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Abstract. Although targeted therapy has emerged as an 
effective treatment strategy for non‑small cell lung cancer 
(NSCLC), some patients cannot benefit from such therapy 
due to the limited number of therapeutic targets. The present 
study aimed to identify mutated genes associated with 
clinicopathological characteristics and prognosis and to 
screen for mutations that are not concurrent with applicable 
drug target sites in patients with NSCLC. Tumor tissue and 
blood samples were obtained from 97 patients with NSCLC. 
A lung cancer‑specific panel of 55 genes was established and 
analyzed using next‑generation sequencing (NGS). The results 
obtained from the clinical cohort were compared with the 
NSCLC dataset from The Cancer Genome Atlas (TCGA). 
Subsequently, 25 driver genes were identified by taking the 
intersection of the 55 lung‑cancer‑specific genes with three 
databases, namely, the Catalog of Somatic Mutations in 
Cancer database, the Network of Cancer Genes database and 
Vogelstein's list. Functional annotation and protein‑protein 
interaction analysis were conducted on these 25 driver genes. 
The χ2 test and logistic regression were used to evaluate the 
association between mutations in the 25 driver genes and the 
clinicopathological characteristics of 97 patients, and phos‑
phatase and tensin homolog (PTEN) and kirsten rat sarcoma 
viral oncogene homolog (KRAS) were associated with stage at 
diagnosis and sex, respectively, while epidermal growth factor 
receptor (EGFR) was associated with sex, stage at diagnosis, 
metastasis, CEA and CYFRA21‑1. Moreover, the association 
between the 25 driver gene mutations and overall survival 
were examined using Cox regression analysis. Age and Notch 
homolog 2 (NOTCH2) mutations were independent prognostic 

factors in TCGA dataset. The correlations between statistically 
significant mutations in EGFR, KRAS, PTEN and NOTCH2 
were further examined, both in the clinical data and TCGA 
dataset. There was a negative correlation between EGFR and 
NOTCH2 mutations (correlation coefficient, ‑0.078; P=0.027). 
Thus, the present study highlights the importance of NOTCH2 
mutations and might provide novel therapeutic options for 
patients with NSCLC who do not harbor EGFR mutations.

Introduction

According to the 2018 Global Cancer Statistics, lung cancer 
has the highest morbidity and mortality among all malignant 
diseases (1). Although the incidence of lung cancer is similar 
in China and the USA, the mortality of lung cancer in China 
is 1.4 times greater than that in the USA, and the number 
of deaths has been gradually increasing every year (2). The 
clinical management of lung cancer has improved with the 
in‑depth understanding of its molecular pathogenesis. Targeted 
therapies have achieved significant improvement in patient 
outcomes and quality of life compared with radiotherapy 
and chemotherapy (3), especially in patients with epidermal 
growth factor receptor (EGFR) mutations (4,5). Different from 
the general applicability of radiotherapy and chemotherapy, 
targeted therapy is primarily based on the presence or absence 
of certain genes and mutations, which are mainly identified 
using sequencing technologies (6,7).

Next‑generation sequencing (NGS) is an innovative 
sequencing technology involving ‘massively parallel’ 
sequencing. It has higher sensitivity and is more cost‑effective 
and less time‑consuming compared with the single‑gene muta‑
tion and/or partial exon variation analysis, such as PCR‑based 
analysis, Sanger sequencing or pyrosequencing (8). As targeted 
anticancer medications have been included in health insurance 
in China, NGS and targeted therapy drugs are becoming more 
widely applied in clinical medicine. Activating mutations in 
EGFR are the prevalent targetable mutations in lung adenocar‑
cinoma. Currently, first‑, second‑ and third‑generation Food 
and Drug Administration (FDA)‑approved tyrosine kinase 
inhibitors (TKIs) are in use (9,10). For example, in the treat‑
ment of advanced anaplastic lymphoma kinase (ALK)‑positive 
non‑small cell lung cancer (NSCLC), lorlatinib is a potent, 
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brain‑penetrant, third‑generation ALK/repressor of silencing 1 
TKI with robust clinical activity (11).

Therapeutic strategies only focus on mutation sites that can 
be targeted by drugs recommended by The American Society 
of Clinical Oncology (12) or The Chinese Society of Clinical 
Oncology (13) guidelines. When no such mutations have been 
identified, targeted therapy would be considered not applicable. 
Moreover, immunotherapy is also not generally accepted, 
owing to high costs, and therefore chemotherapy becomes the 
only viable option (14). However, in clinical practice, the vast 
majority of patients may eventually give up chemotherapy, due 
to severe side effects or chemoresistance, failure to prolong 
survival and even death (15). Thus, it is still of great impor‑
tance to further identify genetic mutations that are closely 
related to the poor prognosis and clinicopathological charac‑
teristics of patients with lung cancer, thus promoting research 
and development of new drugs with target mutation sites that 
are complementary to currently applied targets.

The aim of the present study was to identify mutations that 
were not concurrent with applicable drug target sites. A lung 
cancer‑specific panel of 55 genes was established by multigenic 
screening in order to analyze gene mutations in 97 patients 
with NSCLC. Moreover, these 55 genes were further analyzed 
using a mutation dataset of NSCLC obtained from The Cancer 
Genome Atlas (TCGA) database. By comparing to the Catalog 
of Somatic Mutations in Cancer (COSMIC) database, Network 
of Cancer Genes (NCG) database and Vogelstein's list (16), 
25 driver genes, in which acquired mutations or expressed aber‑
rantly are causally linked to cancer progression, were identified 
out of the 55 genes and subjected to functional annotation and 
protein‑protein interaction (PPI) analysis. Subsequently, the 
associations between mutations in the 25 driver genes and clini‑
copathological characteristics of 97 patients were examined. 
Using TCGA, the association between the mutations in the 
25 driver genes and overall survival of 701 patients was analyzed. 
Furthermore, the relationships between genes of clinical signifi‑
cance, including EGFR, kirsten rat sarcoma viral oncogene 
homolog (KRAS) and phosphatase and tensin homolog (PTEN) 
and Notch homolog 2 (NOTCH2), were analyzed in TCGA data 
and in the clinical data obtained from the patients. The findings 
of the present study may promote the development of new drugs 
targeting these mutations and provide new therapeutic options 
for patients lacking suitable drug target sites.

Materials and methods

Patients and samples. A total of 97 patients with NSCLC 
admitted in The Affiliated Hospital of Chengde Medical 
University (Hebei, China) from November 2018 to July 2020 
were enrolled in the current study. The present study was 
approved by the Research Ethics Review Committee of Chengde 
Medical University (Hebei, China; approval no. 2017003) and 
written informed consent was provided by all patients prior 
to the study start. The inclusion criteria were: i) Patients had 
a clear clinical diagnosis of NSCLC; ii) detailed clinical data 
were recorded accurately and completely, including the patient's 
sex, age, smoking history, histological type, clinical stage at 
diagnosis, T classification, N classification, M classification, 
the levels of tumor markers [carcinoembryonic antigen (CEA), 
neuron‑specific enolase (NSE), cytokeratin 19 fragment 21‑1 

(CYFRA21‑1), squamous‑cell carcinoma antigen (SCC) and 
cancer antigen 125 (CA125)]; clinical staging was based on the 
American Joint Committee on Cancer (AJCC) Classification 
(8th edition) (17); and iii) patients with available samples, 
including formalin‑fixed and paraffin‑embedded (FFPE) 
tissues and blood. The patient data (97 patients) used and/or 
analyzed during the current study are available from the corre‑
sponding author upon reasonable request.

The tumor tissues were collected and fixed in 4% formalin 
at 4˚C for 30 min, dehydrated and embedded in paraffin. 
Sample sections were cut to 5‑µm thickness. Blood samples 
(5 ml) were collected in ethylene diamine tetra‑acetic acid 
anticoagulant tubes and gently inverted 8‑10 times. All the 
patients had no history of blood transfusion within 4 weeks 
and fasted for 8‑12 h prior to blood sample collection. None of 
the blood samples used for NGS had signs of hemolysis, lipid 
turbidity or jaundice.

A TCGA dataset (Nat Genet 2016) (18) containing data 
from 1,144 lung cancer patient samples were downloaded from 
cBioPortal database (v3.0.2; http://www.cbioportal.org/). For 
survival analysis, 701 patients among the 1,144 samples in the 
TCGA dataset who met the inclusion criteria were included 
in the present study. The inclusion criteria were: i) Patients 
had a clear clinical diagnosis of NSCLC; ii) detailed clinical 
data were recorded accurately and completely, including the 
patient's sex, age, smoking history, histologic type, clinical 
stage at diagnosis, T classification, N classification, M classifi‑
cation, overall survival status and time; and iii) the mutations 
status of the 25 driver genes was described.

In addition, the intersection of the mutated genes of 
patients with NSCLC and the mutations in TCGA dataset were 
analyzed using Venn software (http://www.bioinformatics.
com.cn/static/others/jvenn/index.html).

Design and general performance of the lung cancer‑specific 
55‑gene NGS panel. A lung cancer‑specific 55‑gene NGS 
panel was established. The inclusion criteria for the gene 
panel were: i) Genes from FDA‑approved and/or National 
Comprehensive Cancer Network‑recommended drugs for the 
treatment of NSCLC; ii) genes annotated by databases, such 
as Clinical Knowledgebase (https://ckb.jax.org/; updated 
in October 2017), Oncology Knowledge Base (OncoKB; 
http://oncokb.org/; updated in December 2019;), cBioPortal, 
My Cancer Genome database (https://www.mycancergenome.
org/; updated in April 2019) and Clinical Trials (https://clini‑
caltrials.gov/; updated in June 2018); and iii) genes involved in 
clinical studies that have been previously reported in detail.

Genomic DNA was extracted from blood samples using 
the QIAamp DNA Blood Mini kit (cat. no. 51106; Qiagen 
GmbH) and from FFPE tissues using the GeneRead DNA 
FFPE kit (cat. no. 180134; Qiagen GmbH). Concentration of 
extracted Genomic DNA (gDNA) was measured using a Qubit 
3.0 fluorometer (Thermo Fisher Scientific, Inc.) and purity was 
measured by a spectrophotometer. DNA had a concentration 
of at least 50 ng/µl with an OD 260/280 between 1.8‑2.0. DNA 
integrity was assessed using 1% agarose gel electrophoresis.

The gDNA was fragmented randomly by Covaris to 
generate gDNA fragments with a maximum of 250 bp and then 
subjected to three enzymatic steps: End‑repair, A‑tailing and 
adapter ligation. DNA libraries were purified with Agencourt 
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AMPure XP beads (Beckman Coulter, Ins.), and PCR was 
performed. A TrueSeq DNA library preparation kit (Illumina, 
Inc.) was used to prepare the sequencing library according to 
the manufacturer's protocol. Target sequences were enriched 
using commercial hybridization probes (Nimblegen, Roche, 
https://www.roche.com) designed for human DNA regions 
of our interest. The panel included the following 55 genes: 
SLC19A1, ERCC1, TP53, ABCB1, XRCC1, DHFR, PAPD7, 
MTHFR, CDA, XPC, RRM1, ESR2, GGH, EGFR, SLC29A1, 
GSTP1, NT5C2, PTEN, DYNC2H1, DCK, SOD2, UGT1A1, 
CMPK1, RB1, CDC5L, KRAS, PIK3CA, CTNNB1, TERT, 
BRAF, ERBB2, NOTCH2, ALK, RET, PDGFRA, FBXW7, 
FGFR3, MET, MUC4, NOS3, ROS1, KIT, CD3EAP, ERBB4, 
MTOR, NRAS, APC, NF1, SMAD4, SMO, STK11, TPMT, 
VHL, KDM6A and TYMS. The hybridization product was 
subsequently purified, amplified and qualified. Finally, 
sequencing was performed on the Illumina next500 platform 
(Illumina, Inc.). Raw data in FASTQ format were processed 
to remove reads containing adapters, reads containing ploy‑N, 
and low‑quality reads. All variants had >99% confidence, as 
well as an average sequencing depth of over 500X. Structural 
variations were annotated using the Refseq release 96 
(http://www.ncbi.nlm.nih.gov/refseq/) and Gencode gene 
annotation library (https://www.gencodegenes.org/). Waterfall 
plots and Circos plots were generated using R software (v 3.6.1; 
https://www.R‑project.org).

Identification of driver gene. Three databases were used to 
identify driver genes, including the COSMIC database, NCG 
database, and Vogelstein's list. The COSMIC database is the 
largest and most comprehensive resource for exploring the 
impact of somatic mutations in human cancer in the world, 
which contains 576 genes. The NCG database is a manually 
curated repository of 2,372 genes whose somatic modifica‑
tions have known (711 genes) or predicted (1,661 genes) cancer 
driver roles (19), and 125 mutated driver genes were identified 
in Vogelstein's study with a total of 294,881 mutations being 
reported (16). The intersection of the common mutant genes both 
in clinical and TCGA data and the specific genes in the three 
databases were analyzed using Venn software (v2.0; http://www.
bioinformatics.com.cn/static/others/jvenn/index.html).

Actionable target analysis. The analysis of actionable mutations 
was carried out using the Pharmacogenomics Knowledgebase 
(PharmGKB; http://www.pharmgkb.org/) for single nucleotide 
polymorphisms (SNPs) and OncoKB for single nucleotide vari‑
ants (SNVs). The variants‑drug relationships were compiled by 
combining the mutation data and the two annotation databases. 
The SNPs were evaluated using the PharmGKB database to 
identify potentially actionable variants that could reflect the 
efficacy and toxic side effects of chemotherapeutic drugs. The 
SNV variant sites, which may guide targeted therapy, were 
annotated using the OncoKB database, which is a comprehen‑
sive precision oncology database that offers evidence‑based 
drug information on FDA‑approved therapies and other inves‑
tigational agents. The final list was filtered based on previously 
published preclinical data and clinical trials in cancer.

Function annotation analysis. Gene Ontology (GO) annota‑
tion and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway enrichment analysis were performed using the DAVID 
v6.8 online tool (https://david‑d.ncifcrf.gov/). GO functional 
categories included biological process, cellular component 
and molecular function. Statistically significant terms were 
determined using a two‑sided P<0.05.

Pathogenicity prediction. Variant deleteriousness was 
predicted using the Polymorphism Phenotyping version 2 
(Polyphen‑2) database (v2.2.2; http://genetics.bwh.harvard.
edu/pph2/) (20) and the MutationTaster web‑based tool 
(v2; http://www.mutationtaster.org/) (21). The Polyphen‑2 
score and the MutationTaster score were calculated. 
Specifically, the effects of SNVs and SNPs were evaluated using 
the Polyphen‑2 database and classified into three categories 
(probably damaging, possibly damaging and benign), based on 
their predicted effect on protein function. The insertions and 
deletions (indels) were analyzed by the MutationTaster tool, 
which categorizes mutations into one of four possible types: 
i) Disease‑causing (probably deleterious); ii) disease‑causing 
automatic (known to be deleterious); iii) polymorphism 
(probably harmless); and iv) polymorphism automatic (known 
to be harmless).

PPI network construction and mutual exclusivity analysis. 
The PPI network was analyzed using the STRING online 
tool (v11.0; https://string‑db.org/). The list of official gene 
names was imported into STRING and the species was set 
to Homo sapiens. The medium confidence was set to 0.400. 
The MCODE plug‑in in Cytoscape (v3.6.2, www.cytoscape.
org) was used to screen for PPI network modules with the 
following parameters: i) Degree cutoff, 2; ii) node score cutoff, 
0.2; iii) k‑core, 2; and iv) max depth, 100. The hub genes were 
defined by the maximal clique centrality (MCC) algorithm 
in the cytoHubba plug‑in in Cytoscape. Mutual exclusivity 
analysis was performed on driver genes using the mutual 
exclusivity tool in the cBioPortal database.

Statistical analysis. Statistical analysis was performed using 
SPSS software (version 19; SPPS, Inc.). All metric and 
normally distributed data are presented as mean ± standard 
deviation, non‑normally distributed data as median (25‑75th 
percentile), and n (%) for categorical data. Scatter plots were 
plotted using GraphPad Prism 8.0 (GraphPad Prism Software 
lnc.).

The clinicopathological characteristics from the patients 
with NSCLC (with or without mutations) were compared using 
the χ2 or Fisher's exact test if the expected cell value was <5. 
The factors with two‑sided P<0.1 were considered potentially 
significant. Furthermore, logistic regression was used to eval‑
uate the correlations between these factors. Logistic, ordered 
logistic and multinomial logistic regression analysis were 
used for binary, ordered and unordered categorical outcome 
variable analysis, respectively. If the two‑sided P‑value of the 
parallelism test was <0.05 in the ordered logistic regression, 
multinomial logistic regression was used. Two‑sided P<0.05 
was considered to indicate a statistically significant difference.

For survival analysis, 701 patients among the 1,144 samples 
in the TCGA dataset who met the inclusion criteria were 
included in this study. Univariate Cox regression analysis was 
used to screen for significant variables (two‑sided P<0.05) 



NIU et al:  IDENTIFICATION OF COMPLEMENTARY MUTATIONS IN NSCLC4

for multivariate Cox analysis. The Kaplan‑Meier method and 
log‑rank test were used to generate an analyze the survival 
curves.

Following the integration of 97 patient data and 701 TCGA 
data, the correlations among EGFR, PTEN, KRAS and 
NOTCH2 mutations were assessed using Kendall's τ‑b corre‑
lation test. P<0.05 was considered to indicate a statistically 
significant difference. Correlation coefficient (CC) values 
range from +1 to ‑1, with positive value representing positive 
correlation and negative value representing negative corre‑
lation and 0 value representing no correlation.

Results

Clinicopathological characteristics of the patients with 
NSCLC. The clinicopathological characteristics of the 
97 patients are presented in Table Ⅰ. A total of 46 (47.4%) 
patients were males and 51 (52.6%) were females. The patient 
age ranged from 28‑75 years, with a median age of 59 years. 
Patients aged >60 years accounted for 42.3% (41/97) of the 
cohort, whereas those aged ≤60 years old represented 57.7% 
(56/97). Moreover, 21 (21.6%) patients had smoking history, 
while 76 (78.4%) patients had never smoked. For the histolog‑
ical type, 80 (82.5%) patients had adenocarcinoma, 12 (12.4%) 
patients had squamous cell carcinoma and 5 patients (5.1%) had 
other NSCLC types. According to the AJCC clinical staging 
criteria, 10 (10.3%) patients had stage I or II, 12 (12.4%) had 
stage III and 75 (77.3%) had stage IV. In terms of TNM classifi‑
cation, 11 (11.3%) patients were of T1 classification, 45 (46.4%) 
were of T2 classification, 21 (21.7%) were of T3 classification 
and 20 (20.6%) were of T4 classification. In addition, 16 
(16.5%) patients had N0 classification, 10 (10.3%) had N1 
classification, 43 (44.3%) had N2 classification and 28 (28.9%) 
had N3 classification. A total of 23 (23.7%) patients were of 
M0 classification and 74 (76.3%) were of M1 classification. 
Moreover, 66 (68.0%), 49 (50.5%), 67 (69.1%), 8 (8.2%), and 52 
(53.6%) patients exhibited increased CEA, NSE, CYFRA21‑1, 
SCC, and CA‑125, respectively’.

Mutational analysis. A lung cancer‑specific 55‑gene panel was 
established and analyzed using NGS. All 97 patients harbored 
gene mutations and the mutational profile of 55 genes was 
summarized in Fig. 1A. The most frequent gene mutations 
were found in SLC19A1 (100%), ERCC1 (94%), ABCB1 (92%), 
TP53 (90%) and XRCC1 (90%). Overall, five types of mutations 
were observed, namely SNVs, SNPs, indels, copy number vari‑
ants (CNVs) and fusions. SNVs mostly occurred in the EGFR, 
PTEN, RB1 and KRAS genes, which were either confirmed 
or potential molecular targets, while the common mutation 
types of SLC19A1 and ERCC1 genes were identified as SNPs, 
which could reflect chemotherapeutic drug efficacy and toxic 
side effects. Some genes, such as TP53 and EGFR, displayed 
both SNVs and SNPs. The other three mutation types were less 
observed in this study. Indels occurred in 13 genes in total. Only 
EGFR harbored a CNV and ALK harbored a fusion.

The chromosomal locations of the 55 genes were then 
examined (Fig. 1B). Chromosomes 1 and 7 were enriched in 
most of the genes (12 in total) followed by chromosomes 3, 4 
and 6. Among the 55 genes, SLC19A1, which had the highest 
frequency of the SNPs, was located on chromosome 21 and 

Table Ⅰ. Clinicopathological characteristics of patients with 
non‑small cell lung cancer.

Clinicopathological characteristics n (%)

Total 97 (100.0)
Sex 
  Male 46 (47.4)
  Female 51 (52.6)
Age, years 
  ≤60 56 (57.7)
  >60 41 (42.3)
Smoking history 
  Never smoker 76 (78.4)
  Current/Former 21 (21.6)
Histological type 
  Adenocarcinoma 80 (82.5)
  Squamous cell carcinoma 12 (12.4)
  Other 5 (5.1)
Stage at diagnosis 
  I/II 10 (10.3)
  III 12 (12.4)
  IV 75 (77.3)
T classification 
  T1 11 (11.3)
  T2 45 (46.4)
  T3 21 (21.7)
  T4 20 (20.6)
N classification 
  N0 16 (16.5)
  N1 10 (10.3)
  N2 43 (44.3)
  N3 28 (28.9)
M classification 
  M0 23 (23.7)
  M1 74 (76.3)
CEA, ng/ml 
  ≤5 31 (32.0)
  >5 66 (68.0)
NSE, ng/ml 
  ≤16.3 48 (49.5)
  >16.3 49 (50.5)
CYFRA21‑1, ng/ml 
  ≤3.3 30 (30.9)
  >3.3 67 (69.1)
SCC antigen, ng/ml 
  ≤2.7 89 (91.8)
  >2.7 8 (8.2)
CA125, U/ml 
  ≤35 45 (46.4)
  >35 52 (53.6)

CEA, carcinoembryonic antigen; NSE, neuron‑specific enolase; 
CYFRA21‑1, cytokeratin 19 fragment 21‑1; SCC, squamous cell 
carcinoma; CA125, cancer antigen 125.
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Figure 1. Mutational analysis of 55 lung cancer‑specific genes in 97 patients with NSCLC. (A) Waterfall plot of mutational landscape. The 55 mutated genes 
identified using NGS were ranked by mutant frequency. Each row represents a gene and each column represents a patient. (B) Circos view of the 55 mutant 
genes on chromosomes. Starting from the outside, the first circle indicates the distribution of the 55 genes across the human genome indicated by lines. The 
second circle represents two therapeutic modalities: Chemotherapy (blue) and targeted therapy (red). The third circle represents the gene mutation rates. The 
lines in the center area represent interconnections among 55 genes. (C‑F) Actionable analysis of 55 gene mutations. (C) Evidence levels of the PharmGKB data‑
base. (D) Number of SNPs and drug annotation information. Each horizontal bar represents a gene. The x‑axis indicates the number of mutations. The mutation 
sites were annotated using the PharmGKB database, and the corresponding chemotherapeutic drugs and their evidence levels are shown. The color of columns 
represents the drug efficacy and the toxic side effects. Yellow represents better drug efficacy and purple represents worse drug efficacy. Gray represents lower 
toxic side effects and blue represents higher toxic side effects. (E) Evidence levels of the OncoKB database. (F) Number of SNVs and drug annotation informa‑
tion. Each horizontal bar represents a gene. The x‑axis indicates the number of mutations. The mutation sites were annotated using the OncoKB database, 
and the corresponding targeted drugs and their evidence levels are shown. The color of columns represents drug susceptibility. Green represents sensitivity 
to annotated drugs and red represents resistance to annotated drugs. Indel, insertion‑deletion; FDA, Food and Drug Association; NSCLC, non‑small cell 
lung cancer; NGS, next‑generation sequencing; PharmGKB, Pharmacogenomics Knowledgebase; SNP, single nucleotide polymorphism; OncoKB, Oncology 
Knowledge Base; SNV, single nucleotide variants; CNV, copy number variants; CPIC, Clinical Pharmacogenetics Implementation Consortium; PGx, phar‑
macogenomics; PGRN, Pharmacogenomics Research Network; VIP, Very Important Pharmacogene, FDA, Food and Drug Administration; NCCN, National 
Comprehensive Cancer Network.
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EGFR, which had the highest SNV frequencies, was mapped 
to chromosome 7 (Fig. 1B; outer circle).

Moreover, 33 genes were therapeutic targets and 24 genes 
could reflect efficacy and toxic side effects of chemothera‑
peutic drugs. Among them, EGFR and TP53 could be used to 
indicate the applicability of both targeted therapy and chemo‑
therapeutic drugs (Fig. 1B; middle circle). Mutation rates were 
consistent with the results shown in Fig. 1A (Fig. 1B; inner‑
most circle). Additionally, a total of 386 interactions among 
54 genes constituting a gene‑gene network was identified. 
Only one gene, CDC5L, did not interact with any other gene.

To evaluate the actionable mutations that could guide 
treatment decisions, the annotated information in PharmGKB 
and OncoKB databases were added to the lung cancer‑specific 
55‑gene panel. A total of 24 SNPs that could reflect the effi‑
cacy and the toxic side effects of chemotherapeutic drugs were 
identified using the PharmGKB database (Fig. 1C and D). 
Among them, 7 genes (CDA, DHFR, SLC29A1, NT5C2, 
MTHFR, XPC and DCK) were associated with highly toxic 
side effects, while UTG1A1 and DYNC2H1 indicated low 

toxic side effects. A total of 10 gene mutations (SLC19A1, 
RRM1, PAPD7, GGH, ERCC1, TP53, SOD2, XRCC1, GSTP1 
and CMPK1) were associated with good drug efficacy. 
Among them, the p.Pro72Arg mutation in TP53 suggested 
that cisplatin, cyclophosphamide and ifosfamide, might show 
better efficacy and lower toxic side effects. ABCB1, EGFR, 
TYMS, ESR2 and CDC5L were associated with poor drug 
efficacy.

In addition, the OncoKB database was used to annotate 
confirmed or potential target genes (Fig. 1E). Altogether, 
8 genes were identified as the targets of FDA‑approved 
or other evidence‑supported drugs (Fig. 1F). Only one 
actionable mutation in CTNNB1 indicated resistance to 
osimertinib, suggesting that osimertinib should not be 
recommended for patients with CTNNB1 mutations. The 
mutations in the remaining genes reflected sensitivity to 
the corresponding targeted therapy drugs. Although TP53 
had the most targeted sites, only the drug AZD1775 was 
annotated as the lowest supporting level (level 4, Fig. 1F). 
Moreover, EGFR had up to 18 actionable mutations targeted 

Figure 2. Comparison with the TCGA database. Distribution of clinicopathological characteristics including (A) sex, (B) diagnosis age, (C) smoking history, 
(D) histologic type, (E) stage at diagnosis, (F) T classification, (G) N classification, (H) M classification and (I) overall survival status. (J) Top 50 genes with 
the highest mutation frequencies. (K) Venn diagram of genes shared in the clinical data and TCGA dataset. The lung cancer‑specific 55‑gene NGS panel is 
shown in blue and the mutational profile of the TCGA dataset is shown in red. TCGA, The Cancer Genome Atlas; NGS, next‑generation sequencing; LUAD, 
lung adenocarcinoma; LUSC, lung squamous cell carcinoma; NA, not available.
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by osimertinib, cetuximab, brigatinib, afatinib, cetuximab 
and vandetanib (Fig. 1F).

Comparison with TCGA database. In order to evaluate the 
universality of the lung cancer‑specific 55‑gene panel in 
patients with NSCLC, the mutational status of the clinical 
cohort was compared with TCGA NSCLC cohort (18). The 
clinical characteristics of 1,144 patients were obtained, 
including sex, diagnosis age, smoking history, histologic 
types, clinical stage, T classification, N classification, M clas‑
sification and overall survival status (Fig. 2A‑I). Overall, each 
sample had ≥1 mutation and the 1,144 samples harbored a 
total of 17,618 mutations. The top 50‑ranked genes are plotted 
in Fig. 2J according to the mutation rate. Mutation frequency 
was highest for TP53 (67.70%), followed by TTN (59.60%), 
CSMD3 (41.70%), MUC16 (40.50 %) and RYR2 (39.20%). 
In addition, the intersection of the 55 mutated genes of lung 
cancer‑specific panel and the 17,618 mutations in TCGA 
dataset were analyzed (Fig. 2K). Notably, of the 55 genes, 

54 genes presented mutations in both two cohorts, and only 
UGT1A1 was not included in the mutation profile of the 
TCGA dataset.

Identification of driver genes. The COSMIC database, NCG 
database and Vogelstein's list, which contained 576 genes, 
711 known genes and 125 mutated driver genes, respectively, 
were used to identify driver genes. After analyzing the 
intersection of these three databases and the above 54 genes, 
25 driver genes were screened: TP53, EGFR, PTEN, RB1, 
KRAS, PIK3CA, CTNNB1, NOTCH2, BRAF, ERBB2, RET, 
ALK, PDGFRA, FBXW7, FGFR3, KIT, MET, NRAS, APC, 
NF1, SMAD4, SMO, STK11, VHL and KDM6A (Fig. 3A). 
The 25 driver genes were then uploaded to the cBioPortal 
database. The mutation count, mutation rates and genetic 
alterations of 25 driver genes, as well as sex, smoking history 
and other clinical characteristics of 1,144 patients with NSCLC 
are shown in Fig. 3C. The five most frequently mutated genes 
were TP53 (68%), KRAS (23%), EGFR (14%), NF1 (12%) and 

Figure 3. Identification of 25 driver genes. (A) Venn diagram of 25 driver genes identified by taking the intersection of 55 genes and three databases of the 
COSMIC database, NCG database and Vogelstein's list. The bar chart represents the number of genes in each database. (B) OncoPrint map of the mutational 
status of 25 driver genes in TCGA dataset (n=1,144). Each row represents a gene and each column represents a patient. Summary rows of each case at the top 
were clinicopathological characteristics (sex, stage, smoking history, overall survival status, T classification, N classification, M classification, overall survival). 
(C) Mutation rates of 25 driver genes were compared between 97 patients (abscissa) and the TCGA dataset (ordinate). The fitting curve is represented by a 
dashed line, whereas the ideal curve is shown as a solid, diagonal line. COSMIC, Catalog of Somatic Mutations in Cancer; NCG, Network of Cancer Genes; 
TCGA, The Cancer Genome Atlas.
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STK11 (10%). To validate the consistency of the 25 driver 
genes mutations in 97 patients and TCGA dataset, scatter 
plots were generated based on the mutation rates of the two 
cohorts (Fig. 3B). Most points were close to the diagonal line, 
suggesting that the mutation rates of the 25 driver genes in 
the clinical cohort were highly similar to those of TCGA 
results. These findings demonstrate the strong reliability of the 
25 driver genes, which may be used for the subsequent studies.

Function annotation and PPI network analysis of 25 driver 
genes. To annotate the 25 driver genes, GO and KEGG 
pathway analyses were performed. The biological process 

category contained 977 terms, of which the major terms were 
‘positive regulation of metabolic process’, ‘protein modifica‑
tion process’ and ‘cellular protein modification process’ 
(Fig. 4A). The top enriched terms for cellular component 
(Fig. 4B) and molecular function (Fig. 4C) were ‘cytosol’ and 
‘heterocyclic compound binding’, respectively. In the KEGG 
pathway analysis, a number of pathways related to Oncology 
were observed, including ‘pathways in cancer’, ‘central carbon 
metabolism in cancer’, ‘prostate cancer’ and ‘microRNAs in 
cancer’ (Fig. 4D).

Furthermore, the deleteriousness of the 25 driver genes 
was predicted using the Polyphen‑2 and MutationTaster 

Figure 4. GO functional and KEGG pathway analyses of 25 driver genes. (A) Top 20 significantly enriched biological process. (B) Top 20 significantly enriched 
cell component. (C) Top 20 significantly enriched molecular function. (D) Top 20 significantly enriched KEGG pathway. GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.



ONCOLOGY LETTERS  22:  594,  2021 9

tools, and the Polyphen‑2 score and the MutationTaster 
score were calculated (Fig. 5). The greatest number of 
mutation positions was noted in TP53, which was 46. 
Among them, 26 variant sites were strongly predicted to 
be ‘probably damaging’ or ‘disease causing’, 2 variant 
sites were considered to be ‘possibly damaging’, 7 variant 
sites were predicted to be ‘benign’ or ‘polymorphism’ and 
the remaining 11 variant sites failed the deleteriousness 

prediction because the mutation positions were not clearly 
indicated.

Additionally, in order to explore the potential relationships 
between the 25 driver genes, a PPI network was constructed. 
As shown in Fig. 6A, there were 25 nodes and 181 edges in 
the PPI network. One significant module had 18 nodes linked 
via 131 edges with score of 15.412 (Fig. 6B). In this module, 
PTEN was identified as the seed gene. The top 10 hub genes 

Figure 5. Mutation positions in the 25 driver genes and variant effect of each position. Mutations identified in the Polyphen‑2 database are represented by 
circles, whereas those identified using the MutationTaster tool are shown as squares. In Polyphen‑2 (circles), red represents ‘probably damaging’, yellow 
represents ‘possibly damaging’, and green represents ‘benign’ mutations. In MutationTaster (squares), red represents disease‑causing mutations, whereas green 
represents polymorphisms. Failed predictions are shown in black. The predicted scores are indicated in the y‑axis.
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were identified according to MCC ranking, including TP53, 
PTEN, KRAS, PIK3CA, CTNNB1, SMAD4, NRAS, NF1, 
FBXW7 and EGFR (Fig. 6C). Moreover, the mutual exclu‑
sivity tool in cBioPortal database was then used to identify 
potential correlations in the frequency of mutations in these 
25 driver genes. Altogether, 300 gene pairs with two relation‑
ships, co‑occurrence (177 gene pairs) and mutual exclusivity 
(123 gene pairs), were identified (Fig. 6D). Among them, 
32 gene pairs were statistically significant (P<0.05) in which 
23 gene pairs showed co‑occurrence and 9 gene pairs showed 
mutual exclusivity. According to the log2 odds ratios, the 
top co‑occurrence and mutual exclusivity gene‑pairs were 
PTEN‑FBXW7 and CTNNB1‑VHL, respectively.

Associations between gene mutations and clinicopathological 
characteristics. The relationships between the 25 driver genes 
and 13 clinicopathological characteristics were examined in 
97 patients with NSCLC. The results indicated that the muta‑
tions of 13 genes (EGFR, PTEN, KRAS, PIK3CA, BRAF, 
ERBB2, RET, ALK, FBXW7, KIT, MET, NRAS and APC) 
were associated with all of these clinicopathological charac‑
teristics (P<0.1; Table SI), except smoking history (P>0.1). 

Subsequently, 13 significant driver genes and 12 clinico‑
pathological characteristics were further evaluated by logistic 
regression analysis and the variables with statistical difference 
are shown in Table II. The effects of age and sex on these 
13 gene mutations were first examined. As shown in Table II, 
sex was associated with EGFR and KRAS mutations. Indeed, 
the risk of EGFR (P=0.004) and KRAS (P=0.020) mutation 
in female patients was 3.428 times and 0.078 times of that 
in males, respectively. Moreover, the effects of mutations in 
the 13 driver genes on 10 clinicopathological characteristics 
(including histological type, clinical stage at diagnosis, T clas‑
sification, N classification and M classification, as well as CEA, 
NSE, CYFRA21‑1, SCC and CA125 levels) were also inves‑
tigated. Compared with the wild type, patients with EGFR 
mutations were more likely to have the features of stage‑IV 
(P=0.036), metastasis (P=0.007), high CEA (P=0.036) and 
CYFRA21 (P=0.018) level, and the patients with PTEN 
mutation had 0.066 times risk of stage III (P=0.032).

Survival analysis. Univariate and multivariate Cox regres‑
sion analysis were carried out on 25 driver genes (Fig. 7A) 
and 8 clinicopathological characteristics (Fig. 7B) for the 

Figure 6. PPI network analysis of 25 driver genes. (A) Visual PPI network of 25 driver genes was constructed using STRING database. (B) Significant modules 
were extracted from the PPI network using the MCODE plug‑in. (C) Top 10 hub genes were identified from the PPI network using the cytoHubba plug‑in. 
(D) Correlations among the 25 driver genes are plotted as a heatmap using the mutual exclusivity tool in cBioPortal database. Red indicates co‑occurrence, 
whereas blue indicates mutual exclusivity. *P<0.05. PPI, protein‑protein interaction.
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survival of 701 patients with NSCLC from TCGA. Univariate 
Cox regression analysis demonstrated that EGFR mutations 
(P=0.015), NOTCH2 mutations (P=0.008), age (P=0.037), 
clinical stage at diagnosis (P<0.001), T classification 
(P=0.009) and N classification (P<0.001) were significantly 
associated with overall survival in patients with NSCLC. 
These significant factors were further analyzed using multi‑
variate Cox regression analysis (Fig. 7C). The results showed 
that NOTCH2 mutations (P=0.011) and age (P=0.031) were 
independent factors for overall survival. Compared with 
the wild‑type group, patients with NOTCH2 mutations had 
a lower risk of death [hazard ratio (HR), 0.429; 95% CI, 
0.224‑0.821; P=0.011]. Moreover, patients with NSCLC 
aged >60 years had a significantly shorter survival time 
than patients aged ≤60 years (HR, 1.47; 95% CI, 1.03‑2.08; 
P=0.031). Kaplan‑Meier survival curves were generated 
according to NOTCH2 mutation status (P=0.006; Fig. 7D) 
or age (P=0.036; Fig. 7E), suggesting that NOTCH2 muta‑
tion and age may represent predictive indicators of overall 
survival in patients with NSCLC.

Correlation analysis of the genes with clinical significance. 
Based on the results of logistic regression and multivariate Cox 
regression analysis, four genes of clinical significance (EGFR, 
KRAS, PTEN and NOTCH2) were subjected to correlation 
analysis in 798 patients, consisting of 97 patients from the 
clinical cohort and 701 patients from TCGA. As indicated by 
Kendall's τ‑b correlation test, there was a negative correlation 
between EGFR and NOTCH2 mutations (correlation coef‑
ficient, ‑0.078; P=0.027) and a positive correlation between 
EGFR mutation and KRAS mutation (correlation coefficient, 
0.136; P<0.001) (Fig. 8). However, the correlations between 
other gene pairs were not statistically significant.

The negative correlation between EGFR and NOTCH2 
mutations was consistent with the predicted results of the 
mutual exclusivity analysis in the cBioPortal database (log2 
odds ratio, ‑1.398; P=0.017). However, a correlation between 
EGFR and KRAS mutations was not observed in cBioPortal 
(P=0.215).

Discussion

NGS technology is now widely available, making it possible 
to test multiple genes simultaneously. Several genomic 
studies based on NGS technology have been performed to 
broadly assess the molecular profile of the tumor (22,23). 
Guibert et al (22) performed plasma NGS using enhanced 
tagged amplicon sequencing of hotspots and coding 
regions from 36 genes and demonstrated the ability of 
amplicon‑based plasma NGS to detect a full range of targe‑
table genotypes in NSCLC, including fusion genes, with high 
accuracy. Craig et al (23) demonstrated that a panel of 11 lung 
cancer‑specific driver genes used in competitive multiplex 
PCR amplicon NGS library preparation for Standardized 
Nucleic Acid Quantification for Sequencing could measure 
mutations in the 0.05‑1.00% variant allele frequency range and 
enable the identification of an airway epithelial cell somatic 
mutation ‘field of injury’ associated with lung cancer risk. 
In the present study, a lung cancer‑specific panel of 55 genes 
was established in order to examine driver gene mutations. To 
the best of the authors' knowledge, such a panel is considered 
relatively large in NGS studies of NSCLC. Moreover, in the 
55‑gene panel, the mutational status of 54 genes was largely 
consistent with TCGA data, except that UGT1A1 mutation 
was not observed in TCGA cohorts. Although previous studies 
have reported that UGT1A1 polymorphisms are associated 
with irinotecan‑induced toxicity and treatment outcome in 
lung cancer (24,25), UGT1A1 was excluded from the present 
study, because the SNP frequency of UGT1A1 ranked third 
from the bottom in the SNP‑containing 97 patient gene list and 
UGT1A1 mutations were absent from TCGA.

Of the 54 aforementioned 54 genes, 25 driver genes 
were identified by taking the intersection of three databases, 
including the COSMIC database, the NCG database and 
Vogelstein's list, which are commonly used to identify driver 
genes. Choi et al (26) performed whole‑exome sequencing of a 
Pseudomyxoma peritonei case secondary to an ovarian muci‑
nous tumor whose genome harbored 28 somatic non‑silent 
mutations. Of these, eight putative driver gene mutations were 
further identified using COSMIC database. In the present 
study, the aforementioned databases were combined to 

Table II. Logistic regression analysis of driver genes and 
clinicopathological characteristics.

A, EGFR mutation

Clinical characteristics P‑value OR 95% CI

Sex 0.004 3.428 1.484‑7.916
Stage at diagnosisa 0.036 0.148 0.025‑0.885
Metastasis 0.007 5.149   1.557‑17.023
CEA 0.036 3.161 1.078‑9.264
CYFRA21‑1 0.018 3.289 1.227‑8.812

B, PTEN mutation

Clinical characteristics P‑value OR 95% CI

Sex ‑ ‑ ‑
Stage at diagnosisb 0.032 0.066 0.006‑0.791
Metastasis ‑ ‑ ‑
CEA ‑ ‑ ‑
CYFRA21‑1 ‑ ‑ ‑

C, KRAS mutation

Clinical characteristics P‑value OR 95% CI

Sex 0.020 0.078 0.009‑0.672
Stage at diagnosis ‑ ‑ ‑
Metastasis ‑ ‑ ‑
CEA  ‑   ‑
CYFRA21‑1  ‑ ‑ ‑

a, Stage IV, b, Stage III, the reference category is Stage I/II; OR, 
odd ratio; CI, confidence interval. CEA, carcinoembryonic antigen; 
CYFRA21‑1, cytokeratin 19 fragment 21‑1.
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improve screening accuracy. Moreover, the co‑occurrence of 
mutations in the 25 driver genes was compared in 97 patients 
from a clinical cohort and TCGA samples in order to vali‑
date their reliability in different cohorts. Ample evidence 
has shown that mutations of the 25 driver genes, which were 
identified in the present study, could promote oncogenic trans‑
formation and all of them have been detected as diagnostic 
NGS to facilitate precision therapeutic approaches in lung 
cancer (27‑30). Among them, EGFR mutations are one of 
the best‑characterized, which have been implicated in patho‑
genesis of NSCLC (31). Centeno et al (32) demonstrated that 
increased autophosphorylation in the p.Arg776Gly mutation 
in EGFR might be associated with a proliferative advantage, 
suggesting that germline mutations in EGFR may contribute 
to oncogenesis.

The other gene that has been studied extensively is TP53. It 
has been reported that nondisruptive mutations in TP53 nega‑
tively affect responsiveness to crizotinib and are associated with 
shorter progression‑free survival in ALK‑rearranged patients 
with NSCLC (33). Notably, the present study indicated that 
TP53 was the most frequently mutated driver gene in the TCGA 
dataset. Halvorsen et al (34) suggested that TP53 point mutations 

Figure 7. Survival analysis of 25 driver genes and clinical pathological characteristics in 701 patients with NSCLC from TCGA. (A) Univariate Cox regres‑
sion analysis of 25 driver genes. (B) Univariate Cox regression analysis of 8 clinical pathological characteristics. (C) Multivariate Cox regression analysis of 
statistically significant driver genes (EGFR and NOTCH2) and clinicopathological characteristics (age, stage, T classification and N classification). (D) Overall 
survival according to age group. (E) Overall survival according to NOTCH2 mutation status. NSCLC, non‑small cell lung cancer. TCGA, The Cancer Genome 
Atlas; EGFR, epidermal growth factor receptor; CI, confidence interval; HR, hazard ratio. 

Figure 8. Correlation analysis of the genes with clinical significance. The 
correlations among EGFR, KRAS, PTEN and NOTCH2 mutations in 
798 patients (97 patients from the clinical cohort and 701 from TCGA) are 
indicated on the left semi‑circles, while the results from cBioPortal database 
were shown on the right semi‑circles. Red represents a positive correlation, 
blue represents a negative correlation, grey represents a no correlation. 
Statistically significant CC and log2 ORs are displayed. *P<0.05. EGFR, 
epidermal growth factor receptor; KRAS, kirsten rat sarcoma viral onco‑
gene homolog; PTEN, phosphatase and tensin homolog; CC, correlation 
coefficient; OR, odds ratio.



ONCOLOGY LETTERS  22:  594,  2021 13

were found in ~47.2% of the NSCLC samples, with the highest 
mutation frequency (65%) in squamous cell carcinoma. Despite 
the high frequency of mutant TP53 in tumor cells, the develop‑
ment and clinical application of TP53 targeting drugs have been 
unsuccessful to date. In the present study, TP53 had the greatest 
number of mutation sites at 46. Only the p.Pro72Arg mutation 
suggested that the chemotherapeutic agents, cisplatin, cyclo‑
phosphamide and ifosfamide, might show better efficacy and 
lower toxic side effects. All the remaining mutation sites were 
subjected to targeted drug AZD1775, a WEE1 kinase inhibitor 
that has been evaluated in phase‑Ⅰ clinical trials since 2016 (35). 
Unexpectedly, TP53 mutations were not associated with clini‑
copathological characteristics or poor prognosis in the current 
study. These might be one of the reasons why TP53‑targeted 
drug has not been applied in clinic.

Subsequently, the associations of 25 driver genes with 
clinicopathological characteristics were assessed using logistic 
regression analysis, which indicated three driver genes were 
significantly associated with certain clinical factors. Indeed, 
EGFR and KRAS mutations were associated with sex. Carriers 
of EGFR mutations showed sex skewing, in accordance with the 
findings by Minamimoto et al (36) that females were more likely 
to harbor EGFR mutations. The report that estrogen receptor 
α expression correlated with EGFR mutation in lung adeno‑
carcinomas might indicate the reasons for sex difference (37). 
The mutation rate of KRAS in male patients is reported to be 
remarkably high (38), and similar results were also observed 
in the present study. Carey et al (39) reported that expression 
of Ras or its effector‑loop mutants reduced the androgen levels 
required for the growth of LNCaP prostate cancer cells, whereas 
high androgen level in males increased tumorigenicity.

Furthermore, the present study identified other distinct 
clinical characteristics between the EGFR mutant and 
wild‑type groups. Patients with EGFR mutations were more 
likely to have the features of metastatic and stage‑IV than 
patients with nonmutated tumors. The results were in line 
with other studies. For example, patients with NSCLC with 
EGFR mutation have a higher incidence of brain metastasis, 
compared to EGFR wild type (40). Zhang et al (41) demon‑
strated that the migration and invasiveness of A549 lung 
cancer cells were promoted by enhancing the EGFR and ERK 
signaling pathway following filamin A expression silencing, 
which could also explain the relationship between EGFR 
mutation and metastasis. Additionally, the present findings 
indicated that EGFR mutation was linked to higher CEA and 
CYFRA21‑1 levels. CEA is a secreted glycoprotein biomarker, 
the levels of which can reflect tumor growth, recurrence and 
metastasis (41). A previous study has reported a positive corre‑
lation between serum CEA levels and EGFR mutation rates in 
patients with NSCLC; specifically, the EGFR mutation‑posi‑
tive rate increased with increasing CEA levels within a certain 
range (42). CYFRA21‑1 is cytokeratin 19 (CK 19) fragment, a 
member of type 0I epithelial cytokeratins, which can contribute 
to the mechanical integrity of the cell and participate in cell 
division, motility and cell‑to‑cell contact (43). It has been 
confirmed that activating EGFR mutations were correlated 
with increased CK 19 expression in human lung cancer (44).

Cox regression analysis demonstrated that age and 
NOTCH2 mutation were independent prognostic factors for 
overall survival of patients with NSCLC in the present study. 

Molinier et al (45) confirmed that patients with lung adenocar‑
cinoma aged >70 years experienced shorter survival. NOTCH2 
is a member of the NOTCH family of receptors (46). The 
current study identified NOTCH2 mutation as an independent 
prognostic factor in NSCLC. Several studies have reported 
high‑frequency mutations of NOTCH2 in lung cancer patients, 
further highlighting the importance of this molecule (47,48). 
Chen et al (49) indicated that NOTCH2 expression was higher 
in patients with lung adenocarcinoma than other histology types 
of NSCLC, which was accompanied by high recurrence rates. 
It has also been reported that NOTCH2 can suppress apop‑
tosis of H69AR small cell lung carcinoma cells (50) and that 
concomitant upregulation of NOTCH2 and SIX1 contributed to 
preinvasive‑to‑invasive adenocarcinoma progression by inducing 
epithelial‑mesenchymal transition and nuclear atypia (51).

The aforementioned findings imply that NOTCH2 could 
promote tumor progression and affect the prognosis of patients. 
However, the role of NOTCH2 in cancer is both complex and 
paradoxical. Other reports have shown that NOTCH2 dele‑
tion could result in markedly increased carcinogenesis and 
increased MAPK activity, which may ultimately lead to death 
in KrasG12D‑driven endogenous NSCLC model mice, due to 
high tumor burden (52). This contradiction is likely due to the 
crosstalk between the NOTCH signaling pathway and other 
pathways, such as the PTEN pathway and MAPK pathway. For 
instance, delta‑like ligand 4, a vascular ligand of NOTCH1‑4, 
upregulates PTEN expression by activating NOTCH1 in 
NSCLC cells (53). NOTCH2 significantly increases phos‑
phorylated ERK1 and ERK2 levels in DMS53 small cell lung 
cancer cells, leading to activation of the MAPK pathway (54).

A key finding of the present study was that NOTCH2 
and EGFR mutations were mutually exclusive. It has been 
demonstrated that EGFR mutations enabled the constitutive 
activation of the downstream MAPK signaling pathway (55), 
which was also considered as the downstream of NOTCH. 
Therefore, the NOTCH and EGFR signaling pathways might 
influence each other, resulting in active and complex crosstalk, 
rather than independent function, during NSCLC progression. 
Understanding these interactions will greatly broaden our 
knowledge about NSCLC diseases, thus promoting the devel‑
opment of treatment options and personalized approaches. For 
patients with EGFR mutations, EGFR TKIs are the treatment 
of choice (56); however, a large proportion of patients (40‑60%) 
does not present EGFR mutations (57). According to the results 
of mutual exclusivity analysis, the patients with wild‑type 
EGFR tended to present NOTCH2 mutations, highlighting 
the importance of NOTCH2 mutational status and suggesting 
that the patients without EGFR mutation might benefit from 
NOTCH pathway inhibitors, such as γ‑secretase inhibitors (58).

In summary, the present study demonstrated the ability 
of NGS to detect a wide range of mutation types in NSCLC 
and affirmed the value of some underappreciated mutations in 
tumor progression. These results may help provide additional 
therapeutic possibilities for patients with NSCLC. However, 
further studies are warranted to elucidate the underlying 
mechanisms or develop new drugs.
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