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Abstract
Sleep is an essential activity for the survival of mammals. Good sleep quality helps 
promote the performance of daily functions. In contrast, insufficient sleep reduces the 
efficiency of daily activities, causes various chronic diseases like Alzheimer’s disease, and 
increases the risk of having accidents. The GABAergic system is the primary inhibitory 
neurotransmitter system in the central nervous system. It transits the gamma-aminobutyric 
acid (GABA) neurotransmitter via GABAA and GABAB receptors to counterbalance 
excitatory neurotransmitters, such as glutamate, noradrenaline, serotonin, acetylcholine, 
orexin, and dopamine, which release and increase arousal activities during sleep. Several 
studies emphasized that dysfunction of the GABAergic system is related to insomnia, 
the most prevalent sleep-related disorder. The GABAergic system comprises the GABA 
neurotransmitter, GABA receptors, GABA synthesis, and degradation. Many studies have 
demonstrated that GABA levels correlate with sleep quality, suggesting that modulating 
the GABAergic system may be a promising therapeutic approach for insomnia. In 
this article, we highlight the significance of sleep, the classification and pathology of 
insomnia, and the impact of the GABAergic system changes on sleep. In addition, we 
also review the medications that target the GABAergic systems for insomnia, including 
benzodiazepines (BZDs), non-BZDs, barbiturates, GABA supplements, and Chinese herbal 
medicines.
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States lost an estimated $411 billion US dollars annually [14]. 
Hence, it is essential to understand the underlying mechanisms 
for sleep loss and potential medications that could help offset 
its negative consequences.

Prevalence and symptoms of insomnia
Insomnia is a sleep disorder (SD) with difficulty falling 

asleep, staying asleep, and having good sleep quality [15]. It 
occurs in 50% of primary care patients and one in three of 
the adult population worldwide [16]. Clinical diagnosis of 
insomnia can be accessed by the complaint of difficulty falling 
asleep at night, awakening in the middle of the night, getting 
up too soon in the morning, finding it hard to get back to sleep, 
and having daytime tiredness or sleepiness [17]. According 
to these symptoms, insomnia patients have difficulties in 
performing their daily tasks and a high risk of exposure to 
accidents [18].

Introduction
Sleep and its significance

Sleep is an essential biological process to maintain optimum 
physical and mental health [1]. Sleeping 7–9 h per night 

is recommended for adults [2]. Short sleeping time or lack of 
sleep may weaken the immune system [3], impair cognitive 
functions [4,5], and alter hormonal homeostasis [6]. Sleep is 
monophasic; a single block usually lasts 7–8 h in humans. It 
comprises 90-min cycles alternating between the non-rapid eye 
movement (NREM) period and rapid eye movement (REM) 
period, which are classified based on electro-oculography 
activity by detecting patterns of eye movement [7]. Irregular 
sleep patterns in humans often occur as a result of either 
lifestyle choices such as work shifts [8], circadian-rhythm 
disturbances due to jet lag [9], excessive screen time and 
media usage at night [10], or due to pathophysiological 
conditions such as insomnia, sleep-disordered breathing [11], 
obstructive sleep apnea [12], and neurodegenerative disorders 
such as Alzheimer’s disease and cancers [13]. The financial 
impact of decreased productivity due to sleep loss is immense; 
according to the study of Hafner et al., in 2017, the United 
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Classification of insomnia
In the third Edition of the International Classification of 

Sleep Disorder-3, insomnia can be classified into three types 
according to sleep duration: short-term insomnia disorder, 
which happens shorter than 3 months; chronic insomnia 
disorder that presents sleep disturbances at least three times 
per week longer for 3 months, and other insomnia disorders 
that do not match with the criteria for the two types mentioned 
above [19]. Besides, insomnia can be categorized as primary 
or secondary (co-morbid). Primary insomnia (PI) is present 
without other co-existing diseases, while secondary insomnia 
occurs accompanied with other medical conditions, such as 
psychiatric disorders and drug abuse [20].

Pathophysiology of insomnia
The pathophysiological of insomnia has been well studied, 

and the imbalance between arousal and sleep-regulatory 
molecules is one of the causal factors [21]. Neurotransmitters 
are the chemical messengers that carry, promote, and 
balance signals between neurons and target cells throughout 
the body [22]. The arousal neurotransmitters include 
noradrenaline, serotonin, acetylcholine, orexin, and dopamine, 
while gamma-aminobutyric acid (GABA) and adenosine 
are sleep-inducing neurotransmitters that function in the 
ventrolateral preoptic (VLP) nucleus in the hypothalamus [21]. 
During wakefulness, the ascending activity sent from nuclei 
in the brainstem and posterior hypothalamus stimulates 
cholinergic neurons, monoaminergic cell bundles, and orexin 
nuclei in the lateral hypothalamus, inhibiting the VLP nucleus 
that usually promotes sleep. In contrast, neurotransmitters 
GABA and adenosine in the VLP nucleus inhibit the ascending 
activity during sleep [23], resulting in a transition from 
NREM sleep to REM sleep cycles [24]. Based on the dynamic 
interactions of neurotransmitters, GABA appears to be an 
essential neurotransmitter that modulates sleep. Therefore, 
understanding the role of the GABAergic system on sleep is 
necessary for developing a better insomnia treatment.

The impact of the gabaergic system 
changes on sleep
The effect of gamma‑aminobutyric acid levels

In addition to its role in sleep, GABA is directly or 
indirectly involved in normal brain functions, including 
cognition, memory, and learning [25,26]. It is the primary 
inhibitory neurotransmitter in the brain and counterbalances 
the excitatory neurotransmitter glutamate [27]. GABAergic 
neurons are primarily located in the basal forebrain and the 
anterior hypothalamus. They are essential in modulating 
sleep by releasing a high level of GABA during sleep to 
inhibit cells that stimulate arousal functions [28]. Previous 
studies have revealed that SD is associated with GABA 
levels [29-31]. A potassium channel Kv1.1−/− mouse model 
study demonstrated that SD exacerbates seizure and reduces 
GABA levels in granular cells within the dentate [31]. Subjects 
with sleep duration of <6 h per night had shown lower GABA 
levels in the anterior cingulate cortex and medial prefrontal 
cortex, examined by magnetic resonance spectroscopy [32]. 
In PI patients, the cortical GABA levels measured by proton 
magnetic resonance spectroscopy were 12% higher than that 

in healthy subjects, which negatively correlated with time 
awake after sleep onset [33]. In contrast, in 2008, Winkelman 
et al. reported a reduction of GABA levels by nearly 30% in 
the brains of patients with PI [34]. These studies suggest that 
alteration of GABA level is associated with PI.

Gamma‑aminobutyric acid synthesis and 
degradation
Glutamate decarboxylase 65/67

As shown in Figure 1, GABA is synthesized in the cytoplasm 
of the presynaptic neurons from its precursor, glutamate, 
via catalysis of glutamate decarboxylase (GAD) [35]. GAD 
belongs to the aspartate aminotransferase family of Pyridoxal 
5′-phosphate-dependent enzymes [36]. There are two isoforms 
of GAD, GAD65 and GAD67, encoded by the Gad2 and Gad1 
gene, respectively [37]. GAD65 and GAD67 significantly 
differ in the first 100 N-terminal amino acid residues, in which 
GAD65 is hydrophobic while GAD67 is hydrophilic [38]. 
Besides, GAD65 is mainly localized at the presynaptic 
nerve terminals, but GAD67 is distributed throughout the 
cells [39]. GAD65 self-activates to carry out its enzymatic 
function, ensuring the rapid generation of GABA pulses in 
circumstances requiring swift synthesis and release. Previous 
research reported that GAD65 knockout mice demonstrate 
fatal seizures and anxiety behavior [40]. On the other hand, 
GAD67 was responsible for more than 90% of basal GABA 
synthesis [41]. GABA levels are reduced for the mice lacking 
GAD67, resulting in neonatal death [42]. GAD67-GFP 
knock-in mice after SD demonstrated typical spontaneous 
sleep-wake patterns compared to wild-type mice [43]. 
However, increasing the activity of GAD67-positive neurons 
in the ventral tegmental area by chemogenetics activation 
can regulate sleep/wakefulness, especially during NREM 
sleep [44]. This evidence indicates the critical role of GADs 
on sleep quality.

Gamma‑aminobutyric acid‑transaminase
The GABA shunt is the biochemical pathway responsible 

for the catabolism of GABA. This reaction is catalyzed through 
the activity of the enzyme GABA-transaminase (GABA-T), 
which breaks down GABA into succinic semialdehyde (SSA) 
and glutamate [45]. After that, released GABA from the 
presynaptic axon terminals was uptake to both glia and 
presynaptic nerve terminals, followed by degrading to 
SSA [Figure 1] [46]. GABA-T serves as the pivotal enzyme 
in GABA breakdown. Blocking this enzyme significantly 
raises GABA levels in the brain, which has been correlated 
with several pharmacological effects, such as drugs treating 
alcoholism [47], epilepsy [48], and Alzheimer’s disease [49]. 
In order to better understand the role of GABA-T in sleep, 
further research needs to be conducted. Currently, only one 
study has reported that Drosophila brains lacking GABA-T 
could promote daily sleep and sleep consolidation [50].

Gamma‑aminobutyric acid receptors
Gamma‑aminobutyric acidA receptors

GABAA receptors (GABAARs) are ionotropic receptors 
and ligand-gated chloride channels located in the postsynaptic 
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sites to mediate fast inhibitory effect [51]. GABAARs are 
widely presented in the brain, especially the hippocampus, 
hypothalamus, and cerebral cortex [52]. The structural features 
of GABAARs are heteropentamers composed of 19 subunits. 
However, only some subunits have been identified as significant 
for sleep modulation, including the alpha subunits (α1–α5), 
beta subunits (β1–β3), gamma subunits (γ1–γ2), delta, epsilon, 
and the theta subunits [53]. In insomnia patients, the increased 
age was related to reduced mRNA levels of GABAAR α1 and 
α2 subunits in peripheral blood, which resulted in poor sleep 
quality and shortened sleep time [54]. In mice with SD, the 
GABAARs expression on the membrane of orexin neurons in 
the hypothalamus was more remarkable than in controls [55]. 
Besides, evidence indicates that loss of GABAAR α3 subunits 
on thalamic reticular nucleus neurons promotes delta wave 
activity during sleep in mice [56]. A GABAAR β1-subunit 
systemic knockout mouse strain demonstrated abnormal sleep 
phenotype accompanied by increased delta power in NREM 
sleep and reduced theta power in REM sleep [57]. Since 
several studies have indicated that GABAARs play prominent 
roles in regulating sleep, modulating GABAARs expression 
can be one of the approaches for treating insomnia.

Gamma‑aminobutyric acidB receptors
GABAB receptors (GABABRs) are G-protein coupled 

metabotropic receptors, functioning as dimers, and 
transforming neurotransmitter signals in the synapses to 
cellular responses by binding and activating heterotrimeric 
G-proteins [58,59]. GABABRs are located in postsynaptic 
somatodendritic compartments and presynaptic sites in 
the axon terminals of excitatory neurons and inhibitory 

interneurons [60]. They respond to the slower and prolonged 
GABA-mediated inhibitory transmission by modulating 
calcium (Ca2+) and potassium (K+) channels through inhibiting 
cyclic AMP signals [Figure 1] [60,61]. The GABABR has 
two subunits: GABAB-R1 and GABAB-R2. GABAB-R1 is 
responsible for receiving extracellular ligand-binding, while 
GABAB-R2 is essentially engaged in the intercellular signal 
transduction and strengthened coupling to G-proteins [62]. 
In animal studies, GABABR agonists can increase slow-wave 
sleep while minimally impacting REM sleep. On the 
other hand, GABABR antagonists can decrease slow-wave 
sleep [63,64]. The expression level of the GABABR is 
decreased in para-chlorophenylalanine-induced insomnia in 
rats. The symptom can be ameliorated by a Chinese sedative 
Songyu Anshen Fang, which restored the GABABR expression 
levels in the hypothalamus [62]. Besides, the GABAB-R1 
receptor was found to be increased in the hippocampal CA1 
region of mice with SD [65]. Hence, understanding the 
dynamic functions of GABABRs may help develop novel 
approaches to treat insomnia.

GABAergic‑targeting compounds for 
insomnia treatments
Benzodiazepines

Benzodiazepines (BZDs) are a class of sedative 
medication that help reduce brain activities. They have 
been widely used to treat insomnia since the 1970s and 
are still prescribed [79], including estazolam, flurazepam, 
temazepam, triazolam, quazepam, and lorazepam. BZDs act 
on BZD binding sites located between the α-and γ-subunits 

Figure 1: An illustration of gamma-aminobutyric acid (GABA) synthesis, release, uptake, and degradation in the synaptic cleft. In presynaptic neurons, glutamine is 
degraded to glutamate by glutaminase. Then, glutamate is converted to GABA. GABA is packed into vesicles through vesicular GABA transporter (GAT). After that, 
GABA is released to the synaptic cleft and binds to GABAA receptor on the postsynaptic neuron to promote chloride (Cl-) influx or binds to GABABR on the presynaptic 
and postsynaptic neuron to inhibit cyclic adenosine monophosphate that controls calcium influx and potassium efflux. GABA is also uptake to its presynaptic cleft by GAT1 
or astrocyte by GAT2/3. GABA in the astrocyte is degraded into succinic semialdehyde and glutamate by the enzyme GABA-transaminase. Then, glutamine synthetase 
converts glutamate to glutamine. Subsequently, glutamine is released and uptake to the presynaptic neuron. GABA: Gamma-aminobutyric acid, VGAT: Vesicular GABA 
transporter, GAT 1: GABA transporter 1, GABAAR: GABAA receptor, GABA-T: GABA-transaminase, SSA: Succinic semialdehyde
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of GABAARs to enhance GABAergic transmission [80], 
resulting in the increase of sleep time and decrease of sleep 
latency, nocturnal awakenings, and wakefulness after sleep 
onset [66]. Although BZDs effectively promote and maintain 
sleep, they produce several adverse effects [Table 1] such as 
drowsiness, oversedation, weakness, impaired coordination, 
disorientation, and confusion. Since the half-lives of most 
BZDs last longer than 8 h (except for triazolam), fatigue, 
psychomotor, and neuropsychological dysfunction have been 
noted [79]. Furthermore, BZDs have the same potential to be 
addictive as opioids and cannabis [81]. Therefore, adjusting 

the specific dosages of BZDs for individuals is essential to 
avoid risky side effects.

Nonbenzodiazepines hypnotics
Non-BZD hypnotics, also known as “Z” drugs, including 

Eszopiclone, Zaleplon, Zolpidem, and Zopiclone as listed 
in Table 1. They selectively bind to the α1 subunit of the 
GABAAR, resulting in sedative effects [82,83]. Because of 
their selectivity, they result in lesser side effects like vomiting, 
convulsions, and tremors than BZDs; however, they may lead 
to side effects such as headaches, light-headedness, anxiety, 
hallucinations, and difficulty with coordination [84,85]. 

Table 1: Gamma-aminobutyric acid ergic-targeting compounds for insomnia
Medicine Mechanism of action Effect on sleep Dosage limit (mg), 

prescription drug time
Adverse effect Reference

Benzodiazepines
Estazolam GABAAR agonist Decrease sleep latency, 

nocturnal awakenings, and 
wakefulness after sleep onset

Increase total sleep time

1–2 (7–10 days) Headache, somnolence, 
asthenia, hypokinesia, 
nausea

[66]

Flurazepam GABAAR agonist Decrease sleep latency

Increase total sleep time and 
sleep quality

15–30 (4 weeks) Dizziness, drowsiness, 
light-headedness, 
and ataxia

[67]

Temazepam GABAAR agonist Decrease initial sleep latency 
and wakefulness after sleep 
onset

Increase total sleep time

7.5–30 (7–10 days) Rebound insomnia, 
anterograde amnesia, 
psychological 
dependence, anxiety

[68]

Triazolam GABAAR agonist Decrease sleep initiation

Improved mean sleep onset and 
sleep maintenance

0.125–0.5 (7–10 days) Somnolence, dizziness, 
a feeling of lightness, 
coordination problems

[69]

Quazepam GABAAR agonist Decrease sleep latency and total 
wake time

7.5–15 (7–10 days) Daytime somnolence, 
drowsiness, fatigue

[70]

Lorazepam GABAAR agonist Increase total sleep time

Decrease total wake time

2–4 (4 weeks) Drowsiness, 
oversedation, weakness, 
impaired coordination, 
disorientation, confusion

[71]

Nonbenzodiazepines 
hypnotics

Eszopiclone Allosteric coupling 
to Benzodiazepine 
receptors

Decreased sleep latency and 
wake after sleep onset

Increased total sleep time

1–2 (<1 week) Metallic aftertaste, 
somnolence, myalglia

[72]

Zaleplon GABAAR selective 
agonist (Benzodiazepine 
ω1 receptor subtype)

Improved sleep efficiency 4 h 
postadministration

Reduced sleep latency

5–10 (2–4 weeks) Headache, somnolence, 
dizziness

[73]

Zolpidem GABAAR selective 
agonist (Benzodiazepine 
ω1 receptor subtype)

Reduced sleep fragmentation

Increase in NREM sleep

5–10 (4 weeks) Dizziness, drowsiness, 
nausea

[74]

Zopiclone GABAAR agonist (a1 
and a2 subunits)

Decreased sleep latency and 
Wake after sleep onset

Increased slow-wave sleep

3.75–7.5 (4 weeks) The metallic 
aftertaste, dry mouth, 
lightheadedness

[75]

Barbiturates
Pentobarbital Direct stimulation of 

GABAAR
Increase in NREM sleep stage 2

Decrease in REM sleep onset 
and duration

0.15–0.20 (single use, 
intramuscular injection)

Restlessness, vomiting, 
headaches, loss of 
balance and coordination, 
addiction

[76]

Secobarbital Direct stimulation of 
GABAAR

Increase in total sleep time
Slight decrease in REM sleep

0.10 (<1 week) Somnolence, dizziness, 
nervousness

[77,78]

REM: Rapid eye movement, NREM: Non-REM, GABAARs: Gamma-aminobutyric acidA receptors
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These drugs also have shorter half-lives than BZDs and are 
helpful for sleep induction but not the maintenance of sleep 
duration [86].

Barbiturates
Barbiturates as shown in Table 1 are another class 

of sedatives, usually used daily for insomnia treatment. 
However, long-term use of barbiturates may cause aversive 
side effects, such as agitation, confusion, drowsiness, 
hallucinations, and headaches [76,87]. Barbiturates influence 
CNS functions and produce sedative effects by acting on the 
alpha and beta subunits of the GABAAR [88]. The acting 
of barbiturates increases chloride ion influx and potentiates 
GABAARs even in lower concentrations of GABA. In 
addition to the side effects, barbiturates are known to be 
addictive, thus leading to dependence and abuse, which is a 
higher risk than BZDs [89].

Gamma‑aminobutyric acid supplements
GABA is commonly found in microorganisms, plants, 

and animals [90]. It is widely applied to functional food and 
pharmaceutical products. The study showed that daily drinking 
250 mL GABA-enriched tea at concentration 181 mg/100 g 
before sleep can improve insomnia symptoms by enhancing 
sleep efficiency and reduced latency to sleep onset [91]. 
Another report found that the combination of GABA and 
L-theanine reduced sleep latency and prolonged sleep duration 
in the pentobarbital-induced sleep model [92]. Yamatsu et al. 
reported in 2016 that subjects receiving oral administration of 
100 mg GABA, 30 min before sleep for a week, had shortened 
sleep latency and enhanced NREM sleep time [93]. GABA 
supplements are indeed effective in promoting sleep quality.

Chinese herbal medicines
Several CHMs used to treat insomnia have fewer side 

effects and are inexpensive and easy to obtain [94]. Many of 
them also contain chemicals that modulate the GABAAR [95] 
but there is little evidence for the GABABR [96]. Xi Fan 
Lian (Passiflora incarnata) displayed hypnotic activity 
by acting as GABAB and GABAARs antagonists [96]. 
Suanzaorentang (Ziziphi spinosae) has been used to 
improve sleep loss in patients and was found to mediate the 
expression of GABAARs but not GABABRs in SD rats [97]. 
Jiaotaiwan consists of Huanglian (Rhizoma Coptidis) and 
Rougui (Cortex Cinnamomi), increased the time of NREM 
sleep and REM sleep by enhancing GABA levels in the 
serum, prefrontal cortex, and brain stem of SD rats [98]. 
Danshen (Salviae miltiorrhizae) water extract could shorten 
sleep latency and increase sleeping time in mice by acting on 
BDZ binding sites of GABAARs [99]. Gancao (Glycyrrhiza 
uralensis) and Hehuanpi (Albizzia julibrissin) reduced the 
sleep latency and increased sleep duration by regulating the 
GABAA in mice [100]. These studies support the benefits and 
potential of CHMs in modulating sleep via the GABAergic 
system.

Conclusion
Sleep is an essential biological activity for mammals to 

promote memory and maintain optimal physical and mental 
health. SDs like insomnia lower the quality of life in many 

aspects, increase accidental incidents, and are associated with 
various chronic diseases, including Alzheimer’s disease and 
several types of cancers. The GABAergic system is known to 
be essential for maintaining good sleep quality. This review 
article addresses the GABAergic System’s critical role in 
regulating the sleep period. Targeting the GABAergic system 
thus is a promising approach to novel drug development for 
treating insomnia. Prescription dosage, time, and side effects 
should be considered when developing good insomnia drug 
candidates. Traditional Chinese herbal medicines used to treat 
SDs are effective, natural, and have fewer side effects. Active 
compounds identified from these Chinese herbal medicines 
thus would be promising novel drug candidates for insomnia 
treatments.
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