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Abstract

Population-scale expression profiling studies can provide valuable insights into biological and disease-underlying
mechanisms. The availability of phenotypic traits is essential for studying clinical effects. Therefore, missing,
incomplete, or inaccurate phenotypic information canmake analyses challenging and prevent RNA-seq or other omics
data to be reused. A possible solution are predictors that infer clinical or behavioral phenotypic traits from molecular
data. While such predictors have been developed based on different omics data types and are being applied in various
studies, metabolomics-based surrogates are less commonly used than predictors based on DNA methylation profiles.
In this study, we inferred 17 traits, including diabetes status and exposure to lipid medication, using previously trained
metabolomic predictors. We evaluated whether these metabolomic surrogates can be used as an alternative to
reported information for studying the respective phenotypes using expression profiling data of four population
cohorts. For the majority of the 17 traits, the metabolomic surrogates performed similarly to the reported phenotypes
in terms of effect sizes, number of significant associations, replication rates, and significantly enriched pathways.
The application of metabolomics-derived surrogate outcomes opens new possibilities for reuse of multi-omics data
sets. In studies where availability of clinical metadata is limited, missing or incomplete information can be
complemented by these surrogates, thereby increasing the size of available data sets. Additionally, the availability of
such surrogates could be used to correct for potential biological confounding. In the future, it would be interesting to
further investigate the use of molecular predictors across different omics types and cohorts.
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Background
Genome-wide association studies (GWAS) have proven
to be valuable in uncovering links between genes and a
wide range of phenotypic traits. Such findings have led
to the discovery of new disease-related biomarkers and
are often the basis for gaining a better understanding
of biological processes or disease-mechanisms. Since the
introduction of the first GWAS powered by the availability
of genome-wide single-nucleotide polymorphism (SNP)
profiling, numerous studies have identified thousands of
SNP-trait associations [1]. Technological advancements
allowing high-throughput profiling of other molecular
features, such as transcripts, or DNA methylation sites,
also enabled population-scale studies of transcriptomics,
epigenomics, and other omics data types.
Such studies are susceptible to confounding by biologi-

cal and technical factors that can influence omics profiles
and phenotypic traits of interest. However, measured val-
ues to correct for such confounding are often not avail-
able. As a solution, differences in cell type composition
are commonly accounted for using information contained
in the DNA methylation profiles themselves, by either
reference-based imputation [2] or reference-free meth-
ods such as surrogate variable analysis (methods reviewed
in [3] and [4]). Other well-known examples of inferring
values for possible confounding factors fromDNAmethy-
lation profiles include sex [5] and smoking status predic-
tion. Bollepalli et al. [6] trained a smoking status classifier
using multinomial LASSO regression. Machine learning
approaches have also been applied to other omics data
types to predict environmental exposures [7].
The value of such predictors is not only evident when

complementing missing data to account for technical or
biological confounding, but also for using them as out-
come variables. These molecular surrogates can be used
in association studies in order to link molecular features
to clinical phenotypes or exposures. Since identified asso-
ciations in ome-wide association studies often have only
moderate effect sizes, a common approach to detect rel-
evant features are cross-cohort meta-analyses [8]. How-
ever, the applicability of meta-analyses can be limited by
availability of the respective outcomes of interest. Specific
clinical, environmental, or phenotypic traits might not be
recorded in every cohort, or the data collection might be
based on different protocols, making the reported values
for these traits not directly comparable.
As more and more multi-omics data sets become avail-

able, it becomes possible to make use of molecular predic-
tors to infer phenotypic traits from specific omics layers.
Blood is a key specimen in clinical diagnostics reflect-
ing on the health state of an individual. While blood
metabolomics methods partially overlap with classical
clinical diagnostics methods, they can measure a wide
range of metabolites and have the potential to play an

important role in personalized medicine approaches [9].
Recently, Bizzarri et al. [10] trained predictors on pro-
ton NMR-based metabolomics (Nightingale Health) data.
The authors applied logistic regression using elastic net
regularization to train models for various clinical vari-
ables, including physiological measures, environmental
exposures, and clinical endpoints. They demonstrated the
use of these surrogates in metabolome-wide association
studies to complement missing clinical data and correct
for confounding. They further showed that metabolomic
surrogates can help explore independent risk factors of
all-cause mortality in older individuals [10].
We here propose the use of metabolomics-derived sur-

rogates in analyses of other omics layers, not only as
covariates to account for confounding factors, but also
as outcome variables. We investigated whether values
derived frommolecular predictors represent a viable alter-
native to measured or reported clinical or phenotypic
traits to serve as outcome variables in population-scale
gene expression profile association studies. To this end,
we applied 17 metabolomic predictors to metabolomics
data from four large population cohorts inferring values
for phenotypic, exposure, and clinical traits. We per-
formed association studies on corresponding RNA-seq
data sets employing either reported/measured or inferred
values as outcome variables, and systematically compared
the respective results of these analyses. For five of the
outcomes, where reported values were not available, we
evaluated the performance of the metabolomic surrogates
based on results reported in literature.

Results
In this study, we performed expression profiling studies
to evaluate the performance of 17 surrogate outcomes
that are based on molecular predictors. Metabolomics
data used to infer surrogate outcome values and RNA-
seq data used for the evaluation are part of multi-omics
data sets of four large Dutch population cohorts: LifeLines
(LL) [11], Leiden Longevity Study (LLS) [12], Netherlands
Twin Register (NTR) [13], and Rotterdam Study (RS) [14].
An overview of the study workflow is shown in Fig. 1. For
the different outcomes (Table 1), we compared expression
profile association study results based on metabolomic
surrogate outcomes to those based on reported outcomes
whenever possible. Additionally, results were compared to
literature findings.

Metabolomic surrogate outcomes
We inferred values for clinical variables by applying
molecular predictors to metabolomics data. Recently
reported metabolomic predictors trained on up to 22
Dutch population cohorts [10] were applied to infer values
for outcome variables (Table 1). All 17 metabolomic pre-
dictors had been shown to perform accurately with mean
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Fig. 1 Overview of study workflow. Gene-wise models are fitted for various outcome variables based on reported information or metabolomic
surrogates, respectively

AUC values > 0.7 in a 5-fold cross-validation approach
[10]. In order to avoid emphasis on clinical extremes,
the metabolomic predictors trained by Bizzarri et al. are
based on binary representations using clinical thresholds
for continuous variables. The values returned by the pre-
dictors are continuous posterior probability scores for
belonging to one of the two groups. In most cases, this
is the clinical risk group. We here used these predicted
values as surrogate outcomes and compared their use
in expression profiling studies to reported or measured
outcome values.

Expression profile association studies
In the next step, the 17 metabolomic surrogates were used
as outcomes of expression profile association studies. In
addition to analyses employing these surrogate outcomes,
analyses using measured or reported outcome values were
performed. For five outcomes that had limited availability
of reported values (eGFR, diabetes, metabolic syndrome,
blood pressure lowering medication, and alcohol con-
sumption) only surrogate outcomes were used. In each
linear regression model, known biological (age, sex) and
technical (flow cell number, white blood cell composition)
confounding factors were included (formulas available in
Additional file 1).
For an initial assessment of the performance of each

model, we compared the numbers of significant associ-
ations and the effect sizes between outcomes and out-
come variable types. Additionally, test statistic (t-statistic)
bias and inflation were estimated as parameters (mean
and standard deviation) of the empirical null distribution
using a Bayesian method implemented in the R pack-
age bacon [15] (Fig. 2). Numbers of identified significant
associations (Fig. 2A) varied strongly across outcomes.
Highest numbers were found for the outcomes triglyc-
erides, metabolic syndrome, and white blood cells. For
several outcomes, including eGFR, LDL cholesterol, total
cholesterol, and alcohol consumption, no or only few
significant gene-trait associations were found. For out-
comes where association study results based on surro-
gate outcomes could be compared to results for reported
variables, the numbers of identified significant associ-

ations averaged across all cohorts were higher for the
metabolomic surrogate outcomes in two cases, and lower
in 10 cases. However, the variation across the four
cohorts was generally higher than the difference between
models employing either reported or surrogate outcome
variables. Similarly, high variation across cohorts was
observed for the other parameters assessed to evaluate
the performance of the models. Absolute effect size aver-
aged across all genes (Fig. 2B) were generally small, with
the highest values observed for the outcomes triglycerides
and sex. In 10 cases, the mean absolute effect size aver-
aged across cohorts was lower when using metabolomic
surrogate outcomes instead of reported variables; in two
cases, it was higher. We observed relatively low test
statistic bias (Fig. 2C) across all outcomes and types of
outcome variables. The bias, i.e., the deviation of the

Table 1 Overview of phenotypic traits. Availability of variable is
indicated by ‘x’

Phenotypic trait Reported
outcome

Surrogate
outcome

Low estimated Glomerular Filtration Rate (eGFR) x

High triglycerides x x

High LDL-associated cholesterol x x

High total cholesterol x x

Low HDL-associated cholesterol x x

Diabetes x

Metabolic syndrome x

Sex x x

Lipid medication x x

BMI/obesity status x x

High high-sensitivity C-reactive protein (hsCRP) x x

Blood pressure lowering medication x

Low hemoglobin x x

Low white blood cells x x

Current smoking x x

Alcohol consumption x

High age (≥ 65 y.o.) x x



Niehues et al. BMC Genomics          (2022) 23:546 Page 4 of 13

Fig. 2 Comparison of association study result characteristics. Number of significant associations (based on bacon-corrected and FDR-corrected
p-values pbadj < 0.05) (A), mean absolute effect sizes (based on bacon-corrected effect sizes) across all genes (B), and bias (C) and inflation (D) of
test statistics (t-statistic) for alternative models per comparisons and cohort. Horizontal lines for test-statistic mean = 0 and standard deviation = 1
of theoretical null distribution were added. Comparisons are ordered by performance of metabolomic predictors for binary outcome measures.
Type of outcome variable is indicated by color: reported or measured variable = black, metabolomic surrogate = orange. Mean values across four
cohorts (two cohorts for hsCRP) are plotted as horizontal bars. Note the log10 scale on the y-axis of the upper plot

empirical null distribution’s mean from zero, averaged
across cohorts decreased in four cases, increased in three
cases, and remained similar in five cases when employ-
ing metabolomic surrogate outcomes instead of reported
variables. Bias in the RS cohort was often higher than in
the other cohorts. This may be explained with the differ-
ences in population structure. The RS cohort has a higher
average age than the other three cohorts [16], indicating
higher bias for the studied clinical variables in older pop-
ulations. Inflation (deviation of the empirical null distri-
bution’s standard deviation from one, Fig. 2D) was highest
for the outcome sex. In most cases, inflation averaged
across cohorts remained stable when using different out-
come variable types. For the outcome total cholesterol, it
slightly decreased when usingmetabolomic surrogate out-
comes instead of reported variables; for the outcomes lipid
medication and hsCRP, it slightly increased.
Since the number of significant associations and aver-

age effect sizes do not allow drawing conclusions about
the similarity of the association study results employing
different types of variables as outcome, we next per-
formed pairwise comparisons of models with different
types of outcome variables, i.e., reported vs. surrogate.
Figure 3 shows the correlation of regression coefficients

from gene-wise fitted linear models between two differ-
ent types of outcome variables. Correlation coefficients
were generally high for surrogate outcomes based on best-
performing metabolomic predictors. For outcomes based
on predictors with reported AUC > 0.9 (triglycerides,
LDL cholesterol, total cholesterol, HDL cholesterol, and
sex) [10], the correlation coefficients averaged across
cohorts ranged between 0.71 and 0.96. We observed a
modest trend for decreasing correlations with decreasing
performance of predictors. However, there were excep-
tions, with sex having the highest correlation values,
although the predictor’s AUC was reported to be lower
than those for triglycerides or cholesterol. Lowest simi-
larity of results with average absolute Pearson r < 0.5
were observed for the outcomes age, white blood cells,
smoking, and hemoglobin, the latter having the lowest
correlation values. We often observed that correlations
were lower for the NTR cohort. This could be explained
by a technical difference in the metabolomic profiles, with
NTR missing glutamine [10].

Meta-analyses and replication studies
When comparing two alternative outcome variables, a
lower or higher number of found significant associa-
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Fig. 3 Pairwise comparisons of association study results. Absolute Pearson correlation coefficients (Pearson r) of bacon-adjusted regression
coefficients of gene-wise linear models (limma/voom) for outcome variables in alternative models per comparison and cohort. Comparisons are
ordered by performance (AUC) of metabolomic predictors for binary outcome measures. Mean values across four cohorts (two cohorts for hsCRP)
are plotted as horizontal bars (gray)

tions does not necessarily imply that results are better
or worse, since the values alone do not indicate if this
is due to a reduction or increase of false positive (noise)
or true positive findings, respectively. We observed that
the expression profile association study results differ when
surrogate values differ from reported values. However, we
do not know which set of results is correct, as reported
values could contain inaccuracies. Under the assumption
that true positive findings, as opposed to false positive
results, can be replicated in different cohorts (validating
the results), we performed replication studies to deter-
mine which outcome variable type is more consistently
reflected in the RNA-seq data. We performed leave-one-
cohort-out meta-analyses and replication studies for all
comparisons (except for hsCRP where only two cohorts
were available) using the approach described by van Rooij
et al. [16]. For each comparison, four meta-analyses were
performed leaving one cohort out each time, and using
the left out cohort for a replication analysis. Figure 4
shows the numbers of significant associations found in
each meta-analysis (number of meta-analyzed genes) and
the respective percentage of replicated genes. Overall,
we did not find substantial differences in the numbers
of meta-analyzed genes (Fig. 4A) except for the out-
comes lipid medication, (high) age, and current smoking.
While more genes were meta-analyzed when using the

metabolomic surrogate for lipid medication, the reported
variable yielded more meta-analyzed genes for age and
smoking. For the latter two outcomes, results based on
metabolomic surrogates could not be replicated (Fig. 4B)
while on average 30-38% of results based on reported
outcomes could be replicated. For these two outcomes
we had also observed the highest differences between
number of significations associations (Fig. 2A). For other
outcome variables, the percentage of replicated genes was
quite similar between outcome variable types, but the
cohort which was left out for the meta-analysis had a
strong impact on the results. Highest average replication
rates were observed for triglycerides with 69% for the
reported and 67% for the surrogate outcome. For a num-
ber of outcomes, associations could hardly be replicated:
LDL-associated cholesterol, hemoglobin, and alcohol con-
sumption. This is in line with the fact that almost no
significant associations were found for these outcomes
(except for reported hemoglobin) in the individual cohorts
(Fig. 2).

Gene set enrichment analysis
To arrive at a biological interpretation of the associa-
tion study results, we performed gene-set enrichment
analyses (GSEA) using pathways from the Reactome
database. GSEA was applied to both individual cohort
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Fig. 4Meta-analyses and replication studies. Number of meta-analyzed genes (significant associations, bacon-adjusted p-values FDR-adjusted for
multiple testing, p < 0.05) in leave-one-cohort meta-analyses (A) and percentage of genes replicated (significant associations, Bonferroni-adjusted
for multiple testing, p < 0.05) in replication cohort (B). Type of outcome variable is indicated by color: reported or measured variable = black,
metabolomic surrogate = orange. Mean values across four meta-analyses/replication studies are plotted as horizontal bars. Note the log10 scale on
the y-axis of the upper plot

results and results from a meta-analysis of all four cohorts
(Fig. 5). For direct comparisons of reported variables and
metabolomic surrogates, we observed a highest overlap of
significantly enriched pathways for HDL cholesterol and
triglycerides in all cohorts, with 70-84% (meta-analysis
76%) and 65-80% (meta-analysis 77%) of significantly
enriched pathways found by both reported and surrogate
outcome, respectively. The overlap for the outcomes total
cholesterol, lipid medication, hsCRP, BMI/obesity, and
white blood cells was more variable across cohorts. Meta-
analyzed results had an overlap of 38-69% and the order
of significantly enriched pathways was highly comparable
(see Additional file 2). The results for high age, current
smoking, hemoglobin, and LDL cholesterol demonstrated
a lower overlap than other outcomes and showed higher
variation across the four cohorts compared to other out-
comes. This is partially in line with the comparison of
gene-wise linear models from association studies (Fig. 3),
which showed that results for the outcome hemoglobin
based on reported and inferred values were not correlated,
and high age and current smoking were only moderately
correlated. Since hardly any significant associations were
found for hemoglobin (see Fig. 2A), the observed signal
for this outcome was generally very low in the studied

cohorts, independent of the type of outcome variable. It is
surprising to observe that almost no significantly enriched
pathways were observed for the outcome sex, even though
many gene-trait associations were found and could be
replicated in the meta-analysis and replication approach.
In order to evaluate the performance of surrogates for

which results could not be compared to results based on
reported outcomes, we compared significantly enriched
pathways (see Additional file 2) to the literature. The
top-ranked enriched pathways for low eGFR are related
to translation. Since low eGFR is an indicator of kidney
disease, this is in line with studies reporting increased
translational activity to several kidney diseases [17, 18].
For diabetes and metabolic syndrome, which is a risk
factor for diabetes, 16 out of the top 20 significantly
enriched pathways were found for both outcomes. These
include pathways related to translation, signaling, infec-
tion, and amino acid deficiency and metabolism. This is
in agreement with previously reported results [19, 20].
For alcohol consumption, although almost no significant
associations were found in individual analyses, several
significant gene-outcome associations were found when
meta-analyzing multiple cohorts (compare Figs. 2 and 4).
Top-ranked positively enriched Reactome pathways from
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Fig. 5 Gene-set enrichment analyses of association study results. Numbers of significantly enriched (Bonferroni-adjusted p < 0.05) pathways
(Reactome) for each outcome found in each cohort and in meta-analysis of all four (two for hsCRP) cohorts (top). Values for each type of outcome
variable are represented as colored bars: reported variable = black, metabolomic surrogate = orange, intersection, i.e., pathways found by all
outcome variables = blue

gene-set enrichment analysis (Additional file 2), includ-
ing, e.g., innate immune system, signal transduction, and
infectious disease, have been linked previously to chronic
alcohol drinking [21].

Discussion
While certain omics predictors especially based on DNA
methylation profiles [2–5] are regularly applied in (multi)
omics data analyses, metabolomics-based predictors are
not commonly used in the analysis of other omics
data types. Previously, Bizzarri et al. had shown that
metabolomic surrogates can be used to correct for con-
founding in metabolome-wide association studies [10].
In this study, we investigated the use of these surrogates
as outcome variables in the analysis of another omics
level. We systematically compared results of population-
scale gene expression profile association studies against
outcome variables that were either reported or inferred
by molecular predictors. The results generally showed
good agreement (Fig. 2). Most similar association study
results across all assessment parameters are those for
the outcomes triglycerides and HDL cholesterol. Many
significant gene-trait associations were found, of which
many could be replicated, and the majority of significantly
enriched pathways were found by reported and surrogate

outcomes. Regression coefficients of the models includ-
ing the reported and surrogate outcomes were strongly
correlated, and the majority of pathways found by GSEA
were obtained by both outcome types. The top-ranked
pathways positively enriched for both high triglycerides
and low HDL-cholesterol include “GTP hydrolysis and
joining of the 60S ribosomal subunit”, “L13a-mediated
translational silencing of Ceruloplasmin expression” and
“Formation of a pool of free 40S subunits” which partici-
pate in the Eukaryotic translation initiation [22] and were
previously shown to be enriched in a high-cholesterol
and high-fat diet induced hypercholesterolemic rat model
[23]. The metabolomic predictors for these outcomes are
directly related to metabolic markers measured on the
Nightingale platform and had shown high performance
(AUC ≥ 0.95) [10]. It is expected that results based on
predicted outcomes will depend on the accuracy of the
prediction. Accordingly, we observed a slightly lower cor-
relation between reported outcomes and metabolomic
surrogates for molecular predictors that were known to
have lower accuracy (Fig. 3). In the association studies for
lipid medication and BMI/obesity, the molecular predic-
tors yielded even more significant gene-trait associations
than the reported outcomes (Fig. 2A) and a higher number
of significantly enriched pathways were obtained when
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using the metabolomic surrogates (Fig. 5). For lipid med-
ication, this may be related to inaccurate recording of
this trait in the questionnaires used. For BMI, this may
be explained by the more direct capturing of metabolic
processes that are associated with obesity as a combined
measure of BMI and waist circumference, because BMI
alone is not a perfect indicator of metabolic health [24].
Similarity of results based on surrogate and reported value
for sex was high across all assessment parameters, but
GSEA did not yield significantly enriched pathways in
most cases. It is possible that the genes significantly asso-
ciated with sex belong to too many pathways and/or that
some genes within a pathway have a positive association
while others have a negative association resulting in a fail-
ure to identify positively or negatively enriched pathways.
For the outcomes total cholesterol and hsCRP, regres-
sion coefficients were moderately correlated and GSEA
results were very similar. For the outcome white blood
cells overlap of significantly enriched pathways in GSEA
was smaller. However, the order of top-ranked pathways
was similar (see Additional file 2). Additionally, the appli-
cation of metabolomic surrogates for outcomes that were
not reported in the data and the comparison of association
studies and GSEA results with literature show that these
surrogate outcomes allow transferring information from
one data set (the training data) to another, thereby facili-
tating to study phenotypes or exposures in data sets which
would otherwise not be possible. These results suggest
that metabolomic surrogates are a useful tool to comple-
ment phenotypic information ofmulti-omics data sets and
enable analyses of clinical outcomes even when they are
not reported. This is especially useful when reanalyzing
existing data sets. Even though this study comprises four
different large population cohorts and 17 metabolomic
surrogates, it will be interesting to investigate in the future
whether similar results can be observed in other cohorts,
for other clinical variables, or for other omics data types.
For both outcome variable types, only few gene-trait

associations were significantly associated with the out-
come LDL cholesterol. Similarly, low numbers of signif-
icant associations were observed for hemoglobin for the
surrogate outcome. In contrast to that, the reported out-
come yieldedmore associations which, however, could not
be replicated. For high age and current smoking slightly
fewer associations were found when using the surro-
gate outcomes. They also performed worse in the meta-
analyses and replication studies compared to reported
outcome values. Here, differences between results based
on different outcome variable types are reflected in lower
correlations of regression coefficients of the gene-wise
models and in a smaller overlap in enriched pathways
from GSEA. Possible reasons for the differences between
surrogates and reported values are lower performance of
themetabolomic predictors for these outcomes, or a lower

biological signal for the respective clinical outcomes and
thus increased noise in the studied data. It is known that
aging is reflected in transcriptomics data [25], but the
metabolomic predictor for high age trained on binarized
data (≥ 65 y.o.) might not be an ideal surrogate to study
this. Alternatively, a metabolomics-based biological age
predictor based on continuous data [26] might perform
better. Differences between GSEA results of different out-
come variable types could also arise from different biolog-
ical information captured by the metabolomic surrogates
and by reported or measured values. This phenomenon
is known from epigenetic clocks whose age predictions
can differ from chronological age, and different clocks
can reflect different aspects of biological age [27]). While
many of the top-ranked pathways (Additional file 2) for
smoking were found by both outcome variable types,
some pathways were solely found by using either reported
smoking status (“smoking_current”) or metabolomic sur-
rogate(“s_current_smoking”). Several pathways related to
translation initiation (“Formation of the ternary com-
plex, and subsequently, the 43S complex”, “Translation
initiation complex formation”, “Ribosomal scanning and
start codon recognition”) were only significantly enriched
when using the reported variable as outcome. Transla-
tion of mRNA is known to be dysregulated in cancers
[28]. Pathways only enriched when using the metabolomic
surrogate include “Platelet activation, signaling and aggre-
gation” and “Hemostasis”. Increased platelet aggregation
has been reported in smokers [29] and platelet-dependent
thrombin levels were shown to be increased in smokers
and following smoking [30]. This possibly indicates that
the reported smoking behavior captures effects of long-
term exposure to smoking better, while the metabolomic
surrogate captures effects of acute smoking. It would be
interesting to further investigate which aspects of the clin-
ical phenotypes are captured by the metabolomic surro-
gates. This requires additional phenotypic information. To
understand which aspect of smoking behavior is reflected
in the omics data current smoking status alone might not
be sufficient. More information including pack years and
years since smoking cessation could help better under-
stand the information captured by the predictors. It is
also possible that different omics types capture different
effects better, e.g., short-term and long-term effects. In
that case, combining reported outcome variables, and/or
molecular surrogates from different omics layers could
be very useful, not only to study the effect of a certain
exposure, but also to better adjust for confounding factors.

Conclusions
In our systematic comparison of expression profiling
results using either reported variables as outcome or sur-
rogate outcomes inferred from metabolomics profiles,
we demonstrated that in many cases metabolomic sur-
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rogates yield similar results as reported variables. We
showed that the availability of these surrogate outcomes
extends the possibilities of studying various clinical out-
comes in population cohorts. It can enable the reuse of
existing multi-omics data with limited reported clinical
(meta)data. This allows for inclusion of more cohorts in
meta-analyses, even when outcomes of interest were not
reported for all cohorts. This approach also increases pos-
sibilities to study clinical outcomes by allowing to infer
important confounding factors. Especially investigations
that rely on reuse of existing data, e.g., in the case of rare
disease studies which often also suffer from low sample
sizes, will benefit from this approach.

Methods
Data
In this study, we analyzed RNA-seq and metabolomics
data from four large Dutch population cohorts: LifeLines
(LL) [11], Leiden Longevity Study (LLS) [12], Nether-
lands Twin Register (NTR) [13], and Rotterdam Study
(RS) [14, 31]. The data is provided by the Dutch node
of the European Biobanking and BioMolecular Resources
and Research Infrastructure (BBMRI-NL).
RNA-seq data of all four cohorts was generated by

the BBMRI-NL Biobank-based Integrative Omics Study
(BIOS) Consortium at the Human Genotyping facility
(HugeF) of ErasmusMC, the Netherlands. RNA sam-
ple processing and sequencing is described in detail by
Zhernakova et al. [32]. Briefly, total RNA was extracted
from whole blood, depleted of globin transcripts, and
paired-end sequencing of 2x50-bp reads was conducted
using the Illumina HiSeq 2000 platform. Read align-
ment to reference genome hg19 was performed using
STAR (v2.3.0). We used the “Freeze2 unrelated data
sets”, which contain maximum sets of unrelated individ-
uals and are available within the BIOS workspace at the
SURF Research Cloud via the R package BBMRIomics
v3.4.2 [33].
Metabolomics data was generated by the BBMRI-NL

Metabolomics Consortium in 2014 as described by van
den Akker et al. [26]. Briefly, metabolite concentrations
were measured in EDTA plasma by proton nuclear mag-
netic resonance (1H-NMR) spectroscopy on the platform
of the Nightingale Health Group (Helsinki, Finland) [34].

Data analysis
All analyses were implemented in an R v4.0.3 [35] work-
flow employing R packages renv v0.14.0 for package
management and drake v7.13.2 for workflow manage-
ment. The analyses were run in the BIOS workspace of
the SURF Research Cloud which is part of the multi-
omics analysis platform of BBMRI-NL. The code to run
the analyses in available in GitHub [36] and archived in
Zenodo [37].

Data preprocessing
Normalization of values for clinical traits
Numeric values were used for all reported clinical vari-
ables. In case of categorical variables, they were binarized
as follows. For smoking status, “current smoker” was
coded as 1, and “former-smoker” and “non-smoker” were
coded as 0; for sex, “male” and “female” were coded as
1 and 0, respectively; for lipid medication, “statins” were
coded as 1, and “no” and “yes, but no statins” were coded
as 0. In order to be able to compare effect sizes in asso-
ciation studies, all clinical variables were standardized to
zero-mean and unit-variance (z-score normalization).

RNA-seq data preprocessing
Samples with more than 10% missing values in the RNA-
seq data were excluded from the analysis. Additionally,
for comparisons of models employing either reported or
inferred values as outcome, samples missing reported val-
ues were excluded. Subsequently, features (transcripts)
missing in more than 10% of the samples were removed
from the data set. Number of retained samples and fea-
tures are given in Additional file 1.
The RNA-seq read counts as provided by the

BBMRIomics R package were then normalized and
transformed based on a previous evaluation of analysis
strategies [16] as follows. Scaling factors for library sizes
were calculated using the trimmed mean of M-values
(TMM) method [38] implemented in the R/Bioconductor
package edgeR v3.32.1 [39]. Using these scaling factors
to adjust for sequencing depth, counts were transformed
to log2 counts-per-million (CPM) reads, their mean-
variance relationships were estimated using voom [40]
implemented in the R/Bioconductor package limma
v3.46.0, and the associated observation-level weights
were used in the subsequent linear modeling to adjust for
heteroscedasticity.

Metabolomics data preprocessing
The Nightingale Health metabolomics features inquired
are the 56 variables selected by van den Akker et al. [26].
Outliers were identified as the samples having more than
1 missing observation (301 removed), more than 1 data
point under the detection limit (49 removed) and having
a value more than 5 standard deviations away from the
overall mean observed within BBMRI-NL (0 removed).
Remaining with a total of 12926 samples (LLS = 2343,
LL = 1475, RS = 5136, NTR = 3972). The remaining
4210 missing values (0.58% of the entire dataset) were
imputed as zero and the metabolomic features were z-
scaled using the mean and standard deviations observed
in BBMRI-NL. The samples were further filtered based
on availability of corresponding RNA-seq data. Sam-
ple sizes per cohort and model are listed in Additional
file 1.
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Metabolomic surrogates
Seventeen logistic regression models trained on up to 22
cohorts, including LL and RS, were applied to the dataset
as described in Bizzarri et al. [10]. The surrogates used in
this study are the posterior probabilities which represent
how likely an individual is at risk for each of the inquired
common clinical variables.

Expression profile association studies
To determine association of profiles with clinical out-
comes, gene-wise linear regression models were fitted
using limma [41]. Known potential biological (sex, age)
and technical confounders (flow cell number, white blood
cell composition) were included in the models. Associ-
ation studies were performed separately for the respec-
tive type of outcome variable, i.e., reported variable
or metabolomic surrogate. Parameters for each linear
model are summarized in Additional file 1. We adjusted
p-values and effect sizes for statistical bias and infla-
tion using the Bayesian method bacon [15], which
estimates bias and inflation as parameters from the
empirical null distribution of test statistics (t-statistic).
Additionally, p-values were adjusted for multiple test-
ing using the false discovery rate (FDR) [42, 43]. Results
for two different variable types for the same outcome,
were compared by calculating Pearson correlation coef-
ficients of regression coefficients from gene-wise fitted
models.

Meta-analysis
Leave-one-cohort-out meta-analyses and replication
studies in left out cohort were performed as described in
[16].

GSEA
Gene-set enrichment analyses (GSEA) were performed
using the R/Bioconductor package fgsea v1.16.0 [44]
and gene sets retrieved from the Reactome Pathway
Database [22]. Genes were ranked by − log10(pb) ∗ |βb|
with pb = bacon-corrected p-value and betab = bacon-
corrected effect size. The number of permutations for
initial estimation of p-values was set to 1 × 104; the
boundary for calculating p-values was set to 1 × 10−50.

Supplementary Information
The online version contains supplementary material available at
https://doi.org/10.1186/s12864-022-08771-7.

Additional file 1: TWAS model parameters. This .csv file contains variable
names, sample and feature numbers, and covariates per TWAS model and
cohort.

Additional file 2: Significantly enriched pathways from GSEA. This .html
file contains plots showing significantly enriched pathways for each
outcome variable. GSEAs are based on meta-analyzed TWAS results.
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