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Biostatistics: Facing the Interpretation of 2 × 2 Tables
Adelin Albert

There are multiple ways in which 2 × 2 tables arise in clinical research. Different facets of 2 × 2 tables 
can be identified which require appropriate statistical analysis and interpretation. This paper presents a 
brief overview of such tables.
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Introduction
In statistics, 2 × 2 tables are generally obtained by cross-
classifying data from two binary variables; one variable 
will represent the rows of the table and the other the col-
umns. For example, if gender (male, female) and smoking 
(no, yes) are being recorded for n subjects, data will best 
be summarized by a 2 × 2 table displaying gender against 
smoking. Numbers in cells of the table are counts, not 
measurements. Thus, in the example, the cells will con-
tain the number of male smokers and nonsmokers and 
the number of female smokers and nonsmokers, respec-
tively. Contingency (or count) 2 × 2 tables are among the 
most basic concepts taught in any elementary course in 
statistics, along with the mean, the standard deviation, 
and the correlation [1]. In the literature, their use is per-
vasive, particularly when it comes to comparing two pro-
portions. But there are many different situations in which 
2 × 2 tables arise, depending on the problem at hand, 
the way patients were selected, and the research context. 
Several distinct facets of 2 × 2 tables are evident in the 
literature. Six of them will be briefly described here. They 
should help clinicians discern which 2 × 2 table he or she 
is facing, use the appropriate statistical test, and provide 
the correct interpretation.

Notation
For clarity, we denote X, the row variable, and Y, the 
column variable, but this notation can be reversed. Both 
variables are binary and take values (e.g., 0 and 1). It is 
also convenient to denote by a, b, c, and d the number 
of observations (clockwise) in the 4 cells of the 2 × 2 
table (see Table 1). In this table, the row totals, (a + b) 
and (c + d ), and the column totals, (a + c) and (b + d ), 
are called the margins because they define the marginal 
distributions of X and Y, respectively. The sum of all cells 
is the grand total n.

From a statistical sampling standpoint, there are only 
three ways to establish a 2 × 2 contingency table: (i) the 

row margins (a + b) and (c + d ) are fixed, in which case 
the column margins are observed and percentages can 
only be calculated horizontally; (ii) the column margins 
(a + c) and (b + d ) are fixed, in which case the row margins 
are observed and percentages can only be calculated 
vertically; or (iii) the grand total n is fixed, in which case 
all elements and margins of the table are observed and 
percentages can be calculated by row, by column, or glob-
ally. Thus, when facing a 2 × 2 table, it is important to 
know how the table was established.

Case 1: Comparing Two Independent 
Proportions
This is the most familiar case. Smoking (No/Yes) was 
assessed in a sample of 1,262 high school boys and in a 
separate sample of 1,132 high school girls of the province 
of Luxembourg (data not published). Data are displayed in 
Table 2. In this table, column margins were fixed, and all 
other numbers were observed. Thus, percentages can only 
be derived vertically. The proportion of smokers among 

Table 1: General Representation of a 2 × 2 Contingency 
Table.

Variable X Variable Y Total

0 1

0 a b a + b

1 c d c + d

Total a + c b + d n

Table 2: Smoking in High School Boys and Girls in the 
Province of Luxembourg (Belgium).

Smoking Gender Total

Boys Girls

No 873 730 1,633

Yes 389 372 761

Total 1,262 1,132 2,394
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boys is 389/1,262 (30.8%) and among girls 372/1,132 
(32.9%). Are these two proportions statistically different?

To test the null hypothesis of equal proportions of smok-
ers in high school boys and girls, we use the “homogeneity 
test” by calculating the renowned chi-squared test on 1 
degree of freedom ( 2

(1)χ ) in which all terms can be found in 
the 2 × 2 contingency table:

( )
( )

( )( )( )( )
2
1

²ad bc n

a b c d a c b d

−
=

+ + + +
χ

Thus:

( )
( )22

1

873 372 730 389 2394
1.14

1633 761 1262 1132
χ

× − × ×
= =

× × ×

Since the associated p-value (p = 0.29) is not significant, 
we conclude that smoking is comparable in boys and girls.

Case 2: Testing the Correlation between Two 
Binary Outcomes
This case is often confounded with the homogeneity 
test above. Postoperative nausea (No/Yes) and vomiting 
(No/Yes) were recorded in 671 surgical patients [2]. Data 
are displayed in Table 3. In this table, only the grand total 
sample size n was fixed so that all other numbers were 
observed. Is there an association (correlation) between 
nausea and vomiting? The null hypothesis of no correla-
tion between the two symptoms can be assessed by the 
“independence test” by computing a chi-squared test simi-
lar to the homogeneity test above (whence the confusion).

Applying the formula above (see Case 1), we get:

( )
( )22

1

532 53 13 73 671
181.7

545 126 605 66

× − × ×
= =

× × ×
χ

The large chi-squared value evidenced a highly significant 
association between postoperative nausea and vomiting 
in surgical patients (p < 0.0001), and the hypothesis of 
independence between the two symptoms was rejected. In 
other words, there is a strong dependency between them. 
Note that the correlation between nausea and vomiting 
can easily be derived from the chi-squared test by calcu-
lating the expression (1)  ² / 181.7/671 0.52r n= = =χ .

Case 3: Comparing Two Paired (Matched) 
Proportions
In contrast to the homogeneity test, the McNemar test 
[3] allows the comparison of two paired proportions 
obtained on the same subjects or on matched individu-
als. Data reported in Table 4 concern the distance walked 
(≤500 m or >500 m) before and after surgery by 156 
patients suffering from degenerative lumbar stenosis with 
neurogenic intermittent claudication (unpublished data). 
In this table, the grand total n was fixed so that all other 
numbers in the table were observed.

The proportion of patients who walked more than 
500 m before surgery was 63/156 (40.4%), while the 
proportion after surgery was 80/156 (51.3%). Are these 

two proportions significantly different? The homogene-
ity test cannot be used because the two proportions were 
obtained on the same 156 patients; they are correlated. 
The null hypothesis of equal proportions is tested by the 
McNemar chi-squared test on 1 degree of freedom: 

( )
( )2

1

²b c

b c

−
=

+
χ

Using data in Table 4, we get:

( )
( )

( )2
1

37 20 ²
5.07  0.024

37 20
pχ

−
= = =

+

This shows a significant difference between the two 
proportions. In other terms, the surgical treatment did 
improve the walking distance of patients.

Case 4: Assessing the Degree of Agreement 
between Two Raters
The degree of agreement between two raters or methods 
can best be measured by the Cohen kappa (κ) coefficient 
[4]. As an illustration, data in Table 5 were obtained by 
cross-classifying the diagnosis (benign or malignant) of 
187 suspected tumors made by 2D mammography and 3D 
tomosynthesis (data not published). Readings were made 
by a senior radiologist. Once again, the grand total n was 
fixed, and all numbers in the table were observed.

One may think here of the McNemar test as in 
Case 3; indeed, the proportion of malignancy was 65/187 
(34.8%) for mammography and 119/187 (63.6%) for 
tomosynthesis, and the chi-squared test was equal to 

2
(1)

(68 14)²
  35.6 ( < 0.0001)

68 14
p

−
= =

+
χ , indicating a highly signifi-

cant difference between the two proportions. In other 
terms, the two radiological methods do not give the same 
outcomes; this tends to indicate that they do not really 

Table 3: Postoperative Nausea and Vomiting in 671 
Surgical Patients.

Nausea Vomiting Total

No Yes

No 532 13 545

Yes 73 53 126

Total 605 66 671

Table 4: Walking Distance before and after Surgery of 156 
Patients Suffering from Degenerative Lumbar Stenosis 
with Neurogenic Intermittent Claudication.

Before Surgery After Surgery Total

≤500 m >500 m

≤500 m 56 37 93

>500 m 20 43 63

Total 76 80 156
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agree with each other, which can best be demonstrated by 
computing Cohen κ coefficient as follows. 

Let po = (a + d )⁄n the observed proportion of agree-
ments between the two raters. From data in Table 5, 
po = (54 + 51)⁄187 = 0.561. Next, compute the expected 
proportion of agreements due to chance only (as if the 
two raters were to decide randomly and independently 
of each other). Denote by pe = [(a + b).(a + c) + (c + d ). 
(b + d )]⁄n² this proportion. In our example, we have.  
pe = [122 × 68 + 65 × 119]⁄(187)² = 0.458. Then, Cohen 
kappa coefficient writes:

0.561 0.458
0.19.

1 1 0.458
o e

e

p p
p
− −

= = =
− −

κ

The closer κ is to 1, the better the agreement between the 
two raters. The value of 0.19 is quite low, indicating poor 
agreement between the two diagnostic methods, hence 
confirming the highly significant McNemar test.

Case 5: Measuring the Diagnostic Value of a 
Clinical Test
In medical practice, assessing the diagnostic (prognostic) 
ability of a clinical (biological, radiological) test is often 
required [5]. This is traditionally done by using concepts 
such as diagnostic specificity and sensitivity and posi-
tive (negative) predictive value. In this context, the row 
variable X is the clinical test (T ) to be assessed (negative, 
positive) and the column variable Y the disease (D) to be 
diagnosed (absent, present). As an example, consider the 
Folin-Wu colorimetric test to assay blood glucose. Remein 
and Wilkerson [6] applied this test to 510 presumably 
healthy subjects and to 70 diabetic patients. Data are 
given in Table 6. In this table, column margins were fixed 
and all other numbers were observed. Thus, percentages 
can only be derived vertically.

As in Case 1, we could compute the proportions of posi-
tive tests in healthy and diabetic subjects and compare 
them by a chi-square test, but this is clearly not the pur-
pose here. Instead, we shall investigate how the laboratory 
test performs in diseased and nondiseased subjects. 

We would expect the clinical test to be mostly negative 
in healthy individuals. This can be measured by the speci-
ficity of the test SP = a/(a + c), the proportion of nega-
tive results in healthy (nondiseased) subjects. In contrast, 
we would expect the clinical test to be predominantly 
positive in diseased subjects. This can be measured by the 
sensitivity of the test SE = d/(b + d ), the proportion of 
positive results in diseased subjects. The overall efficacy of 

the test which combines specificity and sensitivity writes 
EF = (SP + SE)⁄2. The specificity is also called the true neg-
ative rate (TN) and the sensitivity the true positive rate (TP). 
The false positive rate (FP = 1 – TN) and the false negative 
rate (FN = 1 – TP) are also familiar clinical terms. Applying 
these concepts to the Folin-Wu test data in Table 6, we 
have SP = 461/510 = 0.904 (90.4%) and SE = 56/70 = 0.80 
(80%) so that the efficacy is EF = (0.904 + 0.80)/2 = 0.852 
(85.2%). Further, the false positive and negative rates are  
FP = 1 – 0.904 = 0.096 (9.6%) and FN = 1 – 0.800 = 0.20 
(20.0%).

The positive predictive value (PPV) of the test which 
measures the proportion (probability) of diseased subjects 
among those with a positive test cannot simply be derived 
from the table or from the specificity and sensitivity. 
Indeed, as column totals have been fixed, numbers 
cannot be divided horizontally as indicated before; thus, 
PPV is not equal to d/(c + d ). To compute PPV, one needs 
to know the prevalence (frequency) π of the disease in the 
population. Then, Bayes theorem is used: 

( )( )1 1
SE

PPV
SE SP

=
+ − −

π
π π

For the Folin-Wu study, assuming a prevalence of diabetes 
in the population of 6% (π = 0.06), the VPP turns out to 
be 34.7%:

( ) ( )
0.06 0.80

0.347.
0.06 0.80 1 0.06 1 0.904

VPP
×

= =
× + − × −

In other terms, when the Folin-Wu colorimetric test is pos-
itive, the subject has a 34.7% chance of having diabetes, 
which is substantially higher than the expected 6% before 
the test was performed. Similarly, the negative predictive 
value (NPV) is defined as the proportion of subjects free of 
the disease among those with a negative test. It should be 
emphasized that NPV is not given by a/(a + b), but rather 
by the formula:

( )
( ) ( )

1

1 1

SP
NPV

SP SE

−
=

− + −

π
π π

For the Folin-Wu data, we have:

( )
( ) ( )

( )
1 0.06 0.904

0.948 94.8%
1 0.06 0.904 0.06 1 0.80

NPV
− ×

= =
− × + × −

Table 5: Diagnosis of 187 Suspected Tumors by 2D 
Mammography and 3D Tomosynthesis.

Mammography Tomosynthesis Total

Benign Malignant

Benign 54 68 122

Malignant 14 51 65

Total 68 119 187

Table 6: Diagnostic Ability of Folin-Wu Test for Diabetes.

Folin-Wu Test Diabetes Total

Absent Present

Negative 461 14 475

Positive 49 56 105

Total 510 70 580
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Thus, when the Folin-Wu test is negative, diabetes can 
almost surely be excluded. 

Returning to the diagnosis of suspected tumors by 
2D mammography and 3D tomosynthesis (readings by 
a senior radiologist), the 156 tumors were also analyzed 
by a pathologist (gold standard). It turned out that the 
specificity and sensitivity were equal to 78% and 36% 
(EF = 40%), respectively, for mammography and 83% 
and 69% (EF = 70%), respectively, for tomosynthesis, 
emphasizing the better diagnostic ability of the latter 
technique.

Case 6: Measuring the Association between a 
Risk Factor and a Disease
One of the main objectives of epidemiological studies is to 
assess the association between a risk factor and a disease 
by means of 2 × 2 tables. This gives rise to the renowned 
notions of relative risk (RR) and odds ratio (OR). In this 
context, the row variable X is the risk factor (F) to which 
subjects are exposed, or not, and the column variable Y is 
the disease (D) which can develop, or not, in subjects.

As an example, consider the retrospective study of Hiller 
and Kahn [7], who looked at the association between dia-
betes (the risk factor) and eye cataract (the disease) in 607 
patients with cataract and in 2,011 patients free of cata-
ract. Data are summarized in Table 7. Here too column 
margins (totals) have been fixed, and the other numbers 
have been observed. This looks similar to Case 1, where 
proportions were compared in two different groups. 
The present goal, however, is to measure the association 
between diabetes and cataract, specifically to assess diabe-
tes as a potential risk factor for developing cataract. This 
example also shows that a disease (diabetes) can become 
a risk factor for another disease (cataract).

In such studies, the association between the risk fac-
tor (F) and the disease (D) is quantified by the odds ratio 
defined as OR = ad/bc, a definition to be found in any 
textbook in epidemiology [8–9]. A value OR > 1 indicates 
a positive association between the risk factor and the dis-
ease (increased risk), while when OR < 1, the association is 
negative (decreased risk). When OR = 1, there is no associa-
tion between risk factor and disease.

Data in Table 7 reveal that the risk of cataract is 
more than doubled in diabetic patients compared to 
nondiabetic ones:

55 1,927
2.29.

84 552
OR

×
= =

×

The odds ratio is significantly different from 1 as confirmed 
by the 95% confidence interval (95% CI: 1.6–3.3), but also 
by the chi-squared homogeneity test described in Case 1 
(p < 0.0001). 

Odds ratios have become very popular to measure the 
association between a risk factor and a disease, even in a 
clinical environment. They are also used in cross-sectional, 
prospective, and cohort studies, where normally the rela-
tive risk (RR) should be preferred. They are easily derived 
and generalized by (multivariate) logistic regression analy-
sis when it comes to studying the association between sev-
eral risk factors for a single disease [10–11].

Discussion
Clinicians and researchers are regularly faced with 2 × 2 
contingency tables, particularly when analyzing small 
datasets or large databases containing binary data. 
Although simple at first glance, their interpretation can 
sometimes become difficult. We have insisted on the way 
2 × 2 tables were established. Were row or column mar-
gins fixed or was the grand total fixed? This is particu-
larly important when it comes to calculating percentages; 
dividing cell numbers by totals must be done with cau-
tion. A remarkable example is the calculation of positive 
predictive values.

Two-by-two tables arise in various situations, as we have 
seen, and the way to analyze the data should be done cau-
tiously. For instance, when comparing two proportions 
from distinct groups (Case 1: column margins fixed), it 
makes no sense to calculate the correlation between the 
two binary variables. This can only be done when both 
variables have been observed together (Case 2: grand total 
fixed). Thus, for the comparison of smoking in male and 
female teenagers, we cannot conclude the independence 
between smoking and gender nor calculate a correlation 
coefficient. By contrast, when fixing the grand total n 
(Case 2), we can compare the two column or row propor-
tions without restrictions. For instance, in Table 3, we can 
assert that the proportion of patients with vomiting was 
higher in patients with nausea (53/126, 42.1%) than in 
patients without nausea (13/545, 2.4%).

The distinction between independent proportions 
(Case 1) and paired proportions (Case 3) is also essential. 
Applying the homogeneity test where the McNemar test 
is requested can lead to fallacious conclusions because the 
proportions to be compared are not the same. As an illus-
tration, the homogeneity test applied to data in Table 4 
yields a highly significant value 2

(1) 12.2=χ  (p = 0.0005), 
but it shows that the proportion of patients walking 
>500 m after surgery is higher among those who walked 
>500 m (43/63, 68.3%) than those who walked ≤500 m 
before surgery (37/93, 39.8%); this comparison gives only 
a partial view of the surgical efficacy.

We already mentioned the relationship between Cohen 
kappa coefficient (Case 4, agreement between raters) and 
the McNemar test (Case 3); in both tables, the grand total was 
fixed. A significant McNemar test corresponds to a κ coeffi-
cient significantly different from 0, but it does not necessar-
ily mean that there is a high degree of agreement between 
the two raters, particularly when the sample size is large. In 

Table 7: Association between Diabetes and Eye Cataract 
in Subjects Aged 50–69 Years.

Diabetes Cataract Total

Present Absent

Yes (Exposed) 55 84 139

No (Nonexposed) 552 1927 2,479

Total 607 2,011 2,618
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relation to the assessment of the diagnostic capacity of a 
clinical test (Case 5), it should be emphasized again that the 
PPV cannot simply be derived from the 2 × 2 table because, 
in general, the columns are fixed, and dividing can only be 
done vertically. Therefore, the prevalence (proportion of 
diseased subjects in the population) needs to be specified 
separately. In some rare situations where the grand total n is 
fixed, the prevalence can be estimated by   ( )/b d n= +π , so 
that   /( )PPV d c d= +  directly from the 2 × 2 table. 

Finally, for measuring the association between a risk 
factor and a disease (Case 6), we only mentioned the 
odds ratio, a widely used indicator in epidemiological 
and clinical studies. In prospective or cohort studies, 
however, where a sample of subjects exposed to the risk 
factor and a separate sample of nonexposed subjects are 
followed up over time and the occurrence of the disease 
recorded (row margins are fixed rather than column mar-
gins), RR should be preferred to OR. By definition, the 
relative risk is the ratio of the incidence rate of the dis-
ease in exposed and nonexposed subjects, specifically, 

[  /(   )] / [ /( )]RR a a b c c d= + + . Its interpretation is simi-
lar to that of OR. In cross-sectional studies in which the 
risks factor and the disease are observed simultaneously, 
the relative risk is the ratio of the prevalence rate (not the 
incidence rate) of the disease in exposed and nonexposed 
subjects, but the formula remains the same.

In conclusion, 2 × 2 tables are common place in the 
medical literature and one of the first summary statistics 
taught in any basic textbook. When facing such a table, 
ask yourself which totals (margins) are fixed (row, column, 
or grand total); calculate the appropriate percentages; 
perform the adequate statistical test; and provide the best 
interpretation of the data.
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