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Abstract: Targeted toxins, also known as immunotoxins or cytotoxins, are recombinant 
molecules that specifically bind to cell surface receptors that are overexpressed in cancer 
and the toxin component kills the cell. These recombinant proteins consist of a specific 
antibody or ligand coupled to a protein toxin. The targeted toxins bind to a surface antigen 
or receptor overexpressed in tumors, such as the epidermal growth factor receptor or 
interleukin-13 receptor. The toxin part of the molecule in all clinically used toxins is 
modified from bacterial or plant toxins, fused to an antibody or carrier ligand. Targeted 
toxins are very effective against cancer cells resistant to radiation and chemotherapy. They 
are far more potent than any known chemotherapy drug. Targeted toxins have shown an 
acceptable profile of toxicity and safety in early clinical studies and have demonstrated 
evidence of a tumor response. Currently, clinical trials with some targeted toxins are 
complete and the final results are pending. This review summarizes the characteristics of 
targeted toxins and the key findings of the important clinical studies with targeted toxins in 
malignant brain tumor patients. Obstacles to successful treatment of malignant brain 
tumors include poor penetration into tumor masses, the immune response to the toxin 
component and cancer heterogeneity. Strategies to overcome these limitations are being 
pursued in the current generation of targeted toxins.  
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1. Introduction 

In 1906, Paul Ehrlich introduced the concept of targeting cancer cells with a “magic bullet”. His 
magic bullet consisted of using tissue-specific carriers to deliver toxic agents to neoplastic  
tissues [1,2]. The development of modern cancer therapy is based on discovering and designing drugs 
that target cancer specific pathways with minimal side effects. Targeted toxins, also called 
immunotoxins or cytototoxins, are recombinant molecules that specifically bind to surface antigens or 
receptors overexpressed in cancer, including tumor and endothelial cells [3]. These recombinant 
proteins consist of a specific antibody or ligand coupled to a toxin protein. The targeted toxins bind to 
a surface antigen or receptor overexpressed in cancer, such as the epidermal growth factor receptor, 
transferrin receptor, interleukin-13 or interleukin-4 receptor. Antibodies have been used for targeting 
chemotherapeutic drugs, toxins, enzymes and radionuclides, with the aim of developing targeted 
therapies for cancer. Antibodies in the therapy of cancer have evolved from mouse antibodies, to 
chimeric antibodies, to humanized antibodies. Meanwhile, due to poor penetration of toxins 
chemically conjugated to monoclonal antibodies (mAbs) [4,5], growth factors or cytokines linked to 
toxins were also used for targeted cancer therapy and they have been rapidly advanced into clinic 
trials. The toxin part of the molecule in all clinically used cytotoxins is modified from bacterial or 
plant toxins, in which the cell recognition domain is replaced with a new targeting moiety from an 
antibody or carrier ligand. Targeted toxins have the advantage of being highly cytotoxic and easy to 
manipulate by genetic engineering methods [2,6,7].  

Malignant brain tumors such as the glioblastoma multiforme (GBM) are highly lethal tumors and 
the life expectancy for patients with GBM under the current standards of care is on average 14 months 
from diagnosis despite maximal therapy with chemotherapy and radiation therapy [8,9]. The poor 
clinical prognosis associated with malignant brain tumors has led investigators to seek new, innovative 
methods of treatment. Targeted toxins are extremely cytotoxic to malignant GBM cell lines in vitro. 
Animal studies have shown prolongation of survival and complete tumor regression when targeted 
toxins were administered by a variety of routes [7,10,11]. The promising results seen in vivo have 
formed the basis for proceeding with clinical trials in humans with malignant brain tumors and 
leptomeningeal neoplasia, in which these agents are administered directly into the tumor or 
intrathecally, respectively. To date, in these clinical trials, targeted toxins have been delivered safely 
without significant neurological toxicity, and cytological analysis of cerebrospinal fluid and 
radiological findings have shown evidence of a therapeutic response. These studies have confirmed the 
existence of a therapeutic window between normal brain tissue and malignant cells that can be 
exploited with targeted therapy directed against cancer specific receptors. The successful delivery of 
targeted toxins directly into malignant brain tumors has established this route of administration as both 
practical and feasible.  

This review summarizes the characteristics of target toxins and the key findings of the important 
clinical studies with targeted toxins in malignant brain tumor patients. Obstacles to the successful 
treatment of malignant brain tumors include poor penetration into tumor masses and the immune 
response to the toxin component. Strategies to overcome these limitations are being pursued. An 
outlook into future areas of development of targeted toxins will be discussed. 
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2. Toxins  

The toxins used in most clinical immunotoxin or cytotoxin construction are made by bacteria or 
plants. They are very potent in small amounts delivered by these organisms, after natural selection 
over millions of years. Though structurally and evolutionarily different, Diphtheria toxin (DT) and 
Pseudomonas aeruginosa exotoxin A (PE) share similar properties of protein synthesis inhibition 
either by modifying elongation factor-2 or by directly inhibiting the ribosome [12]. Once attached to 
the overexpressed antigens or receptors on cancer cells, the toxin is endocytosed and transferred via an 
endosome to either a lysosome or the Golgi apparatus. The toxin and carrier ligand are then separated, 
allowing the toxin to inhibit protein synthesis. Immunotoxins can inactivate over 200 ribosomes or 
elongation factor-2s per minute. Furthermore, other mechanisms are also involved for toxins to disrupt 
the host cell function; for example, AB5 subtilase cytotoxin produced by pathogenic bacteria, such as 
Shiga toxigenic Escherichia coli (STEC), cleaves the essential endoplasmic reticulum chaperone 
protein BiP/GRP78, which is key for cell survival [13,14]. A single immunotoxin can kill a cancer cell 
as compared to 105 molecules of a chemotherapeutic drug that are needed to kill one cancer cell. So 
these toxins are much more potent when compared to traditional chemotherapeutic drugs. 

Most toxins are polypeptides with several domains: a cell recognition chain, which binds to the 
receptors on the surface of the target cell; a translocation chain, which enables the toxin to cross a 
membrane to reach the cytosol where essential cell machinery is located; and an inactivation domain, 
which inactivates some vital cellular process and causes cell death [2,3]. To make an immunotoxin, the 
cell recognition domain is replaced with a new recognition moiety. The most commonly used toxins in 
the clinical trials are two bacterial toxins: Diphtheria toxin and Pseudomonas aeruginosa  
exotoxin A [15].  

Diphtheria toxin is a 62 kDa protein secreted by Corynebacterium diphtheria [16,17]. The single 
polypeptide chain must be enzymatically nicked at an arginine-rich site for the A and B chain to be 
activated against human cells. Diphtheria toxin (DT) has a cell-binding domain at the C terminus 
(amino acids 482–539) and the A chain with ADP-ribosylation activity at the N terminus. The A chain 
catalyzes the transfer of adenosine diphosphate (ADP)-ribose to EF-2, preventing the translocation of 
peptidyl-t-RNA on ribosomes, thereby blocking protein synthesis and subsequently killing the  
cell [18–20]. A natural ligand for DT on the cell membrane is the heparin-binding epidermal growth 
factor (EGF)-like precursor [21]. DT undergoes internalization, disulfide bond reduction and 
proteolytic activation after cell binding, but translocation into the cytoplasm occurs directly from the 
acidic endocytic compartment. Recombinant DT is made by replacing the C terminal cell-binding 
domain with a ligand that binds to a growth factor receptor or the Fv fragment of an antibody. The 
native DT protein consists of 535 amino acids. Variable truncation of the binding segments resulting in 
389 and 486 amino acid length toxin conjugates has resulted in the formation of toxins DAB389 and 
DAB486, respectively [12]. These modified DTs are unable to enter a cell without selective uptake of 
their carrier ligand by a receptor. Another modification of DT involves substitution of two amino acids 
in the B chain resulting in a new molecule cross-reacting material-107 (CRM-107) [22–24]. This 
modification reduces the non-specific binding of DT to human cells by 8000-fold, thus increasing the 
toxin’s tumor-specificity 10,000-fold. 
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Pseudomonas aeruginosa exotoxin A is a single peptide with three functional domains: domain Ia 
is the N terminal and cell-binding domain; domain II has translocation activity; and domain III is the 
C terminal and catalyses the adenosine diphosphate (ADP)-ribosylation that inactivates EF-2, which 
further blocks protein synthesis and causes cell death. PE binds to the low density lipoprotein  
receptor-related protein (LRP1), also known as alpha-2-macroglobulin receptor or CD91, which is 
expressed in the plasma membrane of human cells and is then internalized through clathrin-mediated 
endocytosis. A 37 kDa fragment (amino acids 280–612) from the C terminus is released after 
proteolytic cleavage between amino acids 279 and 280 and reduction of the disulfide bond at amino 
acids 265 and 287. The fragment is transported to the endoplasmic reticulum, translocated to the 
cytoplasm, and then inactivates EF-2 [25,26]. The genetic excision of domain Ia results in a molecule 
termed PE 40 which retains its translocation function and EF-2 inhibition properties but is unable to 
kill human cells [25,27]. Furthermore, removal of the Ia domain should in turn decrease the 
hepatoxicity of PE immunotoxins that is due to residual binding of domain Ia to the hepatocyte. A 
genetically engineered PE molecule PE38KDEL, has amino acids 253–364 linked to amino acids  
381–608 with a change in the carboxyl end of PE (KDEL) to increase cytotoxic activity [28,29]. 
PE38KDEL has been fused with a targeting moiety such as the antibody Fv portion, a growth factor, or 
cytokine and found to have a much higher affinity for binding to cancer cell lines than the native PE 
immunotoxin, and was much more toxic to malignant cells [30,31]. 

3. Clinical Trials in Brain Cancer 

Immunotoxins were first shown to be potent cancer cell killers in the early 1970s. Initially, 
unmodified toxins were injected into the topical forms of refractory metastatic cancers in early clinical 
studies [10,32]. Afterwards, clinical trials investigating the efficacy and toxicity of immunotoxins in 
treating a wide variety of hematologic malignancies have made significant progress both with 
peripheral blood involvement such as in leukemias and malignancy outside the vasculature such as 
Hodgkin’s lymphoma and multiple myeloma [3,33]. Solid tumors including brain tumors are relatively 
resistant to immunotoxin treatment because of decreased access to the immunotoxin and a relatively 
intact immune system. The first report demonstrating the efficacy of immunotoxins against primary 
CNS tumor cell lines was not published until 1987 [17]. The first generation of immunotoxins 
conjugated the toxins directly to the Fc portion of a mAb. The clinical results were unremarkable. The 
second generation of immunotoxins conjugated the toxins to Fab’s or synthesized fusion proteins. The 
clinical results were much more promising, but still did not represent a definitive treatment  
modality [32]. Clinical and some promising preclinical studies in brain tumors are summarized below 
and some major features are discussed (Table 1). 
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Table 1. Targeted toxins used against brain tumors. 

Immunotoxin Toxin used 
Target 
antigen 

Administrative 
route 

Clinical 
trial phase 

Number and 
type of Tumor 

Outcome Adverse Effect References 

IL-4(38-37)-
PE38KDEL 

(38-37) 
PE38KDEL 

IL-4R 
Intratumoral 
(CED) 

I/II 
31 (25 GBM 
and 6 AA) 

Median survival 8.2 months; 
Six month survival was 52%. 

Headache, seizure, 
weakness, dysphasia, 
Hydrocephalus 
 

[31,34,35] 

IL13-PE38QQR PE38QQR IL-13R 
Intratumoral 
(CED) 

I/II/III 

Phase II, 51 
(46GBM, 3AA, 
other 2);  
Phase III, 296 
recurrent GBM 

Infusion MTIC was 0.5 µg/mL; 
up to 6 d well tolerated; 
Median survival 42.7 weeks 
(95% CI, 35.6–55.6) for GBM 
in phase II, and 36.4 weeks in 
phase III, comparable to 
Gliadel Wafer. 
 

Headache, 
dysphasia, seizure, 
weakness, 
pulmonary embolism

[36–38] 

TP-38 PE-38 TGF-α 
Intratumoral 
(CED) 

I 
20 (17 GBM, 
other 3) 

Median survival 28 weeks 
(95% CI, 4.1–45.1). 
 

Hemiparesis, fatigue, 
headache, dysphasia  

[15,39] 

Tf-CRM107 DT-CRM107 Tf 
Intratumoral 
(CED) 

I/II 44 (GBM, AA) 

Median survival 37 weeks, 
(95% CI, 26–49); 5/34 CR, 
7/34 PR, response rate 35% 
(95% CI, 20–54; p < 0.0001). 

Seizure, cerebral 
edema 

[40] 

GBM: Glioblastoma Multiforme; AA: Anaplastic Astrocytoma; TGF: transforming growth factor; CED: convection-enhanced delivery; MTIC: maximum-tolerated 
infusate concentration; CI: confidence interval; Tf: transferrin; CR: complete response; PR: partial responders; RR: radiographic response. 
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3.1. Pseudomonas exotoxin-based immunotoxins and cytotoxins  

3.1.1. IL4-PE  

Interleukin-4 (IL-4) is a pleiotropic cytokine which is primarily produced by Th2-type T 
lymphocytes, mast cells, and basophils [41]. Normal cells such as B cells, endothelial cells, microglia, 
and astrocytes express low levels of IL-4 receptors [41,42]. Human malignant glioma cell lines and 
malignant astrocytic tumor specimens derived from surgical samples have been shown to overexpress 
high-affinity IL-4 receptors (IL-4R) in vitro and in situ [43]. The significance of IL-4R expression on 
malignant glioma cells is still unclear. However, IL-4 has been reported to mediate functional effects 
in several solid tumor cell lines, including inhibition of cell proliferation, and induction of signal 
transduction through the JAK/STAT pathway [44]. Recombinant fusion protein IL-4(38-37)-
PE38KDEL, cpIL4-PE or NBI-3001, which for simplicity is called IL4-PE in this review, was 
constructed and expressed, consisting of a binding ligand, circularly permuted IL-4 and a mutated form 
of Pseudomonas exotoxin. Recombinant IL4-PE is highly and specifically cytotoxic to glioma cell 
lines in vitro, while it is less cytotoxic to hematopoietic and normal brain cells. In a nude mouse 
model, IL4-PE showed significant antitumor activity and partial or complete regression of small or 
large established human GBM tumors [45,46]. Preliminary clinical results suggested that IL4-PE can 
cause pronounced necrosis of recurrent GBM without systemic toxicity [46,47].  

Based on these pilot studies of IL4-PE, an extended Phase I/II clinical trial was conducted to 
determine safety, tolerability, and efficacy of IL4-PE when injected directly into recurrent GBM by 
convection enhanced delivery (CED). Six of nine patients showed glioma necrosis as evidenced by 
decreased enhancement on MRI [31]. An open-label, dose-escalation trial of IL4-PE reported that a 
total of 31 patients with histologically verified supratentorial grade 3 and 4 astrocytoma and Karnofsky 
Performance Scores (KPS) ≥ 60 were assigned to one of four dose groups in a dose-escalation fashion 
(6, 9 and 15 μg/mL, a total volume of 40 mL or 100 mL). IL4-PE was administered intratumorally via 
stereotactically placed catheters. The overall median survival was 8.2 months with a median survival 
of 5.8 months for the GBM patients. Six-month survival was 52% and 48%, respectively. MRI showed 
areas of decreased signal intensity within the tumor consistent with possible tumor necrosis and 
decreased contrast enhancement immediately following treatment in many patients. Although tumor 
necrosis was not confirmed by biological examination, IL4-PE induced change in gadolinium 
enhancement representing positive tumor necrosis was confirmed by histological examination of 
tissues in several patients. No IL-4-PE could be detected in the plasma, No drug-related hematological 
or serum chemical changes was apparent in any patients; treatment-related adverse effects were limited 
to the CNS, with drug-related Grade 3 or 4 toxicity in 39% of patients [48]. IL4-PE delivered by CED 
was safe without systemic toxicity, however, the CNS toxicity observed was attributed to the volume 
of the infusion and/or nonspecific toxicity. One case reported long-term survival of three years in a 
patient with recurrent malignant glioma following intratumoral infusion of IL4-PE with a durable 
tumor response [35].  
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3.1.2. IL13-PE  

Interleukin-13 (IL-13), structurally similar to IL-4 and secreted by activated type 2 T cells and mast 
cells, is a pleiotropic lymphokine regulating inflammatory and immune responses [49]. This cytokine 
modulates human monocyte and B-cell functions but not T-cell function [50]. IL-13 binds to three 
chains (IL-13Ra1, IL-13Ra2, and IL-4Ra) and induces phosphorylation of STAT-6 by the Jak  
family [51,52]. IL-13 receptors are found to be overexpressed in solid tumor cells including  
GBM [53–56], renal cell carcinoma [56], and cancers of the prostate [57], ovary [58], and head and 
neck [59]. IL-13 has proven to be a useful ligand for therapy because, although it is overexpressed on 
many solid tumor cells including GBM cells, the only normal cells targeted are B cells and monocytes. 
IL-13 receptors (IL-13R) are tumor-specific, high-affinity targets that justify incorporating IL-13 into a 
targeted toxin as a promising strategy [53–55]. The recombinant fusion cytotoxin IL13-PE38QQR or 
cintredekin besudotox (CB), which is called IL13-PE for simplicity, was composed of IL-13 and a 
mutated form of PE [60,61]. IL13-PE is specifically cytotoxic to glioma cell lines in vitro and has 
significant antitumor activity and partial regression of the established human GBM tumors, while it is 
less cytotoxic to normal human brain cells.  

IL13-PE has been tested in four Phase I/II clinical trials and was administered intracranially using 
CED [37,38,62] for patients with recurrent or progressive resectable supratentorial WHO grade 3/4 
malignant glioma. The drug was delivered through catheters placed either directly into the tumor mass 
or in the peritumoral region after resection of the lesion for 96 hours at an infusion rate of 0.75 mL/h 
divided between 1 to 3 catheters. The CED of IL13-PE was fairly well tolerated. The maximum 
tolerated intraparenchymal concentration was 0.5 μg/mL for up to six days and tumor necrosis was 
observed at this concentration. Catheter placement was important for optimal drug distribution. Overall 
median survival for GBM patients was 42.7 weeks (95% confidence interval [CI], 35.6–55.6)  
and 55.6 weeks (95% CI, 36.1–74.3) for patients with optimally positioned catheters with patient 
follow-up extending beyond five years [38].  

The Phase III Randomized Evaluation of CED of IL13-PE compared to Gliadel Wafer (GW) with 
Survival Endpoint Trial, known as the PRECISE Trial, in patients with initial recurrence of GBM has 
recently been completed. Patients were randomized 2:1 to receive IL13-PE or GW. IL13-PE 
(0.5 mg/mL, 0.75 mL/h over 96 hours) was administered via 2–4 intraparenchymal catheters placed in 
areas at greatest risk for infiltrating disease or in the vicinity of any residual, solid, contrast-enhancing 
disease 2–7 days after tumor resection. GW (3.85%/7.7 mg carmustine per wafer; maximum 8 wafers) 
were placed immediately after tumor resection. There were 296 patients enrolled at 52 centers. The 
primary endpoint was overall survival from the time of randomization. Secondary and tertiary 
endpoints were safety and health-related quality-of-life assessments. Median survival was 36.4 weeks 
for IL13-PE and 35.3 weeks for GW (P = 0.476, hazard ratio 0.89; 95% CI 0.67–1.18). For the 
efficacy evaluable population, the median survival was 45.3 weeks for IL13-PE and 39.8 weeks for 
GW (P = 0.310, hazard ratio 0.81; 95% CI 0.67–1.18). The adverse-events profile was similar in both 
groups, except that pulmonary embolism was 8% for IL13-PE vs. 1% in the GW group (P = 0.014). 
Although there is no statistical difference in the survival between the two treatment groups, this trial 
was the first randomized phase III evaluation of a targeted toxin administered via CED with an active 
comparator in patients with malignant glioma [36]. 
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3.1.3. TP-38 

The epidermal growth factor receptor (EGFR) is one of four known members of the human 
epidermal growth factor receptor (HER) tyrosine kinase family [63]. The receptor is a 170 kDa 
transmembrane protein with extracellular receptor domain, which upon binding to its ligand, EGF or 
transforming growth factor-α (TGF-α), results in receptor dimerization [64]. EGFR has been found to 
be amplified or overexpressed in a large proportion of GBM cells [65,66]. Gene amplification with 
loss of feedback inhibition and mutation play significant roles. Furthermore, it has been shown in some 
cancers that overexpression of EGFR correlates to poor outcome. A number of studies have addressed 
the prognostic value of EGFR expression and mutation in gliomas [65,66]. Immunotoxin TP-38 is  
a 43.5 kDa recombinant protein fusing PE-38 with TGF-α which is specifically targeted the EGFR 
[30]. The phase I clinical trial of TP-38 targeted EGFR in patients with a KPS score ≥ 60 with 
recurrent primary or metastatic malignant brain tumor using CED. Twenty patients were enrolled and 
stratified for dose escalation (25, 50 and 100 ng/mL, a total volume of 40 mL). Radiographic responses 
were defined as before [67] on consecutive contrast-enhanced MR or CT at least four weeks apart, 
with clinical neurological stability or improvement and no increase in steroid dose. Two dose limiting 
neurologic toxicities were seen, including a grade 3 hemiparesis and grade 4 constitutional symptoms 
(fatigue). Median survival after TP-38 was 28 weeks (95% CI, 4.1–45.1). For patients with residual 
disease, median survival was 20.1 weeks (95% CI, 16.7–110.0), while for those without radiographic 
evidence of residual disease, median survival was 33.0 weeks (95% CI, 0–170.4). Two of 15 patients 
treated with residual disease demonstrated radiographic responses, including one patient with GBM 
who had a nearly complete response and remains alive >260 weeks after therapy. TP-38 delivered by 
CED was well tolerated with some durable radiographic responses [39]. However, the potential 
efficacy of drugs delivered by this technique may be severely influenced by ineffective infusion in 
many patients as evidenced by imaging the co-infused 123I-albumin [15]. 

3.2. Diphtheria toxin-based immunotoxins and cytotoxins 

The US Food and Drug Administration (FDA) approved the first targeted toxin drug Ontak for 
cutaneous T-cell lymphoma in 1999 after successful Phase I, II and III trials [68]. ONTAK 
(DAB389IL-2) is a ligand fusion toxin consisting of the full-length sequence of the IL-2 gene fused to 
the enzymatically active and translocating domains of DT [69]. Other targeted DT toxins in 
development stages of either preclinical or clinical trials are discussed below. 

3.2.1. Tf-CRM107 

The transferrin (Tf) receptor (TfR) is a transmembrane glycoprotein which mediates the cellular 
uptake of iron [70–72]. TfR expression is up-regulated in dividing cells compared to resting cells [72]. 
TfR have been shown to be expressed in high numbers on malignant tumors, making it an attractive 
candidate for selective immunotoxin targeting [73–76]. Transferrin-CRM107 (Tf-CRM107) is a 
conjugate protein of DT with a point mutation (CRM107) linked by a thioester bond to human  
Tf [77–79]. This conjugate exhibits potent cytotoxicity in vitro against mammalian cells expressing the 
TfR with activity at picomolar concentrations.  
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Phase I clinical trial of Tf-CRM107 is a single center, dose-escalating single arm trial, in patients 
with malignant primary or metastatic brain tumors refractory to conventional therapy. The results 
demonstrated that Tf-CRM107, delivered via a high-flow convection method utilizing stereotactically 
placed catheters, produced tumor responses without severe neurologic or systemic toxicity [40]. 
Following Tf-CRM107 infusion, a ≥50% decrease in tumor volume showed on MRI occurred in nine 
of the 15 patients who could be evaluated (60%), including one patient having no evidence of tumor on 
MRI for 23 months after a single infusion of Tf-CRM107 into a progressing recurrent GBM and no 
tumor cells on the biopsies of the region of treatment at two and 10 months after treatment.  

Phase II study of Tf-CRM107 was a multicenter trial of intratumoral CED infusion of Tf-CRM107 
for the patients with recurrent GBM or anaplastic astrocytoma (AA). Patients then received two  
Tf-CRM107 infusions (0.67 μg/mL, up to 0.40 mL/h, total volume of 40 mL) during a 4–10 week 
period. A complete response was defined as disappearance of all solid areas of enhancement. A partial 
response was defined as a ≥50% decrease in the enhancing volume of the treated tumor. Patients  
with <50% reduction in enhancing tumor volume or an increase in the tumor volume were considered  
non-responders. The results of a Phase II study also showed that Tf-CRM107 treatment resulted in a 
total of five complete responders (CR) and seven partial responders out of the 34 evaluable patients. 
The estimated proportion of complete or partial responders was 35% of evaluable patients (95% CI,  
20–54%, p < 0.0001). The median survival time was 37 weeks (95% CI, 26–49 weeks). Thirteen of  
the 44 patients (30%) survived beyond 12 months from the time of the first treatment, and one patient 
survived 3.1 years. Symptomatic progressive cerebral edema occurred in eight of the 44 patients (14%) 
that was responsive to medical management. These data warranted a Phase III study as well as 
continued research in the field of targeted toxin therapy. Future directions of research has included 
optimizing Tf-CRM107 delivery to targeted brain regions and improving the treatment efficacy by 
combining this agent with other toxin conjugates targeted to different receptors. A phase III study 
commenced around 2005 but was discontinued because of a failure to demonstrate a positive 
therapeutic response.  

3.2.2. DTAT and DTAT13  

The roles of the serine protease urokinase-type plasminogen activator (uPA) and its receptor 
(uPAR) in glioma-cell invasion and neovascularization have attracted a lot of attention. uPA is 
produced as an inactive single-chain protein known as pro-uPA, which binds to uPAR and is activated 
by plasmin [80]. The expression of uPAR by human GBM cell lines contributes to their invasive 
capability [81,82]. uPAR is expressed at greater levels by anaplastic astrocytoma and GBM cells than 
by normal brain tissue or low-grade gliomas [83–85]. uPAR tends to be found at the leading margin of 
the tumor [81,82]. The recombinant fusion protein DTAT that targets uPAR and delivers the potent 
catalytic portion of DT has the advantage of simultaneously targeting both overexpressed uPAR on 
GBM cells and on tumor neovasculature [86,87]. The recombinant protein was highly selective for 
human GBM in vitro and in vivo and caused the regression of subcutaneous uPAR-expressing tumors 
with minimal toxicity to critical organs [87,88]. A bispecific immunotoxin DTAT13 was also 
synthesized in order to target simultaneously uPAR and IL-13 receptor expressing GBM cells [89]. 
DTAT13 is highly selective and synergistic for human GBM compared with DTAT and DTIL13 
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controls. DTAT13 caused the regression of small tumors and was able to target both GBM and the 
tumor vasculature with less toxicity than DTAT or DTIL13 [90,91]. 

3.3. Other Toxins  

Ricin-based immunotoxins are probably some of the most frequently studied immunotoxins to date. 
Clinical trials using Ricin A chain conjugates as well as galactose binding site-blocked intact ricin 
conjugates started as early as 1994, primarily focusing on hematological malignancies [3,33,92]. For 
metastatic brain tumors, an early clinical trial using a human TfR MAb conjugated to ricin A chain 
(454A12-rRA) was administered intrathecally to patients with carcinomatous meningitis with doses 
ranging from 1.2 to 1200 µg [78,93]. A CSF inflammatory response manifesting with headache, 
vomiting, and mental status change, occurred at doses ≥120 µg. Four of the eight patients 
demonstrated a greater than 95% transient reduction in tumor cell counts in their CSF. One patient 
improved clinically, but none of the patients survived long term. 

To avoid the immunogenicity associated with bacterial or plant toxins, human cytotoxic proteins 
such as ribonuclease or granzyme B have been used to target endothelial cells in tumors or tumor  
cells [94]. Furthermore, the expression of cancer-related proteases provides the opportunity to convert 
toxins into precursor toxins by replacing the furin cleavage site with a protease expressed in cancer 
cells. For example, the toxin is not active until cleaved by furin, so the furin site can be replaced by a 
site cleaved by urokinase using genetic mutation [95]. Several single-chain ribosome-inactivating 
proteins have also been used to make targeted toxins [96,97]. 

4. Current Status and Future Direction of Targeted Toxins  

Several obstacles have influenced the therapeutic progress of immunotoxins in cancer treatment. 
The first concern is that immunotoxins target cell surface antigens that are highly expressed on the 
tumor cells but are also expressed on normal tissues, usually at a much lower level than on the  
tumor [2,7]. So bystander cell death can occur with an increase in either the dose or the rate of 
immunotoxin administration. Another example of nonspecific toxicity is vascular leak syndrome 
where there is fluid leakage from capillaries, a fall in the serum albumin level, fluid retention, edema 
and weight gain. This toxicity, owing to endothelial cell damage caused by the high concentration of 
immunotoxins, can usually be managed with adequate hydration, although severe vascular collapse has 
been observed at high doses of ricin-based immunotoxins [98,99]. The second concern is the limited 
access of tumor cells to targeted toxins. The diffusion rate of immunotoxins into brain tumors is 
affected by the blood-brain barrier [100], the high intra-tumor interstitial pressure in solid  
tumor [5,101], and local antigen binding [102]. The third disadvantage is that toxins are foreign 
proteins, and patients with solid tumors and normal immune systems may develop neutralizing 
antibodies which prevent retreatment [3,103]. There are multiple approaches to reduce the 
immunogenicity of immunotoxins, including genetic modification of key epitope recognized by T 
and/or B lymphocytes to generate anti-toxin antibodies without losing toxin activity. For example, 
seven major epitopes in the PE are recognized by B cells [104]. Mutation of these specific hydrophilic 
amino acids creates the new mutant PE38 proteins, which have significantly less immunogenicity but 
still retain full cytotoxic and anti-tumor activities [105,106]. The last and possibly the most important 
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obstacle is the antigen or receptor heterogeneity that is due to the genetic heterogeneity of cancer, 
although cytotoxic effects of immunotoxins on brain tumor cell lines have been established, which 
means the antigens or receptors of the primary and metastatic tumors are not homogenous and are 
variable in density or structure [107]. For example, there is a discrepancy in receptor expression for 
TfR on the human medulloblastoma DAOY cell line in vitro and in vivo [108]. Furthermore, the 
EGFRvIII mutation is found in a large number of GBM and is the result of deletion of exons 2–7, with 
truncation of the extracellular portion of the protein and the subsequent inability to bind the ligand 
EGF, so that the immunotoxin with EGF as carrier ligand will not kill this population of GBM with 
EGFRvIII mutation [109].  

Clinical responses to immunotoxins have mainly been observed in hematological malignancies and 
are not as common in solid tumors, including GBM [2,3,33]. This discrepancy may be explained by 
the fact that the tumor cells in the blood and bone marrow are easily accessible to the immunotoxin, 
while solid tumor cells such as GBM are not. A second reason for a difference in treatment response is 
that the immune system in hematological malignancies is impaired and damaged by previous 
chemotherapy administration so that anti-immunotoxin antibodies are not readily produced and 
therefore more than one cycle of treatment may be given. Furthermore, systemic toxicity can be caused 
by targeting the toxin to normal tissues that contain the same target antigen as the cancer cell. This is 
not a concern if immunotoxins are targeted to antigens on B- or T-cell malignancies, since normal B 
and T cells can be regenerated from antigen-negative stem cells. But it is a serious concern if solid 
tumors are targeted that have antigens present on vital organs such as the kidneys, liver or nerve cells, 
where the immunotoxin will kill these normal cells [110,111]. It is important to choose the target 
antigen or receptor, which is specifically overexpressed on the cancer cell, but not on normal cells. 

The current generation of targeted toxins dates to the last several years where investigators have 
been engineering these drugs to bind to receptors but also to overcome two major hurdles: toxicity and 
immunogenicity. Further progress will depend on the identification of new antigenic targets on tumors 
and the production of less immunogenic immunotoxins so that patients can receive several treatment 
cycles. These agents may be particularly appropriate for patients with recurrent, resistant and 
widespread intracranial malignancy resistant to conventional therapy, including surgery, chemotherapy 
and radiotherapy. 
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