÞk with-

out loss of generality. If lðsÞk � a, then XðsÞk , XðvÞk and XðwÞk are termed

strongly, variably and weakly correlated gene sets, which are here-
after abbreviated as SCG, VCG and WCG, respectively. Otherwise,
correlated gene sets cannot be defined for Tk.

Figure 2 shows that the SCG and VCG include KRT18 and
ASCL1, which have negative and positive contributions for lung
small cell carcinoma, respectively. Thus, we interpret that
ðTk; XðsÞk ; RÞ and ðTk; XðvÞk ; RÞ for DOID 5409 relate positively

Fig. 1. Workflow of ASURAT. (a) Flowchart of ASURAT. (b) Collection of data-

bases. (c) Creation of signs and (d) SSMs. (e) Analysis of SSMs to infer cell types,

diseases, biological processes and signaling pathway activities
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and negatively with this cell type, respectively. Though there exist
simpler methods for decomposing graphs, such as one-shot PAM
clustering, hierarchical clustering and tree cutting (Murtagh and

Legendre, 2014), PCA-based methods (Hyvarinen, 1999) and sev-
eral graph statistical approaches (Blondel et al., 2008; Bodenhofer

et al., 2011), we found that the VCG definition is critical for cluster-
ing cells. In fact, we tried replacing our decomposition method (1)
with one-shot PAM clustering, but the results often exhibited deter-

iorated performance since both VCG and WCG (obtained from the
one-shot clustering) included weakly correlated genes.

2.4 Sign-by-sample matrix
Let A ¼ ðai;jÞ be a gene-by-cell matrix of size p� n from a single-cell

transcriptomic data, whose entries stand for normalized-and-
centered gene expression levels. For simplicity, let us assume that

annotated gene sets Xk can be decomposed into non-empty XðsÞk , XðvÞk

and XðwÞk , for k ¼ 1; 2; � � � ; q. Let BðxÞ ¼ ðb xð Þ
k;j Þ, x 2 fs; v; wg, be

matrices of size q� n, whose entries are defined as follows:

b
ðxÞ
k;j ¼

1

jXðxÞk j

X

i2XðxÞ
k

ai;j;

where jXðxÞk j stands for the number of elements in XðxÞk . Additionally,

let CðxÞ ¼ ðcðxÞk;j Þ, x 2 fs; vg, be q� n matrices, whose entries are
defined as follows:

c
ðxÞ
k;j ¼ x xð Þb

ðxÞ
k;j þ 1� x xð Þð ÞbðwÞk;j ; (2)

where xðxÞ, 0 � xðxÞ � 1, are weight constants. Here, CðsÞ and CðvÞ

are termed SSMs for SCG and VCG, respectively, while the entry
c
ðxÞ
k;j as sign score of the kth sign for jth sample (cell). Sign score pro-

files can be represented as points in a Euclidean space, termed sign
space in this article. Notably, the ensemble means of sign scores

across cells are zeros since SSMs are derived from the centered gene
expression matrix A.

2.5 Significant sign
Using ASURAT, one can create multiple signs and SSMs by setting
the appropriate parameters (Supplementary Note S1 and Fig. S1).

Using SSMs, we can infer cell states by performing unsupervised
clustering and investigating significant signs, where ‘significant’

means that the sign scores (2) are specifically upregulated or down-
regulated at the cluster level. Significant signs are analogous to
DEGs. Here, naı̈ve usages of statistical tests and fold change analy-

ses should be avoided because the row vectors of SSMs are centered.
Hence, we propose a nonparametric separation index, which quanti-

fies the extent of separation between two sets of random variables
(Supplementary Note S2 and Fig. S2).

3 Results

3.1 Clustering single-cell transcriptomes of PBMCs from

healthy donors
To validate the clustering and interpretation performances of
ASURAT in comparison with existing methods, we analyzed two
public scRNA-seq datasets, namely PBMCs 4k and 6k
(Supplementary Note S3), in which the cell types were inferred via
computational tools based on prior assumptions (Cao et al., 2020).
We first excluded low-quality genes and cells (Supplementary Note
S4); the resulting read count tables were supplied to ASURAT and
four other methods: scran (Lun et al., 2016), Seurat (Hao et al.,
2021), Monocle 3 (Trapnell et al., 2014) and SC3 (Kiselev et al.,
2017). To infer the cell types, we used existing methods, performed
unsupervised clustering of cells, and annotated each cluster by
manually investigating DEGs based on the adjusted P-values <
10�100 or false discovery rates < 10�100 (Supplementary Note S5).
Using ASURAT, we created SSMs from CO, Molecular Signatures
Database (MSigDB) (Subramanian et al., 2005) and CellMarker
databases (Zhang et al., 2019) for cell type, GO database for bio-
logical process and KEGG for signaling pathway. Then, cells were
clustered via k-nearest neighbor graph generation and the Louvain
algorithm (Hao et al., 2021) based on the SSM for cell type and
annotated by significant signs and DEGs.

Among all methods used, Seurat, Monocle 3 and ASURAT could
robustly reproduce most blood cell types (Fig. 3a and
Supplementary Fig. S5), as inferred by Cao et al. (2020). We found
that manual annotations provided comparable population ratios
with previous results (Cao et al., 2020). Yet, it was quite laborious
to manually investigate marker genes from numerous DEGs
(Fig. 3b). To avoid such laborious process, we applied scCATCH

Fig. 2. Representation of correlation graph decomposition. From scRNA-seq data

and a Disease Ontology term with DOID 5409, which concerns SCLC, three signs

ðTk; XðjÞk ; RÞ, j 2 fs; v; wg, were produced from their parent sign ðTk; Xk; RÞ by

decomposing the correlation graph ðXk; RÞ into strongly, variably and weakly cor-

related gene sets (e.g. positive and negative correlations are observed between

KRT18 and CD9, and KRT18 and IGFBP2, respectively). The edge width indicates

the strength of the correlation.

Fig. 3. Identification of cell types in peripheral blood mononuclear cell 4k single-cell

transcriptome. (a) Population ratios predicted via seven different methods. (b)

Uniform manifold approximation and projection (UMAP) plots, computed using

Seurat and Monocle 3, for the manual investigation of DEGs based on the adjusted

P-values < 10�100. (c) SSMs and scaled log-transformed read count table, which

are vertically concatenated and clustered based on the SSM for cell type. Only top

significant signs and DEGs are shown in rows. (d) UMAP plot of the SSM for cell

type. (e) Violin plots showing sign scores of significant signs, in which separation in-

dices (I) for the clusters marked with asterisks against the others show ***I > 0:9.

Suffixes ‘-S’ and ‘-V’ after IDs indicate the signs are defined by strongly and variably

correlated gene sets, respectively
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(Shao et al., 2020) to automatically annotate the clustering results of
Seurat. Nevertheless, population ratios inferred by scCATCH were
less consistent than those by manual annotation (Fig. 3a and

Supplementary Fig. S5). We also used ssGSEA (Subramanian et al.,
2005) for providing each cell with enrichment scores against ‘cell

type signature gene sets’ defined in MSigDB without relying on
DEGs (Supplementary Note S5). Although ssGSEA seemed to have
imperfect clustering performance (Supplementary Figs S3e and S4e),

the resulting scores were approximately consistent with Seurat
annotations with a few exceptions (Supplementary Fig. S6).

Using ASURAT, we identified six cell types, including dendritic
cell and megakaryocyte (Fig. 3a and Supplementary Fig. S5), by pri-

marily investigating significant signs for cell type and secondarily
the other signs and DEGs (Fig. 3c–e and Supplementary Fig. S7).
The population ratios were approximately consistent with the

reported values (Cao et al., 2020), except for the small dendritic cell
population possibly included in PBMCs (Villani et al., 2017). Such a
small discrepancy was unavoidable, since Cao et al. (2020) used

author-defined DEGs and preselected cell types to identify the most
preferable ones. Our results were robust against variations of the

number of cells by randomly downsampling the cells from PBMC
4k data and analyzing these data using Seurat and ASURAT with al-
most the same parameters (Supplementary Note S6). These results

demonstrate that ASURAT can perform robust clustering for single-
cell transcriptomes.

3.2 Clustering single-cell transcriptomes of PBMCs from

control and sepsis donors
ASURAT uses database-derived biological terms for clustering

single-cell transcriptomes, which inevitably introduces annotation
bias; some biological terms are associated with many genes, while
others are associated with few (Gaudet and Dessimoz, 2017).

Hence, it is important to validate the clustering performance in
terms of cell state granularity. Here, we analyzed scRNA-seq data-

sets of PBMC published by the clinical cohort study for bacterial
sepsis (Reyes et al., 2020) (Supplementary Note S3), in which 65
subjects with different health conditions were included, total of

106 545 CD45þ cells and 19 806 LIN�CD14�HLA-DRþ dendritic
cells were profiled, 16 immune-cell states were defined and the im-

mune signatures of sepsis against bacterial infection were studied.
After excluding low-quality genes and cells (Supplementary Note

S4), we inferred the cell types, using scran, Seurat, Monocle 3 and
ASURAT with almost the same parameters as in the analyses of
PBMCs 4k and 6k (Supplementary Note S7). Among all the meth-

ods, ASURAT could reproduce most immune cell types
(Supplementary Fig. S12), which was consistent with the previous

report (Reyes et al., 2020). ASURAT identified 11 clusters by per-
forming an unsupervised clustering of the SSM for cell type
(Fig. 4a). Among these, we identified three monocyte subpopula-

tions (Fig. 4a–c and Supplementary Fig. S11): M1 and M2, opposite
subtypes with decreased and increased functions of fatty acid deg-
radation; M3, similar to T cells, are characterized by increased func-

tion of cell adhesion, containing CD2, CD8A and CD58 (Fig. 4c).
We investigated the differences in cell state composition across

each subject type and found that the fractions of total monocytes in
subjects with infections (Leuk-UTI, Int-URO, URO, Bac-SEP, ICU-

SEP and ICU-NoSEP) are larger than those in healthy controls
(Control) (Fig. 4d), which is consistent with the reported result
(Reyes et al., 2020). Moreover, the fractions of M2 in subjects with

organ dysfunction (Int-URO, URO, Bac-SEP and ICU-SEP) are
smaller than those in subjects without organ dysfunction (Control

and Leuk-UTI) except for severely ill patients without infection
(ICU-NoSEP). Our results suggest that sepsis is associated with
impairments of lipid metabolism in monocytes, supported by a pre-

vious proteomic study (Sharma et al., 2019). These results demon-
strate that ASURAT can cluster cells in fine-grained manners and

identify functional subtypes.

3.3 Clustering a single-cell transcriptome of SCLC
SCLC tumors undergo a transition from chemosensitivity to chemo-
resistance states against platinum-based therapy through changes in
transcriptional heterogeneity (Stewart et al., 2020). The ability of
SCLC to change phenotype in response to environmental cues
involves multiple physiological states of cells, such as pathological
states, cell cycle phases (Dominguez et al., 2016) and metabolic
processes (Jalili et al., 2021). However, functional states cannot be
readily identified using conventional gene-based analysis alone, and
hence the mechanism behind chemoresistance remains unclear. To
better understand cancer subtypes in chemoresistant tumors, we
applied Seurat and ASURAT to the SCLC scRNA-seq data with cis-
platin treatments, obtained from circulating tumor cell-derived xen-
ografts generated from treatment-naı̈ve lung cancer patients
(Stewart et al., 2020) (Supplementary Note S3).

First, we examined the expression levels of known SCLC
marker genes (Ireland et al., 2020), namely ASCL1, NEUROD1,
YAP1 and POU2F3, and confirmed that almost all of the cells are
of the ASCL1 single-positive subtype (Supplementary Fig. S13),
which is consistent with the previous report (Stewart et al.,
2020). Then, we excluded low-quality genes and cells
(Supplementary Note S4). To investigate molecular subtypes and
potential resistance pathways, we performed unsupervised clus-
tering of cells, using Seurat (Supplementary Note S8). We found
that the populations assigned to G1, S and G2M phases are se-
quentially distributed in the uniform manifold approximation
and projection (UMAP) space (Fig. 5a), while few clusters were
observed when we regressed out the cell cycle effects
(Supplementary Fig. S14), indicating that cell cycle signals are in-
formative in SCLC heterogeneity. Next, we performed KEGG
pathway enrichment analysis based on the DEGs with adjusted P-
values <10�2, the approximate highest threshold where meaning-
ful enrichments of KEGG terms were obtained, but

Fig. 4. Identification of cell states in peripheral blood mononuclear cell single-cell

transcriptomes from control and sepsis donors. (a) t-distributed stochastic neighbor

embedding (t-SNE) plots of the SSM for cell type, showing (top) the clustering result

and (bottom) reported labels for CD45þ cells and dendritic cells (DCs) by Reyes

et al. (2020). (b and c) Violin plots showing sign scores of significant signs, in which

separation indices (I) for the clusters marked with asterisks against the others show

***I > 0:9, **I > 0:6 and *I > 0:4. (d) Population ratios of total monocytes (M1,

M2 and M3) and subcluster M2 to all cells except for the inferred dendritic cells

across each subject type. Control, uninfected and healthy control; Leuk-UTI, sub-

jects with urinary tract infection (UTI) with leukocytosis but no organ dysfunction;

Int-URO and URO, subjects with UTI with mild (or transient) and clear (or persist-

ent) organ dysfunction, respectively; Bac-SEP, bacteremic subjects with sepsis in

hospital wards; ICU-SEP and ICU-NoSEP, bacteremic subjects admitted to the in-

tensive care unit with and without sepsis, respectively
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chemoresistance-related terms were not primarily enriched
(Fig. 5b, Supplementary Note S8).

Subsequently, to investigate functional subtypes of SCLCs, we
used ASURAT to create SSMs from DO, GO and KEGG databases
for disease, biological process and signaling pathway, respectively
(Fig. 5c). We performed a dimensionality reduction using a diffusion
map (Coifman and Lafon, 2006), followed by unsupervised cluster-
ing of cells using MERLoT (Parra et al., 2019) based on the SSM for
disease (Fig. 5d, Supplementary Note S8). Investigating significant
signs and DEGs based on the separation indices I > 0:4 and adjusted
P-values <10�70, respectively, we found three SCLC subpopulations
(Fig. 5c–e): S1, cancer cells characterized by significant signs for
hematopoietic system disease and DEGs for ribosomal protein
(RPS12, RPL18A, etc.); S2, characterized by significant signs for
platinum drug resistance and DEGs for cancer-related genes
(HMGB1, PTTG1, etc.); and S3, characterized by significant signs
for programmed death ligand 1 (PD-L1) expression-mediated im-
munosuppression and DEGs for proto-oncogenes (FOS, JUN, etc.).
Although SCLC molecular subtypes have been extensively studied
(Balanis et al., 2019; Chen et al., 2019; Ireland et al., 2020;
Schwendenwein et al., 2021), these functional subpopulations have
been previously overlooked. Identifying de novo SCLC subtypes by
future work will validate our clustering results. ASURAT provides a
novel clue for the clinical improvements for relapsed SCLC tumors.

3.4 Clustering an ST of PDAC
Recent studies of spatially resolved transcriptomic profiling for
human PDAC tumors have uncovered that cancer and non-cancer
cells are spatially distributed in the distinct tissue regions of primary
tumors, and that PDAC cells are accompanied by inflammatory
fibroblasts and immune cells (Elosua-Bayes et al., 2021; Moncada
et al., 2020). In an original study (Moncada et al., 2020), the cellular
resolutions of the STs were estimated at 20–70 cells per ST spot, far
lower than those of scRNA-seq. Thus, computational methods have
been proposed to predict existing cell types by integrating ST and
scRNA-seq datasets (Elosua-Bayes et al., 2021; Moncada et al.,
2020). Here, we applied Seurat and ASURAT to the published
PDAC ST and scRNA-seq data (Moncada et al., 2020)
(Supplementary Note S3), aiming to compare the clustering results
of ASURAT with those of existing methods.

First, we combined all scRNA-seq datasets after confirming
minimal batch effects (Supplementary Fig. S15). We excluded
low-quality genes and cells from the ST and scRNA-seq data
(Supplementary Note S4). To cluster the ST with reference to the
combined scRNA-seq data, we integrated these two data, using a ca-
nonical correlation analysis-based data integration method (Butler
et al., 2018) (Fig. 6a). Then, we used Seurat to perform unsupervised
clustering for the integrated data. Unexpectedly, batch effects were
not corrected between ST and scRNA-seq datasets after data inte-
gration (Fig. 6b); nevertheless, the inferred cancer and non-cancer
regions were approximately consistent with the previously anno-
tated histological regions (Moncada et al., 2020) (Fig. 6c), wherein
several marker genes such as S100P and FSCN1 were identified as
DEGs for the putative cancer cluster (Supplementary Note S9).

Next, to investigate complex cell state composition of the PDAC
tissue, we used ASURAT to create SSMs from DO, CO, MSigDB and
CellMarker databases for cell type and disease, GO database for bio-
logical process and KEGG for signaling pathway. Then, we performed
unsupervised clustering of the integrated data based on the SSMs for
cell type and disease, and biological process (Supplementary Note S9).
Remarkably, ASURAT could remove the aforementioned batch effects
(Fig. 6d and f) and identify cancer and non-cancer populations
(Supplementary Figs S16 and S17). Moreover, we noticed that the
spots grouped in the same cluster with PDAC cells are dispersed within
the normal pancreas region, which might be a normal pancreas
involved in cancer (Fig. 6e and g).

To further investigate the cell states in these spots, we profiled
all sign scores for 4282 signs across the tissue (Supplementary Fig.

Fig. 5. Clustering result of a single-cell transcriptome of SCLCs. (a) Uniform mani-

fold approximation and projection (UMAP) plots, showing (left) the clustering re-

sult and (right) cell cycle phases computed using Seurat. (b) Pathway enrichment

analysis for the clustering result in (a), based on the DEGs with adjusted P-val-

ues< 10�2, in which top five enriched terms are shown. (c) SSMs and scaled log-

transformed read count table, which are vertically concatenated and clustered based

on the SSM for disease. Only top significant signs and DEGs are shown in rows. (d)

Diffusion map plots of the SSM for disease, showing (top) the clustering result and

(bottom) cell cycle phases. (e) Violin plots showing sign scores of significant signs,

in which separation indices (I) for the clusters marked with asterisks against the

others show **I > 0:6 and *I > 0:4

Fig. 6. Clustering results of a ST of PDAC. (a) Canonical correlation analysis-based

data integration of ST and scRNA-seq data using Seurat functions. (b–g) t-distrib-

uted stochastic neighbor embedding (t-SNE) plots and clustering results shown in

the PDAC tissue, based on the indicated methods: (b), (d) and (f), showing (left) the

labels for ST and scRNA-seq data and (right) annotation results by manual investi-

gation based on the DEGs with adjusted P-values < 10�100 and significant signs;

(c), (e) and (g), showing the clustering results, in which labels are the same with

those in (b), (d) and (f), respectively. The black colored spots pointed by the arrows

indicate the spots newly predicted as atypical region, which might be a normal pan-

creas involved in cancer. (h) Profiles of sign scores in the PDAC tissue, predicting

cancer, inflammation and pancreas spots
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S18). The sign scores for PDAC were increased in the ST spots ap-
proximately matching the reported PDAC region (Moncada et al.,
2020), while those for micro RNAs in cancer were increased both in
the previously annotated PDAC spots and the newly predicted atyp-
ical spots (Fig. 6h). These newly predicted spots were also annotated
by a sign for Th17 cell differentiation, suggesting tumor-associated
inflammation or antitumor immunity through intercellular commu-
nications between Th17 and cancer cells (Muller-Hubenthal et al.,
2009), which remains to be elucidated in PDAC (Liu et al., 2019). In
more than 90% of PDAC cases, KRAS is mutated at the G domain
of the 12th residue (Ischenko et al., 2021; Luchini et al., 2020).
Hence, we speculated that it is possible to validate our clustering
results of cancer and non-cancer spots by comparing the frequencies
of KRAS mutations using ST data. Unfortunately, we were unable
to detect any read mapped to the specific reported region, possibly
owing to the shallow read depth and inherent 30 bias present in the
data. Simultaneous genetic and transcriptional profiling may address
this problem in the future (Lee et al., 2020).

4 Discussion

We developed ASURAT, an original computational tool for simul-
taneous cell clustering and biological interpretation using database-
derived functional terms. ASURAT performs correlation graph
decompositions of functionally annotated gene sets to define mul-
tiple biological terms, termed signs. The notions of SCG and VCG
are critical for capturing complex correlation structures compared
with existing methods such as PAGODA2 (Fan et al., 2016) and
ssGSEA (Subramanian et al., 2005) (Supplementary Note S10 and
Fig. S19). ASURAT then transforms scRNA-seq data into SSMs,
whose rows and columns represent signs and samples (cells), re-
spectively. This SSM plays a key role in characterizing individual
cells by various biological terms. Applying ASURAT to several
single-cell and ST datasets for PBMCs, SCLC and PDAC, we robust-
ly reproduced the previously reported blood cell types and identified
putative subtypes of chemoresistant SCLC and distinct regions with-
in the PDAC tissue.

ASURAT uses database-derived biological terms for clustering
single-cell transcriptomes, which inevitably introduces annotation
bias (Supplementary Note S11); some biological terms are associ-
ated with many genes, whereas others are associated with only a few
genes (Gaudet and Dessimoz, 2017). Moreover, in some cases, there
might be no functional category for a cell type of interest.
Nevertheless, users still have a means to manually characterize cells
using combinations of significant signs in different functional cate-
gories as well as DEGs. Automatic curation will be a potential add-
ition to ASURAT in the future.

Conventionally, single-cell transcriptomes are analyzed and
interpreted by means of unsupervised clustering followed by manual
curation of marker genes selected from DEGs, which has been a
common bottleneck of gene-based analyses (Andrews et al., 2021;
Aran et al., 2019). The statistical significance of individual genes,
typically defined by P-value or fold change, is dependent on cluster-
ing results. ASURAT can provide an alternative approach and dem-
onstrates superior performance for identifying functional subtypes
even within a fairly homogeneous population such as isolated cancer
cells. In practice, complementing ASURAT with existing methods
(Butler et al., 2018; La Manno et al., 2018) will provide a more
comprehensive understanding of single-cell and STs, shedding light
on putative transdifferentiation of neuroendocrine cancers (Balanis
et al., 2019; Kubota et al., 2020), intercellular communication in
tumor immune microenvironments (Maynard et al., 2020) and virus
infection on immune cell populations.

In omics data analyses, knowledge databases are used to interpret
computational results: pathway and motif enrichment analyses are
often used for transcriptomic and epigenomic analyses (McLeay and
Bailey, 2010; Reimand et al., 2019). In contrast, we propose a unique
computational workflow, in which such databases are used for simul-
taneous clustering and biological interpretation by defining signs. This
framework is potentially applicable to any multivariate data with vari-
ables linked with annotation information. We can also find such

datasets in studies of T cell receptor sequencing (De Simone et al.,
2018; Rempala et al., 2011) along with a pan-immune repertoire
(Zhang et al., 2020). We anticipate that ASURAT will allow for the
identification of various inter-sample differences among T cell recep-
tor repertoires in terms of cellular subtype, antigen–antibody inter-
action, genetic and pathological backgrounds.

Since ASURAT can create multivariate data (i.e. SSMs) from mul-
tiple signs, ranging from cell types to biological functions, it will be
valuable to consider graphical models of signs, from which we may
infer conditional independence structures. A non-Gaussian Markov
random field theory is one of the most promising approaches to ad-
dress this problem, although requires a large number of samples for
achieving true graph edges (Morrison et al., 2017). As the increase in
size and diversity of the available data, biological interpretation will
become increasingly important. Hence, future work should improve
methods for prioritizing biological terms more efficiently than manual
screening. We believe that ASURAT will greatly expand our under-
standing of various biological data and open new means of general
functional annotation-driven data analysis.

Data availability

The PBMCs datasets from healthy donors are available in the 10x
Genomics repository at https://support.10xgenomics.com/single-
cell-gene-expression/datasets: ‘4k PBMCs from a Healthy Donor’
and ‘6k PBMCs from a Healthy Donor’. The PBMCs datasets from
control and sepsis donors are available in the Broad Institute Single
Cell Portal at https://singlecell.broadinstitute.org/single_cell:
SCP548, which are referenced in Reyes et al. (2020). The SCLC and
PDAC datasets are available in Gene Expression Omnibus with ac-
cession codes GSM4104164 and GSM3036909, GSM3036910,
GSM3036911, GSM3405527, GSM3405528, GSM3405529 and
GSM3405530, which are referenced in Stewart et al. (2020) and
Moncada et al. (2020), respectively. All the data analyzed in this
article are available at Github (https://github.com/keita-iida/
ASURATBI) and figshare (https://doi.org/10.6084/m9.figshare.
19200254.v4).
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