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Abstract
The circulating metabolome provides a snapshot of the physiological state of the organism responding to pathogenic
challenges. Here we report alterations in the plasma metabolome reflecting the clinical presentation of COVID-19
patients with mild (ambulatory) diseases, moderate disease (radiologically confirmed pneumonitis, hospitalization and
oxygen therapy), and critical disease (in intensive care). This analysis revealed major disease- and stage-associated
shifts in the metabolome, meaning that at least 77 metabolites including amino acids, lipids, polyamines and sugars, as
well as their derivatives, were altered in critical COVID-19 patient’s plasma as compared to mild COVID-19 patients.
Among a uniformly moderate cohort of patients who received tocilizumab, only 10 metabolites were different among
individuals with a favorable evolution as compared to those who required transfer into the intensive care unit. The
elevation of one single metabolite, anthranilic acid, had a poor prognostic value, correlating with the maintenance of
high interleukin-10 and -18 levels. Given that products of the kynurenine pathway including anthranilic acid have
immunosuppressive properties, we speculate on the therapeutic utility to inhibit the rate-limiting enzymes of this
pathway including indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase.

Introduction
The year 2020 has been overshadowed by coronavirus

disease-19 (COVID-19) caused by severe acute respiratory
syndrome (SARS) coronavirus-2 (SARS-CoV-2), challen-
ging the resilience of public and private health systems1.

As a result, COVID-19 is mobilizing an unprecedented
technological and scientific effort to diagnose, compre-
hend, and adequately treat the disease. Indeed, contagion
by SARS-CoV-2 provokes a silent or pauci-symptomatic
infection in at least 80% of patients, not requiring any
treatment2,3. However, a substantial fraction of patients
with pre-existing and often age-associated medical con-
ditions (obesity, diabetes, hypertension, cardiomyopathy,
hematological cancers, and general frailty) develop SARS,
requiring hospitalization, oxygen supply, and for the most
severe cases mechanical ventilation in the intensive care
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unit1,4,5. Nonetheless, there is a substantial ‘gray zone’,
meaning that physically fit and relatively young patients
without known pre-existing pathologies may succumb to
SARS-CoV-2, calling for the identification of biomarkers
that predict COVID-19 severity and help management of
patients1,4,5.
Beyond genomic studies (to find COVID-19 suscept-

ibility genes)6, single-cell transcriptomics performed on
circulating leukocytes (to identify inflammatory/ immune
cell subsets involved in, and predictive of, COVID-19
pathogenesis)7,8 and plasma proteomics (to pinpoint
relevant cytokines)9,10, metabolomics offers a functional,
‘post-genomic’ characterization of biochemical circuitries
influenced by COVID-19 and its treatment. Indeed, a few
studies have used mass spectrometric metabolomics to
identify COVID-19-induced alterations in circulating
metabolites, focusing on the correlation of such para-
meters with clinical presentation10, circulating interleukin
(IL)-6 concentrations11 or male sex12. Additional studies
have revealed a metabolomic signature of COVID-19
infection in circulating exosomes13 and in the saliva14.
Here, we report the results of two metabolomic stu-

dies, a first one, non-interventional, in which we corre-
late shifts in circulating metabolites with the severity
stage of COVID-19 patients and a second study, inter-
ventional, in which we focus on patients with a uniformly
moderate clinical presentation to identify metabolites
whose alteration predicts clinical evolution. We identi-
fied anthranilic acid, a product of the kynurenine
pathway, as a potentially prognostic biomarker of the
evolution of COVID-19.

Results
COVID-19 stage-dependents shifts in the plasma
metabolome
Targeted and untargeted metabolomics were performed

using gas chromatography-mass spectrometry (GC-MS)
and ultra-high-pressure liquid chromatography-mass
spectrometry (UHPLC-MS) on plasma samples retrieved
from a total of 72 patients with PCR-verified diagnosis of
SARS-CoV-2 infection and compared to 27 ambulatory
patients with flu-like symptoms, negative for SARS-CoV-
2. Patients with COVID-19 were staged according to their
clinical characteristics into mild (confinement at home,
no complementary exams), moderate (standard hospita-
lization with a radiological diagnosis of pneumonitis,
oxygen therapy <9 L/min), and critical (intensive care
unit, oxygen therapy >9 L/min) cases. Clustering of mass
spectrometry-detectable peaks revealed stage-associated
shifts in the metabolome (Supplemental Fig. 1) that
become clearly visible upon statistical filtering at p < 0.05
(Wilcoxon rank-sum test) and application of a false dis-
covery rate of 0.05 following the Benjamini–Hochberg
procedure to identify metabolites which were stringently

different between critical and mild COVID-19 patients.
Thus, 77 metabolites exhibited stage-dependent altera-
tions in their plasma concentration (Fig. 1A). Among
these metabolites, 57 were increased in critical care
patients. Random forest classification model was built to
rank the metabolites the upregulation or downregulation
of which distinguished critical from mild patients (Fig. 1B).
Among 30 metabolites, 29 were higher (and 1 lower) in
critical than in mild cases, indicating a preponderance of
upregulation (p < 0.000044, χ2 analysis).
As described in the literature3,4, critical COVID-19

patients were more overweighted, obese, diabetic, and
hypertensive than mild COVID-19 and controls patients
(Supplemental Table 1). Linear regression was used to
control the differences in mean metabolites concentra-
tions between critical and mild COVID-19 patients after
adjustment for such comorbidities (Supplemental Table 2).

Specific changes associated with COVID-19 severity stages
A number of simple sugars including arabinose and

ribose (and its reduction product ribitol), sugar alcohols
(arabitol, erythritol and xylitol), the disaccharide maltose
(which is undistinguishable from trehalose), and the
trisaccharide raffinose were increased in critical cases
(Figs. 1A and 2A and Supplemental Fig. 1A). Moreover, a
series of amino acids were elevated in critical care
patients: arginine, aspartic acid, glutamic acid, phenyla-
lanine, and tyrosine. In addition, the methylated derivative
of lysine, trimethyl-lysine, the methionine derivative (and
methyl group donor) S-adenosylmethionine, and the
dipeptide leucylproline were elevated (Figs. 1A and 2B),
perhaps resulting from increased proteolysis. In contrast,
desaminotyrosine was reduced in critical care patients
(Figs. 1A and 2B), likely reflecting the use of antibiotics
that inhibit the generation of this bacterial metabolite in
the gut15. One of the few amino acids that decreased with
disease severity is arginine, contrasting with an increase
in ornithine, spermine, spermidine, and their mono- or
diacetylated derivatives (Figs. 1A and 3A), suggesting
enhanced polyamine synthesis from arginine. Moreover,
tryptophan tended to diminish, while its immunosup-
pressive metabolite kynurenine increased in critical care
patients as compared to mild cases. The kynurenine
metabolite anthranilic acid was higher in critical as
compared to moderate and mild COVID-19 patients
(Figs. 1A and 3B). Of note, the elevation of anthranilic
acid has not been found in another study that actually
claimed that anthranilic acid decreased in COVID-19
patients as compared to controls11. Indeed, we found that
another molecule that shared the same neutral mono-
isotopic mass (137.04768 Da) as anthranilic acid and that
decreased in COVID-19 patients (annotated and validated
as trigonelline, Supplemental Table 3), perhaps explaining
the difference in the results. Since we compared the gas
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Fig. 1 Profound metabolomics alterations associated with COVID-19 clinical severity. A Heatmap illustrating the changes in metabolite
abundance in the plasma from control (n= 27), mild (n= 23), moderate (n= 21), and critical (n= 28) COVID-19 patients. Significant metabolites were
identified by Wilcoxon rank-sum test and the false discovery rate (FDR) controlled with Benjamini–Hochberg procedure between patients with critical
and mild COVID-19. Hierarchical clustering (Euclidean distance, ward linkage method) of the metabolite abundance is shown. PCaes, total abundance
of the different phosphatidylcholines identified in the cohort plasma samples. B, Random forest classification model was built using main metabolites
altered (p < 0.05) between critical and mild COVID-19 patients as a predicting tool. The variables importance (as the mean decrease of the Gini index)
for building the model is reported in a dot plot, with dots substituted by an up-pointing triangle to indicate metabolites increased in critical vs mild
COVID-19 patients, and by a down-pointing triangle in the opposite case (B), the confusion matrix (indicating model accuracy) is depicted below.
OOB out-of-bag error.

Fig. 2 Effects of COVID-19 on circulating sugars and amino acids. Modified carbohydrates (A) and amino acids (B) were profoundly altered in
patients with the most severe COVID-19. Data in A and B were analyzed by non-parametric unpaired Wilcoxon test (Mann–Whitney) for each
two-group comparison. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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chromatographic retention time of the derivatized ana-
lytes to standards (Supplemental Fig. 2), we conclude that
anthranilic acid is indeed increased in severe COVID-19.
We also found that 3-hydroxy-DL-kynurenine, which his
produced from kynurenine by the enzyme kynurenine
3-hydroxylase, and 5-hydroxy-DL-tryptophan, which is
produced from tryptophan by the enzyme tryptophan
5-monooxygenase, were increased, correlating with the
severity of COVID-19 (Fig. 3B).
Bacterial breakdown products of tryptophan, such as

indole, indole-acetamide, indole-3-acrylic acid, and
methyl-3-indole-acetate were significantly reduced in
critical care patients (Figs. 1 and 3B). Other important
metabolic changes affected free fatty acids (arachidonic
acid) or carnitine esters, phospholipids, the immuno-
modulator spingosine-1-phosphate, the secondary bile
acid deoxycholic acid, as well as the niacin metabolite
trigonelline, that all diminish with disease severity,

contrasting with markers of reduced renal clearance
(creatine, urea) that increase (Fig. 1A). Altogether, a
specific pattern of stage-dependent alterations in the
metabolome emerges.

Prognostic alterations in the circulating metabolome
The aforementioned results indicate that the progression

of COVID-19 is associated with major metabolic shifts, yet
do not allow to identify prognostic biomarkers. For this, we
recruited a group of 25 patients that were hospitalized in
standard conditions (not in the ICU) and were relatively
homogeneous in their clinical presentation (Fig. 4A and
Supplemental Tables 4 and 5). After the initial determina-
tion of their circulating metabolome and the quantitation of
serum cytokines (n= 21), these patients received standard
of care treatments plus tocilizumab. Unfavorable evolution
of the COVID-19 (9 out of 21 patients) was defined as a
clinical deterioration with WHO progression scale >5,

Fig. 3 Effecs of COVID-19 on polyamines, tryptophan derivatives and selected amino acids. Polyamines, arginine (A) and tryptophane (B)
pathways alterations in critically ill COVID-19 patients were representative of an immunosuppressive metabolomic state. Data in A and B were analyzed
by non-parametric unpaired Wilcoxon test (Mann–Whitney) for each two-group comparison. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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transfer to ICU, mechanical ventilation, or death16.
Inspection of the global metabolomic profiles did not
revealed any major shift that would distinguish the favor-
able versus unfavorable evolution of COVID-19 neither at
baseline nor at day 7 (Supplemental Fig. 3 and Supple-
mental Tables 6 and 7). Only 10 metabolites were sig-
nificantly different between patients that demonstrated
favorable versus unfavorable evolution (Fig. 4A). However,
they allowed a good discrimination between groups (PC1
45.9%) according to their abundance variation (Fig. 4B and
Supplemental Fig. 5). To find out the variable importance of
these metabolites, we used a random forest classification
model. Although the model was limited because of the
reduced number of individuals in the study, it showed
that, among the most significant metabolites, the upregu-
lation of anthranilic acid coupled to the diminution of
S-adenosylmethionine and proline stood out as parameters
that allowed to distinguish the unfavorable and favorable
evolution of COVID-19 patients respectively (Fig. 4C).
Dimethylglycine, ß-hydroxypyruvate, N1-acetylspermidine,
hypotaurine, and valine were significantly lower in patients
with an unfavorable evolution, while 3-methylhistidine and
O-phosphoethanolamine were higher, but these changes
had a lower impact according to the random forest classi-
fication (Fig. 4B).

Prognostic immunometabolic correlations
None of the 10 cytokines measured at baseline did

exhibit significant differences between the patients
with favorable and unfavorable clinical evolution (Supple-
mental Fig. 4), in line with the similar clinical presentation
of the patients. At difference with patients that exhibited an
unfavorable evolution, patients who ameliorated their
condition exhibited an increase in total lymphocyte counts
(Fig. 5A), a decrease in the inflammatory cytokine inter-
leukin (IL)-18 (IL18) (Fig. 5B), a reduction in the immu-
nosuppressive factor IL10 (Fig. 5C) and an increase in
circulating tryptophan levels (Fig. 5D). Correlation plots
revealed a median correlation (all values positive) among
cytokines of 0.1573, between cytokines and metabolites of
0.2116, and among metabolites of 0.3702 (which was sig-
nificantly higher than the intragroup correlation and the
correlation among cytokines, p < 0.0001, Mann–Whitney
test), suggesting a more robust coordination of metabolic as
compared to inflammatory pathways (Fig. 6A). IL8 corre-
lated with N1-acetylspermidine and hypotaurine, tumor
necrosis factor-α (TNFα) with O-phosphoethanolamine
(Fig. 6A), and anthranilic acid with both IL10 and IL18
(Fig. 6B) at baseline, before the initiation of the treatment.
This latter correlation appears particularly intriguing
because anthranilic acid is ranked as the best negative

Fig. 4 Patients with unfavorable clinical evolution after tocilizumab, infused for worsening pulmonary involvement of COVID-19, had pre-
treatment metabolomics differences compared to patients with favorable outcome. A Heatmap illustrating pre-tocilizumab metabolite
abundance in COVID-19 patients evaluable for clinical evolution after treatment (n= 21). Significant metabolites were identified by Wilcoxon rank-
sum test between patients with favorable and unfavorable evolution after tocilizumab infusion. BMI Body Mass Index, WHO World Health
Organization, O2 oxygenotherapy, ICU intensive care unit, OTI orotracheal intubation. B Principal component analysis biplot, showing the
contribution of the most significant metabolites (p < 0.05) to the discrimination (PC1 45.9%) between patients with favorable and unfavorable
evolution after tocilizumab infusion. C Random forest classification model was built using main metabolites altered (p < 0.05) in baseline samples
from COVID-19 patients with favorable and unfavorable evolution after tocilizumab treatment as a predicting tool. The variable importance (as the
mean decrease of the Gini index) for building the model is reported in a dot plot, with dots substituted by an up-pointing black triangle to indicate
metabolites increased in patients who showed unfavorable vs favorable evolution, and by a gray down-pointing triangle in the opposite case.
The confusion matrix (indicating model accuracy) is depicted. OOB out-of-bag error.
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prognostic marker (Fig. 4B) and both IL10 and IL18 remain
elevated in the context of an unfavorable evolution (Fig. 5).

Discussion
The present study has been designed to unravel

COVID-19 stage-dependent and prognostic alterations in
the circulating metabolome. Strong shifts across multiple
classes of metabolites were observed among different
stages of COVID-19, from mild through moderate to

critical disease. These shifts reflect in part iatrogenic
effects such as the apparent improvement of the nutri-
tional state (with higher levels of circulating sugars but
lower levels of free fatty acids and ketone bodies, which
would be indicative of acute undernutrition) in the critical
stage and the reduction of bacterial metabolites (such as
the tyrosine metabolite desaminotyrosine and the tryp-
tophane metabolites indole, indole-3-acetamide, indole-3-
acrylic acid, and methyl-3-indole-acetate), likely resulting

Fig. 5 COVID-19 Patients with unfavorable outcome after tocilizumab infusion did not improved lymphopenia, inflammatory,
immunosuppressive, and metabolomic abnormalities instead of patients who evolved towards clinical improvement. Patients with paired
baseline and post treatment (day 7 ± 3) serum samples are represented (n= 18). The measured parameters include total lymphocyte counts (A) as
well as the concentrations of IL18 (B), IL10 (C) and tryptophan (D). Wilcoxon signed-rank test was used to compare paired baseline and post
treatment measures and Wilcoxon rank-sum test to compare baseline or day 7 (±3) measures between patients with response or no response.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Fig. 6 Correlations between cytokines and metabolites before tocilizumab infusion in patients with worsening COVID-19 highlighted
that dysregulated metabolomic and immunologic pathways were closely related to clinical worsening of patients developing critical
COVID-19. A Correlation between cytokines and most significant metabolites at baseline was analyzed by Pearson correlation. *p < 0.05, **p < 0.01,
***p < 0.001. B Pearson correlations between IL10 and IL18 with anthranilic acid serum levels.
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from the administration of broad-spectrum antibiotics.
Other metabolomic shifts may reflect proteolysis (with an
increase in free amino acids and amino acid derivatives),
as well as ongoing organ failure affecting the kidney
(enhanced acetyl polyamine, creatine, and urate levels)
and the liver (reduced primary bile acid production).
Most intriguingly, however, COVID-19 appears to be

associated with metabolic signs of immunosuppression, as
indicated by the increase of kynurenic acid and anthranilic
acid. Tryptophan was diminished in mild and critical
COVID-19 patients compared to uninfected controls,
suggesting a disease-associated activation of tryptophan-
consuming indoleamine 2,3-dioxygenase (IDO) and
tryptophan 2,3-dioxygenase (TDO) that produce the
kynurenic acid precursor kynurenine17. Anthranilate is a
downstream metabolite of kynurenine18, with marked
immunosuppressive effects19. Previous work has identi-
fied an activation of the kynurenine pathway (though
without an elevation of anthranilate) in COVID-19
patients, correlating with an elevation of IL6 levels11,
which in turn are associated with poor prognosis20–23.
Small, but specific differences were observed in a cohort

of patients that demonstrated a similar clinical stage at
presentation, but dissimilar evolution during hospitaliza-
tion. Some metabolites that apparently were not COVID-19
stage-associated were different between patients that
demonstrated a favorable or unfavorable evolution. This
applies to dimethylglycine, 3-methylhistidine and O-phos-
phoethanolamine, proline, and valine. Some metabolites
exhibited a behavior that can be classified as ‘paradoxical’.
Thus, N1-acetylspermidine, S-adenosylmethionine, and
hypotaurine that are highest among severe COVID-19
patients are associated with favorable prognosis, perhaps
because their production reflects an attempt to attenuate
the pathogenesis of COVID-19. Indeed, in preclinical
models, the N1-acetylspermidine precursor, spermidine,
has marked anti-inflammatory and immunostimulatory
effects24–27. Administration of S-adenosylmethionine
attenuates the cytokine storm induced by bacterial sep-
sis28 and mediates immunostimulatory effects in a cancer
model29. Clinical trials have demonstrated that taurine, the
downstream metabolite of hypotaurine, decreases serum
markers of inflammation including C-reactive protein30,
which is a negative prognostic marker of COVID-1931.
In sharp contrast to these ‘paradoxical’ associations, one

metabolite exhibited a ‘concordant’ behavior. This applies
to anthranilic acid, the concentration of which increases
with disease severity and which also predicts unfavorable
prognosis. This observation places the kynurenine path-
way in the limelight of this study. Larger prospective
studies are required to validate the conjecture that
metabolomic profiling and specific measurement of
selected metabolites including anthranilic acid may
predict the fate of COVID-19 patients. Circulating

anthranilic acid levels reportedly correlate with hyper-
leptinemia in schizophrenia32 and are increased in the
plasma of patients with type-1 (but not type-2) diabetes33

and subgroups of patients with chronic liver disease34,
calling for additional investigations of possible con-
founding factors. Irrespective of these considerations, it
might be worthwhile to explore the experimental treat-
ment of COVID-19 with IDO and TDO inhibitors that
are in clinical development35–38. Such inhibitors have
been generated as immune checkpoint inhibitors for the
treatment of cancer, but have not yet received regulatory
approval. The fact that high levels of anthranilic acid
predict the maintenance of high levels of IL10 and
IL18 suggests (but does not prove) that the kynurenine
pathway has an immunomodulatory impact on COVID-
19 pathogenesis. However, this speculation should be
tested by treating anthranilic acid-high COVID-19
patients with IDO/TDO or other kynurenine pathway
inhibitors within a dedicated Phase 2 clinical trial.

Methods
Patients
All patients were recruited by different hospitals of

the Assistance Publique Hôpitaux de Paris (AP-HP) net-
work or at Foch Hospital or Gustave Roussy. The non-
interventional study was approved by institutional review
boards (IRB) of Cochin-Port Royal (Paris, France) hospital
and the ethical committee of Cochin-Port Royal Hospital
(CLEP Decision N: AAA-2020-08023), and conformed to
the principles outlined in the Declaration of Helsinki.
Controls (n= 29) were symptomatic patients who were
seen at the Hôtel-Dieu screening unit and were negative
for SARS-CoV-2 RT-PCR on pharyngeal swab. Mild
COVID-19 patients (n= 23) were defined by having
limited clinical symptoms (fever, cough, diarrhea, myalgia,
and anosmia/ageusia) that did not require CT scan or
hospitalization. Moderate cases (n= 21) were defined as
symptomatic patients with dyspnea and radiological
findings of pneumonia on thoracic CT scan, requiring
hospitalization and a maximum of 9 L/min of oxygen.
Critical patients (n= 28) were those hospitalized in the
ICU with respiratory distress requiring 10 L/min of oxy-
gen or more, without or with endotracheal intubation
and mechanical ventilation. “Comorbidities” variable for
adjustment was considered for patients with obesity or
diabetes or chronic kidney disease and hypertension.
The interventional study was approved by the Foch IRB

(approval number IRB00012437) and was registered on
the National Institute of Health data platform INDS (no
4710280420). Patients received tocilizumab, in an off-label
use setting, to treat severe COVID-19, at Gustave Roussy
and Foch Hospital, over the period of March 20 and
5 April 2020. Inclusions criteria were: (i) Patients who
received at least one dose of tocilizumab, as treatment of
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COVID-19. (ii) ≥18 years, informed, and not opposed for
retrospective use of their anonymized health care files. (iii)
Diagnosis of COVID-19 confirmed by RT-PCR test, with
respiratory symptoms, shortness of breath and require-
ment of oxygen therapy and pulmonary images compa-
tible with COVID-19. (iv) Patients at risk of developing
respiratory distress due to COVID-19, with worsening of
oxygen therapy supplementation equal or more than
4 L/min and requirement by increase of >50% of the need
for supplemental oxygen therapy in the last 24 h before
first dose of tocilizumab. Exclusion criteria for evaluable
population for the response to tocilizumab were: (i)
Patients placed under mechanical ventilation with intu-
bation due to the COVID-19 before the first dose of
tocilizumab treatment. (ii) Respiratory failure related to
other cause than COVID-19 at tocilizumab initiation. (iii)
Patients, who have previously received anti-IL6 receptor
therapy in the last 3 weeks before tocilizumab initiation.
(iii) Alanine transaminase/aspartate transaminase (ALT/
AST) >5 times the upper limit of normal at timing of
first dose of tocilizumab. (iv) Absolute neutrophil count
<1.0 × 109 or platelets <50 × 109 at timing of first dose of
tocilizumab. Tocilizumab was given intravenously at
8 mg/kg and could be repeated once in the following 48 h
if necessary. All patients were followed until day 30 after
the first dose of tocilizumab. Patients’ sera were collected
and stored before and after treatment. Favorable clinical
evolution after tocilizumab infusion was retained in
patients evaluable for the outcome and fulfilling the fol-
lowing three criteria. Criterion 1: on day 14 post first dose
of tocilizumab, the patient has a WHO progression scale
≤ 516. Criterion 2: between days 1 and 14 after the first
dose of tocilizumab, the patient is alive and did not need
to have at any time recourse to invasive mechanical
ventilation (orotracheal intubation) and without any new
intention of “non-realization of resuscitation or ventila-
tion”. Criterion 3: the respiratory symptoms related to
COVID-19 clinically significantly improved with decrease
in oxygen requirements after first dose of tocilizumab and
the WHO scale did not deteriorate after the administra-
tion of the first dose of tocilizumab.

Sampling
Human peripheral blood from the first cohort was

collected into sterile dry vacutainer tubes with 3.2% buf-
fered sodium citrate solution. Samples were centrifuged
twice (2500 × g/20 min), and plasma was collected.
Regarding the samples from the interventional study,
human peripheral blood was collected into sterile dry
vacutainer tubes and centrifuged (1500–2000 × g/15 min)
for serum collection. Fifty microliters of sample were
mixed with 500 µL of a cold solvent mixture (meOH/
water, 9/1, −20 °C, with a cocktail of internal standards),
vortexed and centrifuged (10 min at 1500 × g, 4 °C) for

metabolite extraction and protein precipitation. The
supernatants were collected, split in 4 fractions, and
treated according to the protocols described pre-
viously39. Briefly, 2 fractions of 120 µL each (1st and 2nd
fractions, respectively) of sample extract were trans-
ferred to an injection amber glass vial (with fused-in
insert) and evaporated to dryness (Techne DB3, Staf-
fordshire, UK) at 40 °C. The 1st dried fraction was
solubilized in 50 µL of methoxyamine (CAS 593-56-6;
20 mg/mL in pyridine, Sigma-Aldrich), and left to incu-
bate overnight, at room temperature and protected from
light. The next day, derivatization was carried out by
adding 80 µL of MSTFA (CAS 24589-78-4; Supelco),
followed by 30 min-incubation at 40 °C. Derivatized
samples were immediately used for GC/MS injection and
analysis. The 2nd dried fraction was recovered with
100 µL of ultra-pure water and kept at −80 °C until
injection and analysis by UHPLC/MS. The 3rd fraction
consisted of 40 µL of sample extract transferred to an
injection amber glass vial (with fused-in insert) for
derivatization and SCFA analysis. Sample derivatization
was carried out by adding 20 µL of 3-NPH (200 mM in
meOH; CAS 636-95-3; Sigma-Aldrich) and 20 µL of EDC
(150 mM in meOH; CAS 25952-53-8; Sigma-Aldrich) to
the sample. Immediately after incubation (1 h/ 40 °C),
80 µL of water were added, and the derivatized samples
were used for UHPLC/MS injection and analysis. Finally,
the 4th fraction together with the sample pellet were re-
extracted with 80 µL of 2% SSA (in meOH), vortexed and
centrifuged (10 min at 15,000 × g, 4 °C). The supernatant
(200 µl) was transferred to an injection polypropylene
vial (with fused-in insert) and evaporated to dryness
(Techne DB3, Staffordshire, UK) at 40 °C. Dried samples
were recovered with 200 µl of ultra-pure water and kept
at −80 °C until injection and analysis by UHPLC/MS for
polyamines detection.

Cytokine measurements
Serum samples were monitored using the V-plex

Proinflammatory panel 1 Human kit (Meso Scale Dis-
covery, ref: K15049D) according to the manufacturer’s
instructions, for the measurement of IFNγ, IL1β, IL2, IL4,
IL6, IL8, IL10, IL12p70, IL13, and TNFα. Soluble Cal-
protectin (diluted 1:100), IFNα2a and IL18 were analyzed
using a R-plex Human Calprotectin Antibody Set (Meso
Scale Discovery, ref: F21YB), the ultra-sensitive assay
S-plex Human IFNa2a kit (Meso Scale Discovery, ref:
K151P3S) and the U-plex Human IL18 assay (Meso Scale
Discovery, ref: K151VJK), respectively, following manu-
facturer’s instructions. Acquisitions and analyses of solu-
ble cytokines and calprotectin were performed on a
MESO QuickPlex SQ120 reader and the MSD’s Discovery
Workbench 4.0. Each serum sample was assayed twice
with the average value taken as the result.
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Widely targeted analysis of intracellular metabolites
GC/MS
Derivatized samples for GC/MS analysis (1st fraction)

were injected (1 µL) into a gas chromatograph (Agilent
7890B; Agilent Technologies, Waldbronn, Germany)
coupled to a triple quadrupole mass spectrometer (QQQ/
MS; 7000C Agilent Technologies, Waldbronn, Germany),
equipped with a high sensitivity electronic impact source
(EI) operating in positive mode. Injection was performed
in splitless mode. Front inlet temperature was kept at
250 °C, transfer line and ion-source temperature were
250 °C and 230 °C, respectively. Septum purge flow was
fixed at 3 mL/min, purge flow to split vent operated at
80 mL/min during 1 min and gas saver mode was set to
15mL/min after 5 min. Helium gas flowed through
column (HP-5MS, 30m × 0.25 mm, i.d. 0.25 mm, d.f.
J&WScientific, Agilent Technologies Inc.) at 1 mL/min.
Column temperature was held at 60 °C for 1 min, raised to
210 °C (10 °C/min), then to 230 °C (5 °C/min), to finally
reach 325 °C (15 °C/min), and hold at during 5min. Col-
lision gas was nitrogen.

UHPLC/MS
Targeted UHPLC/MS analyses were performed on a

RRLC 1260 system (Agilent Technologies, Waldbronn,
Germany), with an autosampler kept at 4 °C, and a pel-
letier oven for rigorous control of the column tempera-
ture. The UHPLC was coupled to a QQQ/MS 6410
(Agilent Technologies) equipped with an electrospray
source, using nitrogen as collision gas. For bile acids
detection, 10 µL from samples recovered in water (2nd
fraction) were injected into a Poroshell 120 EC-C8
(100 mm× 2.1 mm particle size 2.7 µm; Agilent technol-
ogies) column protected by a guard column (XDB-C18,
5 mm × 2.1 mm particle size 1.8 μm). Mobile phase con-
sisted of 0.2% formic acid (A) and ACN/IPA (1/1; v/v) (B)
freshly made. Flow rate was set to 0.3 mL/min, and gra-
dient as follow: 30% B during 1.5 min; increased to 60% B
over 9 min; and finally to 98% B for 2 minutes (column
washing), followed by 2min of column equilibration at
30% B (initial conditions). After each injection, needle was
washed twice with IPA and thrice with water. The QQQ/
MS was operated in negative mode. Gas temperature and
flow were set to 325 °C and 12 L/min, respectively.
Capillary voltage was set to 4.5 kV.
Derivatized samples for SCFA detection (3rd fraction)

were injected (10 μL) into a Zorbax Eclipse XBD C18
(100 mm × 2.1 mm particle size 1.8 µm; Agilent technol-
ogies) column, protected by a guard column (XDB-C18,
5 mm × 2.1 mm particle size 1.8 μm). Column oven
maintained at 50 °C during analysis. Mobile phase con-
sisted of 0.01% formic acid (A) and ACN (0.01% formic
acid) (B). Flow rate was set to 0.4 mL/min, and gradient
as follow: 20% B during 6min; increased to 45% B over

7 min; and finally to 95% B for 5 minutes (column wash-
ing), followed by column equilibration phase at 20% B,
during 4min. The QQQ/MS was operated in negative
mode. Gas temperature was set to 350 °C with a gas flow
of 12 L/min. Capillary voltage was set to 4.0 kV.
Polyamines were detected in the 4th fraction after

injection of 10 μL of sample were into a Kinetex C18
(150mm× 2.1mm particle size 2.6 µm; Phenomenex)
column protected by a guard column C18 (5mm×
2.1mm, particle size 1.8 μm). Column oven maintained at
40 °C during analysis. The gradient mobile phase consisted
of 0.1% HFBA (Sigma-Aldrich) (A) and ACN (0.1% HFBA)
(B) freshly made. The flow rate was set to 0.2ml/min, and
gradient as follow: from 5% (initial conditions) to 40% B in
10min; then 90% B maintained 2.5min, and finally equi-
libration to initial conditions, 5% B, for 4min. The QQQ/
MS was operated in positive mode. The gas temperature
was set to 350 °C with a gas flow of 12 l/min. The capillary
voltage was set to 3.5 kV. At the end of each UHPLC/MS
batch analysis, column was rinsed with 0.3mL/min of
ultra-pure water (A) and ACN (B) as follow: 10% B during
20min, to 90% B in 20min, and maintained during 20min
before shutdown. MRM scan mode was used for targeted
analysis in both GC and UHPLC/MS. Peak detection
and integration were performed using the Agilent Mass
Hunter quantitative software (B.07.01).

Pseudo-targeted analysis of intracellular metabolites
The profiling analysis was performed with a Dionex

Ultimate 3000 UHPLC system (Thermo Scientific) cou-
pled to an Orbitrap mass spectrometer (q-Exactive,
Thermo Fisher Scientific) equipped with an electrospray
source operating in both positive and negative mode, and
acquired samples in full scan analysis mode, from 100 to
1200 m/z. LC separation was performed on reversed
phase (Zorbax Sb-Aq 100 ×2.1 mm × 1.8 µm particle size),
with mobile phases: 0.2% acetic acid (A) and ACN (B).
Column oven was kept at 40 °C. Ten microliters of aqu-
eous sample (2nd fraction) were injected for metabolite
separation with a gradient starting from 2% B, increased to
95% B in 22min, and maintained during 2min for column
rinsing, followed by column equilibration at 2% B for
4min. Flow rate was set to 0.3mL/min. The q-Exactive
parameters were: sheath gas flow rate 55 au, auxiliary gas
flow rate 15 au, spray voltage 3.3 kV, capillary temperature
300 °C, and S-Lens RF level 55V. The mass spectrometer
was calibrated with sodium acetate solution dedicated to
low mass calibration. Data were treated by the quantitative
node of Thermo XcaliburTM (version 2.2) in a pseudo-
targeted approach with a home-based metabolites list.

Untargeted analysis of intracellular metabolites
Raw data files obtained by the previously described

pseudo-targeted analysis were also used to perform unbiased
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profiling analysis, using the Thermo Compound Dis-
coverer (3.1.). After sample injection and data acquisition,
raw data files were processed following a customized
node-based workflow for identifying unknown com-
pounds in metabolomics. Spectra selection and retention
time alignment were performed, followed by removal of
background noise and baseline correction. Next, the
processing workflow found chromatographic peaks for
unknown compounds (molecular weight, MW, x reten-
tion time, RT) extracting all relevant spectral and chro-
matographic information, to predict the elemental
composition of the unknowns. All data was exported to
R software (version 3.4) for data representation.

Statistical analysis
All targeted and pseudo-targeted treated data were

merged and cleaned with a dedicated R (version 3.4)
package (@Github/Kroemerlab/GRMeta). Calculations
and statistical tests were performed using R v3.4. Wil-
coxon-Mann–Whitney test was used to assess differences
in concentration between two different groups. When
indicated, the false discovery rate (FDR, p > 0.05) was
controlled using the Benjamini–Hochberg procedure.
Data representation was performed with softwares R v3.6
and Rstudio v1.2.1335 using tidyverse, dplyr, ggplot2,
ggpubr, complexheatmap, and corrplot packages. Princi-
pal component analysis biplot was built using FactoMineR
and factoextra packages, after selection of the metabolites
significantly different (p < 0.05) between clinical evolution
groups (“unfavorable” and “favorable”), at baseline. Data
were scaled unit variance before the analysis.

Determination of most discriminating metabolites with
Random Forest Classification Model
Selected metabolites were thereafter used for training a

random forest classification model using the R caret
package. This machine learning tool allowed to classify
the relative importance of metabolites for distinguishing
COVID-19 stage (here classified in a binary fashion as
«critical» and «mild») and clinical evolution (“unfavor-
able” and “favorable”), by computing the mean decrease of
the Gini index (an entropy-like measure of the impurity)
over the random forest nodes that were split on them.
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