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Abstract

Motivation: Transcriptional regulators play a major role in most biological processes. Alterations in their

activities are associated with a variety of diseases and in particular with tumor development and progres-

sion. Hence, it is important to assess the effects of deregulated regulators on pathological processes.

Results: Here, we present REGulator-Gene Association Enrichment (REGGAE), a novel method for

the identification of key transcriptional regulators that have a significant effect on the expression of

a given set of genes, e.g. genes that are differentially expressed between two sample groups.

REGGAE uses a Kolmogorov–Smirnov-like test statistic that implicitly combines associations be-

tween regulators and their target genes with an enrichment approach to prioritize the influence of

transcriptional regulators. We evaluated our method in two different application scenarios, which

demonstrate that REGGAE is well suited for uncovering the influence of transcriptional regulators

and is a valuable tool for the elucidation of complex regulatory mechanisms.

Availability and implementation: REGGAE is freely available at https://regulatortrail.bioinf.uni-sb.de.

Contact: tkehl@bioinf.uni-sb.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The transcriptional program in eukaryotic cells is controlled by tran-

scriptional regulators like transcription factors, coregulators and

epigenetic modifiers. Hence, transcriptional regulators play a major

role in most biological processes (Vaquerizas et al., 2009) and

alterations in their activities have been associated with a variety of

diseases (Lee and Young, 2013). For instance, mutations in many

genes involved in congenital heart disease are known to be transcrip-

tional regulators, e.g. NKX2-5, GATA4 and TBX5 (Papavassiliou

and Papavassiliou, 2016; McCulley and Black, 2012). Deregulated
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transcriptional regulators are also associated with neurodegenera-

tive diseases, for example heat shock factor 1 with Alzheimer’s,

Huntington’s and Parkinson’s disease (Neef et al., 2011). In cancer,

many transcriptional regulators are known to be involved in tumor

development and progression (Darnell, 2002; Nebert, 2002;

Papavassiliou and Papavassiliou, 2016). For example, steroid recep-

tors like the estrogen receptor ESR1 are involved in breast cancer

(Robinson et al., 2013) or the androgen receptor in prostate cancer

(Yuan et al., 2014). The central roles of transcriptional regulators in

many diseases and their potential to regulate a large number of tar-

get genes make transcriptional regulators putative candidates for

novel drug targets (Bhagwat and Vakoc, 2015; Yeh et al., 2013).

The advent of high-throughput sequencing technologies made it

possible to identify binding sites for a large number of regulators,

using e.g. ChIP-Seq experiments. This technological progress moti-

vated the development of novel methods for assessing the influence

of transcriptional regulators. A subclass of these algorithms uses

over-representation analysis to detect transcription factors that have

more targets in a list of deregulated genes than expected by chance.

Essaghir et al. implemented TFactS (Essaghir et al., 2010), a web

server that adopts the hypergeometric test. Yang et al. developed an

R-package, called DCGL (Yang et al., 2013a), that offers two statis-

tical tests: (i) TED applies a binomial probability model to test

whether targets of a certain regulator are enriched in a list of deregu-

lated genes and (ii) TDD computes the density of deregulated genes

in the targets of a certain regulator. Alternative approaches are

based on correlation coefficients to identify associations between

regulators and target genes. RIF1 and RIF2 (Reverter et al., 2010)

combine the correlations between a regulator and its targets with

the degrees of differential expression of the targets. Another

correlation-based approach, called Correlation Set Analysis (Huang

et al., 2012), investigates the effect of regulators on disease popula-

tions using the mean correlation of all target pairs per regulator.

Gonçalves et al. proposed a network-based approach to prioritize

regulators, called TFRank (Goncalves et al., 2011). Poos et al. pro-

vided an R package (MIPRIP) that applies a machine learning ap-

proach, based on mixed integer linear programming, which predicts

important regulatory interactions influencing a single gene (Poos

et al., 2016). Kawakami et al. presented a weighted t-test wPGSA

(Kawakami et al., 2016), which incorporates the probability of regu-

lation in the considered ChIP-Seq experiments. Furthermore,

Gonçalves et al. developed Regulatory Snapshots (Gonçalves et al.,

2012), a web server for the identification of important regulatory

modules using time series gene expression data. A systematic evalu-

ation of some of these approaches was conducted by Yu et al.

(2014). A comprehensive description of all used methods can be

found in Supplementary Material S1.

Here, we introduce an alternative approach for the identification

of influential transcriptional regulators, called REGulator-Gene

Association Enrichment (REGGAE) analysis. REGGAE combines

association scores between regulators and their target genes

with non-parametric enrichment analysis to prioritize the influence

of the considered regulators. We implemented REGGAE as part of

the GeneTrail2 Cþþ library (Stöckel et al., 2016) as well as the

RegulatorTrail web service (Kehl et al., 2017), which can be freely

accessed at https://regulatortrail.bioinf.uni-sb.de.

To demonstrate the capabilities of our approach, we tested

REGGAE and related algorithms in two different application

scenarios. First, we compared estrogen receptor positive (ERþ) and

estrogen receptor negative (ER�) breast cancer cell lines to reveal

the key regulators primarily responsible for the phenotypic differen-

ces between the two classes. Second, we analyzed perturbation

signatures of (i) mouse lymphomas with artificially induced overex-

pression of MYC and (ii) knock-out experiments of NANOG,

POU5F1 and SOX2 in human embryonic stem cells to examine if

the different methods are able to identify the perturbed regulators.

The conducted experiments demonstrate that REGGAE excels in re-

vealing the most influential transcriptional regulators and hence

may be a valuable tool for the elucidation of complex regulatory

mechanisms.

2 Materials and methods

Here, we introduce REGGAE our new algorithm for the identifica-

tion of transcriptional regulators that have a significant influence on

a given set of differentially expressed target genes and we describe

the databases used in our application scenarios.

2.1 Regulator–target gene interactions (RTIs)
In order to identify influential regulators, REGGAE relies on a

predefined list of regulator–target gene interactions (RTIs). Here,

an RTI is defined as a pair (regulator, target gene), where the regula-

tor has an experimentally determined binding site in a regulatory

region of the target gene (e.g. promotor or enhancer). For the

RegulatorTrail web service (Kehl et al., 2017), we have recently

built an extensive collection of RTIs based on external databases.

To this end, we have combined information originating from seven

databases: ChEA (Lachmann et al., 2010), ChIP-Atlas (chip-atlas.-

org), ChipBase (Yang et al., 2013b), ENCODE (Sloan et al., 2016),

JASPAR (Mathelier et al., 2016), SignaLink (Fazekas et al., 2013)

and TRANSFAC (Matys, 2003). For our analyses, we have used

the entire collection of RTIs (Version 2) for humans and mice.

For more information about the content of our RTI database, proc-

essing steps and provenance data, please refer to the respective

RegulatorTrail documentation page (https://regulatortrail.bioinf.

uni-sb.de/help?topic¼rtis).

2.2 Regulator-gene association enrichment analysis
In this section, we describe our REGGAE algorithm, which is based

on a combination of non-parametric enrichment analysis and associ-

ation scores between regulators and their target genes. A standard

input for a REGGAE analysis consists of (i) a normalized gene ex-

pression matrix, where the m samples (columns) belong to two

groups, e.g. disease and control samples and (ii) a collection of

RTIs.

Based on the gene expression matrix and the collection of RTIs,

REGGAE estimates the influence of transcriptional regulators by

performing the following steps:

2.2.1 Step 1: Calculating differentially expressed genes

REGGAE offers a variety of methods to calculate genes that are dif-

ferentially expressed between the two groups: (log-)fold-changes,

correlation coefficients, signal-to-noise ratio, z-test, f-test, a variety

of t-tests and several rank-sum tests. For count data, we additionally

provide DESeq2 (Love et al., 2014), edgeR (Robinson et al., 2010)

and RUVSeq (Risso et al., 2014). Users can select one of these meth-

ods to calculate all genes that are either up- or down-regulated and

sort the resulting gene lists according to their test values. To simplify

matters, we consider in the following only one of the two (up- or

down-regulated) sorted gene lists: D ¼ fg1; g2; . . . ; gng.
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2.2.2 Step 2: Calculating the influence of regulators for every

deregulated gene

For each deregulated gene gi 2 D, the given collection of RTIs con-

tains a list of regulators Rgi
¼ ri1; ri2; . . .gf that may influence the ex-

pression of gi. For every regulator–target pair, we calculate the

correlation between the two variables (expression values) across all

samples using either Pearson’s correlation coefficient (Pearson,

1895) for linear dependencies or Spearman’s rank correlation coeffi-

cient (Spearman, 1961) for non-linear dependencies. We then sort

the regulator list Rgi
for each gene gi with respect to the (absolute or

signed) values of the correlation coefficients (cf. Fig. 1A).

2.2.3 Step 3: Creating the sorted regulator list

Based on a sorted list D ¼ fg1; g2; . . . ; gng of genes and their regula-

tor lists Rgi
¼ fri1; ri2; . . .g, we create a new list L ¼ fr11; r21; . . . ; rn1

; r12; r22; . . .g that sorts the involved regulators column by column as

shown in Figure 1A and B.

2.2.4 Step 4: Enrichment analysis

Since regulators with a high impact should be enriched at the top of

the list L, we carry out an enrichment analysis on L for each regula-

tor in the RTI collection by using either the Wilcoxon rank-sum

(WRS) test (Wilcoxon, 1945) or the unweighted version of the

Kolmogorov–Smirnov (KS) test (Keller et al., 2007; Subramanian

et al., 2005) (cf. Fig. 1C). The resulting P-values are adjusted using

the Benjamini and Yekutieli method (Benjamini and Yekutieli,

2001). Finally, all regulators are sorted with respect to their

P-values.

Technical noise in gene expression measurements might have an

influence on the calculated correlation coefficients and subsequently

on the order of the regulators. To account for this, we carry out the

following bootstrapping (Efron, 1979) scheme to improve the ro-

bustness of the method:

a. Create B bootstrap samples, where each sample is a gene expres-

sion matrix generated by randomly selecting m columns from

the original gene expression matrix with replacements.

b. Repeat steps 2–4 for each bootstrap sample.

c. Assign the median P-value as the new score for each regulator.

The bootstrap samples can also be used to estimate standard

deviations, mean absolute deviations and confidence intervals. For

the latter, we implemented a method to compute bias-corrected and

accelerated bootstrap intervals (Efron, 1987).

Additionally, we suggest not only to perform one REGGAE ana-

lysis using the lists of significantly deregulated genes, but also to

vary the number of considered genes and to repeat the analysis for

gene lists of different lengths. The respective result lists can then be

aggregated. In our framework, we provide implementations for

rank- as well as P-value aggregations.

3 Results

To evaluate the performance of REGGAE and alternative

approaches, we considered two different application scenarios.

First, we compared ERþ and ER� breast cancer cell lines to uncover

key regulators associated with the ER. Second, we analyzed perturb-

ation signatures of (i) mouse lymphomas with artificially induced

MYC overexpression and (ii) knock-out experiments of NANOG,

POU5F1 and SOX2 in human embryonic stem cells. In both per-

turbation studies, we examined if the different methods are able to

identify the perturbed regulator.

3.1 ER-positive breast cancer cells
Breast cancer is one of the most common types of cancer and the se-

cond leading cause of cancer death among women (Siegel et al.,

2017). One of the clinically most relevant breast cancer subtypes are

ERþ tumors, which comprise around 70% of diagnosed cases

(Fillmore et al., 2010) and generally have a better prognosis than

ER� tumors (Bae et al., 2015). ERþ tumors are usually treated

using endocrine therapy (Lumachi et al., 2013). This therapy may

include drugs that compete with estrogen for the ER (e.g. tamoxifen)

or aromatase inhibitors that prevent estrogen production from pre-

cursor molecules (Smith and Dowsett, 2003), the latter especially

administered in post-menopausal women (Mokbel et al., 2006).

Here, we applied REGGAE to analyze the breast cancer dataset

published by Heiser et al. (Heiser et al., 2012). The dataset contains

gene expression profiles of 37 breast cancer cell lines, for which we

obtained the status of the ER from a study by Neve et al. (2006) (cf.

Supplementary Material S2). In total, we compared 16 ERþ and 21

ER� cell lines to find transcriptional regulators that have a strong

influence on gene expression differences between the two groups.

To this end, we used the shrinkage t-test (Opgen-Rhein and

Strimmer, 2007) to calculate for each gene a t-score mirroring the

expression differences between the two groups (ERþ versus ER�
samples) and sorted all genes with respect to their t-scores. From the

resulting list, we selected all genes that are significantly up-regulated

(P < 0:01) in ERþ tumors (1719), as well as the top 250, 500, 750

and 1000 genes. We applied REGGAE to all five lists and aggre-

gated the respective result lists using the sum of all ranks and the

maximum of the five P-values. The aggregated P-values were

adjusted using the method proposed by Benjamini and Yekutieli

(Benjamini and Yekutieli, 2001). Parameters for all analyses and

corresponding results can be found in Supplementary Materials S3

and S4, respectively.

Fig. 1. REGGAE workflow. (A) Overexpressed genes g1; g2; . . . ; gn (second

column) are sorted according to their t-scores (first column). For each gene

gi , the list of regulators fri1; ri2; . . .g is sorted with respect to the absolute val-

ues of the corresponding correlation coefficients. The black nodes represent

a selected regulator that controls five target genes. (B) Shows the new regula-

tor list L created by sorting the elements column by column. (C) Enrichment

analysis (running sum) for the transcriptional regulator marked in black
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3.1.1 Robustness

First, we analyzed the effect of bootstrapping on the five REGGAE re-

sult lists of up-regulated genes of length 250, 500, 750, 1000 and

1719 (significantly up-regulated). To this end, we checked after each

bootstrap iteration how many regulators changed their position com-

pared to the previous iteration. This was done by calculating the total

number of regulator pairs ða;bÞ that swap their order, i.e. if

ri að Þ < riðbÞ and riþ1 að Þ > riþ1ðbÞ or vice versa, where riðaÞ is the

rank of regulator a in iteration i. The results for the list of length

1000, shown in Figure 2A, illustrate that with an increasing number

of bootstrap replications, the number of fluctuating regulator pairs

converges, until only a handful regulators pairs swap their position

with ‘equally important’ neighbors. The results for lists of lengths

250, 500, 750 and 1719 can be found in Supplementary Material S5.

Additionally, we calculated the overlaps for the different lists

and generated a Venn diagram depicting the corresponding overlaps

(cf. Fig. 2B). The figure shows that the result lists are highly stable.

With an increasing test set size, the total number of significant

results increases slightly, but seems to converge when more genes

are considered. The largest increase (42 new significant regulators)

has been observed when transitioning from 250 to 500 genes.

3.1.2 Comparison to other methods

In order to compare REGGAE with alternative methods, we applied

all available approaches with the exception of MIPRIP and wPSGA

to the breast cancer dataset. MIPRIP can only predict the effects of

all regulators on a single target gene and hence was not applied. The

wPSGA method could not be used as information about the number

of ChIP-Seq experiments that confirm an RTI cannot be reliably

deduced from the integrated databases. All methods were tested

using our RTI collection and the same input datasets. A complete

list of the used parameters and results of all methods can be found in

Supplementary Materials S3 and S4. Runtimes for all methods are

depicted in Table 1.

Please note that a major part of the computation time of

REGGAE (without bootstrapping) is spent on reading-in the large

RTI database, which is only carried out once during the initializa-

tion of the procedure.

Since most of the available methods are based on statistical tests

with different null hypotheses, any comparison of their results must

be interpreted with utmost caution. Nevertheless, we calculated the

overlaps between REGGAE and the alternative approaches. To this

end, we selected all significant results after FDR-adjustment for

methods that provided P-values (REGGAE, TFactS, CSA and TED)

and the top 200 regulators for all other approaches (RIF1, RIF2,

TFRank and TDD) (cf. Fig. 3). The comparison showed that the

REGGAE result list has significant overlaps with five out of the

seven tested approaches.

While there are strong overlaps between REGGAE and most al-

ternative methods, the actual rankings of the different approaches

differ extremely. Table 2 shows the top five regulators identified by

REGGAE for up-regulated genes (columns 1 and 2) and if these

genes have also been detected by the other methods. The columns of

Table 2 show either corresponding P-values or scores if no P-values

are provided and the ranks of the genes in the result lists. All top five

REGGAE candidates have also been identified by CSA and TFRank

as significant. Notably, with respect to the rankings of the top candi-

dates, REGGAE and TFRank yield very similar results that differ

strongly from the remaining methods. TFactS detected 2 of the top 5

regulators as significant, RIF1 and RIF2 detected 4 out of the 5

among their top 200 candidates. In the following section, we will

discuss the top five regulators identified by REGGAE and we will

provide some evidence that the prioritization of REGGAE and

TFRank is biologically meaningful.

3.1.3 Influential regulators

The top five regulators identified by REGGAE are FOXA1,

GATA3, ESR1, MYB, and SPDEF. All five have already been

described as prognostic markers in breast cancer, which positively

correlate with a favorable outcome of the disease (Mehra et al.,

2005; Mehta et al., 2012; van ’t Veer et al., 2002; West et al.,

2001). Of those, FOXA1, ESR1 and GATA3 are not only reported

as co-expressed (Sachs et al., 2013) and co-localized (Kong et al.,

2011) in breast cancer cells, but there is even strong evidence sug-

gesting they might form an enhanceosome that regulates many genes

Fig. 2. Robustness of REGGAE results. (A) Effect of an increasing number of

bootstrap replications on the order of regulators in the REGGAE result lists

for up-regulated genes. The number of bootstrap samples (x-axis) is plotted

against the total number of position changes (y-axis). (B) Venn diagram

depicting the overlap of REGGAE results for the five different input lists

Table 1. Runtime comparison for top 250 up-regulated genes

Method Runtime (s)

CSAa 450.27 (678.76)

REGGAEb 174.98 (61.69)

REGGAE (without bootstrapping) 23.40 (60.36)

RIF1 23.60 (60.28)

RIF2 23.85 (60.10)

TDD 14.86 (60.63)

TED 658.20 (629.80)

TFactS 42.37 (60.23)

TFRank 116.74 (64.22)

Note: Runtimes were obtained on an Intel Core i7-3770 processor.
aCSA analysis was conducted using 1 000 000 permutations.
bREGGAE analysis was performed using 1000 bootstrap replications.

Fig. 3. Venn diagrams showing the overlap of the different methods with

the list generated by REGGAE. All results were calculated based on the

aggregated lists of the most up-regulated genes. P-values for the overlaps

were calculated using the hypergeometric test
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involved in the ER signaling cascade (Kong et al., 2011).

Furthermore, FOXA1, GATA3, ESR1 and SPDEF are reported as

master regulators in FGFR2 signaling and breast cancer risk in

ERþ cells (Fletcher et al., 2013). Notably, only TFRank and

REGGAE ranked these important regulators of ERþbreast cancer

cells as the top candidates.

We also assessed the top regulators of the other methods. The

results show that, while all methods were able to identify breast can-

cer relevant regulators, only RIF1 and RIF2 identified regulators

with direct connections to ERþbreast cancer. RIF1 detected LRIG1,

a gene that is known to correlate with relapse-free survival in ERa-

positive breast cancer (Krig et al., 2011). RIF2 identified MAP3K1,

a regulator for which a single nucleotide polymorphism (rs88912) is

associated with poor prognosis of hormone receptor positive tumors

(Kuo et al., 2017), as well as GRHL1, a downstream target of ESR1

(Zheng et al., 2016). A detailed discussion of the results can be

found in Supplementary Material S6.

3.2 Perturbation signatures
Perturbation signatures are predestined to study the effect of tran-

scriptional regulators. While gene knock-outs can be utilized to

simulate loss-of-function mutations (LoF), artificially induced over-

expression mimics activating genetic alterations. In both cases,

resulting gene expression changes allow investigating the influence

of the perturbed regulators on the transcriptomic level.

Here, we compared gene expression profiles of artificially

induced overexpression of MYC in lymphomas of Em-Myc-transgen-

ic mice with those of wild-type lymph node samples. We also investi-

gated the effects of knock-out experiments of NANOG, POU5F1

(OCT4) and SOX2 in human embryonic stem cells with respect to a

set of controls. For both cases, we examined whether the different

methods could retrace the effects of the perturbed transcription fac-

tors and thus identify them as the key regulators.

3.2.1 MYC-induced lymphoma cells

The MYC proto-oncogene is a transcription factor that is involved

in the control of cell growth, division and metabolism, affecting the

transcription of a plethora of target genes (Dang, 2012; Meyer and

Penn, 2008).

In many cancer types, MYC overexpression is associated with

aggressive disease and alterations in MYC expression levels play an

essential role in tumor development and progression. The Em-Myc

mouse model resembles B cell specific MYC activation by coupling

the Myc oncogene to the immunoglobulin enhancer. Emerging B cell

lymphomas are characterized by high MYC levels and this model is

widely used to study the mechanisms of MYC-driven lymphomagen-

esis (Boxer and Dang, 2001; Harris, 1988).

Here, we compared the gene expression of a set of 50 B cell lym-

phomas from Em-myc-transgenic mice with 10 mouse wild-type

lymph node samples from GEO (GSE7897) (Mori et al., 2008) using

a shrinkage t-test (Opgen-Rhein and Strimmer, 2007). We selected

the 250 most up- and down-regulated genes and then applied all

methods for the identification of key regulators using the collection

of mouse RTIs. Parameters for all analyses and corresponding

results can be found in Supplementary Materials S6 and S7. The re-

spective ranks of MYC in the sorted result lists generated by the

various methods are shown in Table 3A.

The results show that CSA, REGGAE, RIF1 and TFRank were

able to identify MYC as relevant based on both input lists. RIF2 and

TFactS detected MYC only for up-regulated genes. Although most

methods were able to connect MYC to the perturbed gene expres-

sion, only REGGAE and TFRank were able to identify the proto-

oncogene as the most important regulator.

Besides that, REGGAE was able to identify various other

transcription factors and co-factors regulated by MYC (cf.

Supplementary Material S8). Most prominently (rank 2 for up-

regulated genes), the histone acetyltransferase KAT2A, which is up-

regulated by MYC to influence global chromatin structure and alter

gene expression (Knoepfler et al., 2006). Next to that, REGGAE

identifies two E2F transcription factors, which are known to play

essential roles in oncogenic MYC signaling (Leone et al., 2001;

Rempel et al., 2009). Finally, the two MYC hallmark genes

RAD23B and TRIM28 are also among the TOP25 regulators.

Taken together, this underscores REGGAE’s ability to not only

identify central activators, but also to identify downstream effectors

of these regulators.

Table 2. Top five regulators identified by REGGAE in comparison to other approaches

Regulators REGGAE CSA RIF1 RIF2 TDD TED TFactS TFRank

FOXA1 6:34� 10�141ð1Þ 9:76� 10�6ð359Þ �2:87 (116) 8.34 ð18Þ 8:4� 10�6ð956Þ 1:0 ð843Þ 1:0 ð953Þ 6:92 ð2Þ
GATA3 3:23� 10�137ð2Þ 9:76� 10�6ð421Þ �2:73 (113) 5.16 ð62Þ 8:7� 10�6ð747Þ 1:0 ð681Þ 0:05 ð369Þ 6:56 ð3Þ
ESR1 6:52� 10�129(3) 9:76� 10�6ð509Þ �1:93 (229) �0.10 ð915Þ 8:4� 10�6ð949Þ 1:0 ð440Þ 1:0 ð790Þ 10:28 ð1Þ
MYB 6:34� 10�125ð4Þ 9:76� 10�6ð262Þ �2:07 (130) 4.14 ð75Þ 8.4� 10�6ð878Þ 1:0 ð606Þ 0:31 ð519Þ 5:45 ð6Þ
SPDEF 2:60� 10�118(5) 9:76� 10�6ð40Þ �3:05 ð32Þ 8.54 ð15Þ 1.4� 10�5ð434Þ 1:0 ð892Þ 3.6�10�19(72) 6:44 ð4Þ

Note: For REGGAE, CSA and TFactS adjusted P-values are depicted. For RIF1, RIF2 and TFRank, which do not provide P-values, the respective test statistic

value is shown. Numbers in parentheses represent the rank in the sorted result list.

Table 3. Results for perturbation experiments of (A) artificially

induced overexpression of MYC in Em-Myc mice (B) knock-out

experiments of the pluripotency factors NANOG, POU5F1 and

SOX2

A B

Method MYC NANOG POU5F1 SOX2

CSA 281 j 126 574 j 571 510 j 273 510 j 259

REGGAE 1 j 1 1 j 91 1 j 1 6 j 4
RIF1 126 j 186 791 j 148 795 j 171 285 j 555

RIF2 8 j 251 144 j 193 762 j 190 332 j 34

TDD 466 j 492 815 j 771 822 j 800 467 j 523

TED 208 j 225 567 j 501 683 j 588 682 j 682

TFactS 404 j 528 318 j 308 531 j 319 170 j 99

TFRank 1 j 3 113 j 2 200 j 1 499 j 1

Note: For all methods ranks in the sorted result lists for up- and

down-regulated genes are shown (up j down). Ranks are highlighted in bold if

corresponding P-values are statistically significant for methods that provide

P-values (CSA, REGGAE, TED and TFactS) or are amongst the top 200 genes

for all other methods (RIF1, RIF2, TDD and TFRank).
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3.2.2 Knock-out of pluripotency factors

NANOG, POU5F1 (OCT4) and SOX2 are fundamental regulators

in embryonic stem cells (ESCs). They maintain pluripotency, regu-

late self-renewal and control cell fate determination (Loh et al.,

2006).

In this analysis, we used knock-out experiments of each pluripo-

tency factor in human embryonic stem cells (GSE34921) (Wang

et al., 2012) to check if the different methods are able to identify the

effect of the perturbed regulator. To this end, we compared gene

expression profiles of the respective perturbation signatures and cor-

responding controls using a shrinkage t-test (Opgen-Rhein and

Strimmer, 2007). For each list, we selected the 250 most up- and

down-regulated genes and then applied all methods to evaluate their

performance. Parameters for all analyses and corresponding results

can be found in Supplementary Materials S9 and S10. The ranks of

the perturbed regulators are shown in Table 3B.

A comparison of the results shows that REGGAE and TFactS

identified the perturbed regulators in all result lists as significant,

TFRank in five out of six, RIF2 in four, CSA in three, RIF2 in two.

In terms of prioritization, we again see that REGGAE and TFRank

outperform alternative methods. REGGAE was able to find the per-

turbed regulator in five of the six cases as one of the top candidates

and TFRank in three cases.

4 Application to Wilms tumors

Besides the analyses presented in Section 3, we also applied

REGGAE to gene expression profiles of 33 biopsies of Wilms tumor

(WT), which is a childhood nephroblastoma.

The goal was to elucidate pathogenic mechanisms that contrib-

ute to a WT histopathological subtype, which is characterized by

predominant blastemal tissue and associated with an elevated malig-

nancy. Applying REGGAE to a set of genes deregulated in blastemal

WTs revealed that regulators involved in embryonic development

and epigenetic processes like chromatin remodeling and histone

modification play an essential role in blastemal WTs. In particular,

we identified TCF3 as the central regulatory element in this context

and provided evidence for its role as master regulator of blastemal

WTs. Results for this use case will be presented in a separate manu-

script (Kehl et al., submitted for publication).

5 Discussion

We present a novel approach for the identification and prioritization

of transcriptional regulators that have a strong influence on the ex-

pression of a given set of genes. Our method complements the reper-

toire of existing approaches with an alternative that prioritizes

transcriptional regulators with a KS-like test statistic and implicitly

combines correlation with enrichment analysis. REGGAE excels in

the prioritization of the regulators by incorporating both the posi-

tions of target genes in the analyzed gene list and the influence of the

regulators on each gene.

In Step 2 of the REGGAE algorithm, we utilize correlation coef-

ficients to sort all regulators. The power of these correlation coeffi-

cients is restricted by the used sample size. Although we allow users

to perform REGGAE analyses with small sample sizes, we recom-

mend using at least 10 samples that should ideally be evenly distrib-

uted among the two groups. For the computation of the correlation

coefficients, REGGAE offers the methods proposed by Pearson and

Spearman. Since linear models are commonly used to model regula-

tory interactions between genes, we selected Pearson’s correlation

coefficient as default option. If, however, users assume a non-linear

relationship between a regulator and its target genes, Spearman’s

correlation coefficient should be used instead. Additionally, there

are alternative methods that could also be applied to sort the regula-

tors. For example, the MIPRIP package could be used to estimate

the effect of each regulator. Alternatively, TEPIC (Schmidt et al.,

2017) could be applied to calculate affinity scores of transcription

factors, if open chromatin regions are available.

In our application scenarios, we used the WRS test in Step 4 of

the REGGAE algorithm. We additionally performed all analyses

using the KS test instead. Corresponding results can be found in

Supplementary Materials S4, S8 and S10. The KS test performed

similarly to the WRS test, but the latter provided better rankings.

We also recommend the combination of REGGAE results for in-

put lists of different sizes. Although this is an optional step that

increases the runtime, we are convinced that the aggregation of the

different results provides more stable rankings. Comparisons of the

different result lists allow users to oppose the different ranking of

the top candidates and to assess their stability.

A limitation of all approaches for regulator effect analysis is that

the results of each analysis depend on the quantity and quality of

available datasets of RTIs, which mainly stem from ChIP-Seq

experiments of certain cell types. Here, a regulator is assigned to its

target gene if it binds within a predefined interval around the tran-

scription start site. Depending on the size of this window, the con-

sidered region can also contain enhancer regions. Although it has

been shown that the binding of transcription factors to regulatory

regions, like enhancers, often strongly affects the gene expression of

the ‘nearest’ genes, see e.g. (Ernst et al., 2011), this assignment is

still a simplified approach that can lead to false assignments. In the

future, the assignments of regulators to target genes could potential-

ly be improved by incorporating chromosome conformation captur-

ing techniques like Hi-C, see e.g. (González et al., 2015). Another

problem is that, while the DNA binding of some regulators has been

extensively studied, binding information for some regulators is still

missing or only available for other species like mouse or rat.

Furthermore, binding information is often only available for certain

cell types, however, not for the investigated cell type. To solve this

problem, we have integrated the binding information of all available

ChIP-Seq experiments for each regulator, irrespective of cell type,

but specific for each organism. This can, of course, lead to false posi-

tive and false negative interactions. However, we assume that a

small number of faulty interactions will only have a moderate effect

on the REGGAE results.

We used REGGAE as well as seven alternative approaches (CSA,

RIF1, RIF2, TDD, TED, TFactS and TFRank) in two application

scenarios to evaluate their performance. First, we compared

ERþ and ER� breast cancer cell lines. Here, our results indicate that

most methods find highly overlapping results, however, with sub-

stantially different rankings. Although most methods were able to

assign at least some of the central regulators of ERþ cells as being

relevant, REGGAE and TFRank excelled in terms of the actual

ranking of those regulators.

Second, we analyzed perturbation signatures of artificially

induced overexpression of MYC in lymphomas of Em-Myc-transgen-

ic mice as well as knock-out experiments of NANOG, POU5F1 and

SOX2 in human embryonic stem cells. In both cases, we tested if the

different approaches are able to identify the perturbed regulators. A

comparison of the results showed that in most cases only REGGAE

and TFRank could identify the perturbed regulators as top candi-

dates in the respective result lists. Although, most methods were

able to detect the influence of at least some perturbed regulators,
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only REGGAE could successfully identify all four perturbagens as

significant in all cases.

The two application scenarios show that REGGAE and TFRank

outperform all other methods in terms of the regulator prioritiza-

tion. A reason for this might be that both methods integratively

analyze the effects of all regulators and do not just assess them

separately. However, it is noteworthy that while both methods

generally work well, REGGAE clearly outperforms TFRank for up-

regulated target genes in all knock-out experiments.

Moreover, REGGAE provides information that facilitates the in-

terpretability of the results. This is on the one hand achieved by

keeping track of the mean signed correlation of each regulator and

all considered target genes to estimate whether the regulator acts as

activator or repressor. On the other hand, we provide several meas-

ures of confidence like P-values, confidence intervals and standard

deviations that allow to judge the significance and validity of each

result.

Results of both scenarios demonstrated that REGGAE is well

suited for uncovering the influence of transcriptional regulators and

might even aid in the detection of novel biomarkers. Consequently,

REGGAE may also be a valuable tool for the elucidation of complex

pathogenic mechanisms in other diseases.
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