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Abstract

Evolving multiplex networks are a powerful model for representing the dynamics 

along time of different phenomena, such as social networks, power grids, biological 

pathways. However, exploring the structure of the multiplex network time series is 

still an open problem. Here we propose a two-step strategy to tackle this problem 

based on the concept of distance (metric) between networks. Given a multiplex 

graph, first a network of networks is built for each time step, and then a real valued 

time series is obtained by the sequence of (simple) networks by evaluating the 

distance from the first element of the series. The effectiveness of this approach in 

detecting the occurring changes along the original time series is shown on a synthetic 

example first, and then on the Gulf dataset of political events.

Keywords: Information science, Computational mathematics, Applied mathematics, 

Computer science

1. Introduction

When the links connecting a set of 𝑁 nodes arise from 𝑘 different sources, 

a possible representation for the corresponding graph is the construction of 𝑘

networks on the same 𝑁 nodes, one for each source. The resulting structure is 

known as a multiplex network, and each of the composing graphs is called a layer. 

Multiplex networks are quite effective in representing many different real-world 

situations [1, 2, 3], and their structure helps extracting crucial information about 

the complex systems under investigation that would instead remain hidden when 

analyzing individual layers separately [4, 5, 6]; furthermore, their relation with time 
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series analysis techniques has recently gained interest in the literature [7]. A key 

property to be highlighted is the correlated multiplexity, as stated in [8]: in real-

world systems, the relation between layers is not at all random; in fact, in many cases, 

the layers are mutually correlated. Moreover, the communities induced on different 

layers tend to overlap across layers, thus generating interesting mesoscale structures.

These observations guided the authors of [9] in defining a network having the 

layers of the original multiplex graph as nodes, and using information theory to 

define a similarity measure between the layers themselves, so to investigate the 

mesoscopic modularity of the multiplex network. Here we propose to pursue a 

similar strategy for defining a network of networks derived from a multiplex graph, 

although in a different context and with a different aim. In particular, we project 

a time series of multiplex networks into a series of simple networks to be used in 

the analysis of the dynamics of the original multiplex series. The projection map 

defining the similarity measure between layers is induced by the Hamming–Ipsen–

Mikhailov (HIM) network distance [10], a glocal metric combining the Hamming 

and the Ipsen–Mikhailov distances, used in different scientific areas [11, 12, 13, 14, 

15, 16]. The main goal in using this representation is the analysis of the dynamics 

of the original time series through the investigation of the trend of the projected 

evolving networks, by extracting the corresponding real-valued time series obtained 

computing the HIM distance between any element in the series and the first one.

For instance, we show on a synthetic example that this strategy is more informative 

than considering statistics of the time series for each layer of the multiplex networks, 

or than studying the networks derived collapsing all layers into one including all 

links, as in [17, 18] when the aim is detecting the timesteps where more relevant 

changes occur and the system is undergoing a state transition (tipping point) or 

it is approaching it (early warning signals). This is a classical problem in time 

series analysis, and very diverse solutions have appeared in literature (see [19]

for a recent example). Here we use two different evaluating strategies, the former 

based on the fluctuations of mean and variance [20] (implemented in the R package 

changepoint https :/ /cran .r-project .org /web /packages /changepoint /index .html), and 

the latter involving the study of increment entropy indicator [21].

We conclude with the analysis of the well known Gulf Dataset (part of the Penn 

State Event Data) concerning the 304.401 political events (of 66 different categories) 

occurring between 202 countries in the 10 years between 15 April 1979 to 31 March 

1991, focusing on the situation in the Gulf region and the Arabian peninsula. A major 

task in the analysis of the Gulf dataset is the assessment of the translation of the 

geopolitical events into fluctuations of measurable indicators. A similar network-

based mining of sociopolitical relations, but with a probabilistic approach, can be 

found in [22, 23, 24]. Here we show the effectiveness of the newly introduced 

methodology in associating relevant political events and periods to characteristic 
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behaviors in the dynamics of the time series of the induced networks of networks, 

together with a simple overview of the corresponding mesoscale modular structure.

2. Background

The Hamming–Ipsen–Mikhailov (HIM) metric [10, 25] is a distance function 

quantifying in the real interval [0, 1] the difference between two networks on shared 

nodes. The HIM metric linearly combines an edit distance, the Hamming (H) 

[26, 27, 28] and a spectral distance, the Ipsen–Mikhailov (IM) [29]. Edit distances 

are local metrics, functions of insertion and deletion of matching links, while spectral 

measures are global distances, functions of the network spectrum. Local functions 

disregards the overall network structure, while spectral measures cannot distinguish 

isospectral graphs. As its characterizing feature, HIM is a glocal distance that 

overcomes the drawbacks of local and global metrics when separately considered. 

Furthermore, its definition can be naturally extended to directed networks. Hereafter 

we give a brief description of the H, IM and HIM distances, graphically summarized 

in Figure 1.

Notations. Let 1 and 2 be two simple networks on 𝑁 nodes, whose adjacency 

matrices are 𝐴(1) and 𝐴(2), with 𝑎(1)
𝑖𝑗
, 𝑎(2)

𝑖𝑗
∈  , where  = 𝔽2 = {0, 1} for unweighted 

graphs and  = [0, 1] ⊆ ℝ for weighted networks. Let then 𝕀𝑁 be the 𝑁×𝑁 identity 

matrix 𝕀𝑁 =

( 1 0 ⋯ 0
0 1 ⋯ 0
⋯

0 0 ⋯ 1

)
, let 1𝑁 be the 𝑁 ×𝑁 unitary matrix with all entries equal 

to one and let 0𝑁 be the 𝑁×𝑁 null matrix with all entries equal to zero. Denote then 

by 𝑁 the empty network with 𝑁 nodes and no links (with adjacency matrix 0𝑁 ) 

and by 𝑁 the clique (undirected simple full network) with 𝑁 nodes and all possible 

𝑁(𝑁 − 1) links, whose adjacency matrix is 1𝑁 − 𝕀𝑁 . Finally, the Laplacian matrix 

𝐿 of an undirected network is defined as the difference 𝐿 = 𝐷 − 𝐴 between the 

degree matrix 𝐷 and the adjacency matrix 𝐴, where 𝐷 is the diagonal matrix of 

vertex degrees. 𝐿 is positive semidefinite and singular, with eigenvalues 0 = 𝜆0 ≤
𝜆1 ≤ ⋯ ≤ 𝜆𝑁−1.

2.1. The Hamming distance

The Hamming distance, one of the most common dissimilarity measures in 

coding and string theory and recently used also for network comparison, evaluates 

the presence/absence of matching links on the two compared networks. In terms of 

adjacency matrices, the expression for the normalized Hamming metric 𝐻 reads as
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Figure 1. Summary of the definitions of the HIM distance and its Hamming (H) and Ipsen–Mikhailov 
(IM) components.

H(1,2) =
Hamming(1,2)
Hamming(𝑁,𝑁 )

=
Hamming(1,2)

𝑁(𝑁 − 1)

= 1
𝑁(𝑁 − 1)

∑
1≤𝑖≠𝑗≤𝑁

|𝐴(1)
𝑖𝑗

− 𝐴
(2)
𝑖𝑗
| ,
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where the normalization factor 𝑁(𝑁 − 1) bounds the range of the function H in the 

interval [0, 1]. The lower bound 0 is attained only for identical networks 𝐴(1) = 𝐴(2), 

the upper limit 1 for complementary networks 𝐴(1) +𝐴(2) = 1𝑁 − 𝕀𝑁 . When 1 and 

2 are unweighted networks, H(1, 2) is just the fraction of different matching 

links over the total number 𝑁(𝑁 − 1) of possible links between the two graphs.

2.2. The Ipsen–Mikhailov distance

The Ipsen–Mikhailov IM metric stems from the realization of an 𝑁 nodes 

network as an 𝑁 molecules system  connected by identical elastic springs, 

according to the adjacency matrix 𝐴. The dynamics of the spring-mass system 
can be described by the set of 𝑁 differential equations

𝑥̈𝑖 +
𝑁∑
𝑗=1

𝐴𝑖𝑗(𝑥𝑖 − 𝑥𝑗) = 0 for 𝑖 = 0,… , 𝑁 − 1 .

The vibrational frequencies of  are given by 𝜔𝑖 =
√
𝜆𝑖, while the spectral density 

for a graph in terms of the sum of Lorentz distributions is defined as

𝜌(𝜔, 𝛾) = 𝐾

𝑁−1∑
𝑖=1

𝛾

(𝜔 − 𝜔𝑖)2 + 𝛾2
,

where 𝛾 is the common width and 𝐾 is the normalization constant defined by the 

condition 

∞

∫
0

𝜌(𝜔, 𝛾)d𝜔 = 1, and thus

𝐾 = 1

𝛾

𝑁−1∑
𝑖=1

∞

∫
0

d𝜔
(𝜔 − 𝜔𝑖)2 + 𝛾2

.

The scale parameter 𝛾 specifies the half-width at half-maximum, which is equal to 

half the interquartile range. Then the spectral distance 𝜖𝛾 between two graphs 1
and 2 on 𝑁 nodes with densities 𝜌1

(𝜔, 𝛾) and 𝜌2
(𝜔, 𝛾) can be defined as

𝜖𝛾 (1,2) =

√√√√√√ ∞

∫
0

[
𝜌1

(𝜔, 𝛾) − 𝜌2
(𝜔, 𝛾)

]2
d𝜔 .

Since arg max
(1,2)

𝜖𝛾 (1, 2) = (𝑁, 𝑁 ) for each 𝑁 , denoting by 𝛾 the unique 

solution of 𝜖𝛾 (𝑁, 𝑁 ) = 1, the normalized Ipsen–Mikhailov distance between two 

undirected networks can be defined as

IM(1,2) = 𝜖𝛾 (1,2) =

√√√√√√ ∞

∫
0

[
𝜌1

(𝜔, 𝛾) − 𝜌2
(𝜔, 𝛾)

]2
d𝜔 ,
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so that IM is bounded between 0 and 1, with upper bound attained only for 

{1, 2} = {𝑁, 𝑁}.

2.3. The Hamming–Ipsen–Mikhailov distance

Consider now the cartesian product 𝑍 of two metric spaces (𝑁𝑁𝑁(𝑁), H) and 

(𝑁𝑁𝑁(𝑁), IM), where 𝑁𝑁𝑁(𝑁) is the set of all simple undirected networks on 𝑁

nodes endowed either with the Hamming metric H or with the Ipsen–Mikhailov 

distance IM. Define then on 𝑍 the one-parameter Hamming–Ipsen–Mikhailov 

distance HIM as the 𝐿2 (Euclidean) product metric of H and 
√
𝜉⋅ IM, normalized 

by the factor 1√
1+𝜉

, for 𝜉 ∈ [0, +∞):

HIM𝜉(1,2) =
1√
1 + 𝜉

||(H(1,2),
√
𝜉 ⋅ IM(1,2))||2

= 1√
1 + 𝜉

√
H2(1,2) + 𝜉 ⋅ IM2(1,2) ,

where in what follows we will omit the subscript 𝜉 when it is equal to one. Note 

that, apart from extreme values, the qualitative impact of 𝜉 is minimal in practice, 

and in what follows 𝜉 = 1 will always be assumed. The metric HIM𝜉(1, 2) is 

bounded in the interval [0, 1], with the lower bound attained for every couple of 

identical networks, and the upper one attained only on the pair (𝑁, 𝑁 ). Moreover, 

all distances HIM𝜉 will be nonzero for non-identical isomorphic/isospectral graphs.

2.4. A minimal example

In Figure 2 we show, in the H × IM space, the graphical representation in circular 

layout and the mutual HIM distances between four undirected simple networks on six 

shared nodes, namely the ring network (A), the star network (B), a regular network 

with degree three (C) and a 3 ×2 regular lattice (D). HIM distances range from 0.217 

for the pair (C,D), which are the mutually closest networks, to 0.495 for (B,C) which 

are the farthest graphs. In all cases, the Hamming distance is contributing to the HIM 

metric more than the Ipsen–Mikhailov component, indicating that the presence or 

absence of matching links is has a larger impact than the overall structure. Note for 

instance that networks A and B have the same Hamming distance as A and D, but 

the spectral structure of the lattice D is closer to the structure of the ring network 

A than the star network B, as quantitatively shown by the different IM distance; in 

particular, the spectral structures of A and D are the closest, with IM distance even 

smaller of the IM distance between C and D. An analogous situation occurs for the 

pairs B,C and B,D, sharing the same H distance but with a different IM distance.
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Figure 2. Graphical representation in circular layout (a), scatterplot (b) and tabular (c) representation of 
the HIM distance in the Ipsen–Mikhailov (IM axis) and Hamming (H axis) distance space between ring 
network (A), the star network (B), a regular network with degree three (C) and a 3 × 2 regular lattice (D).

Figure 3. Graphical representation of a sequence  of 𝜏 multiplex networks  (𝑡) with 𝜆 layers.

3. Theory

Let  = { (𝑡)}𝜏
𝑡=1 be a sequence (time series) of 𝜏 multiplex networks with 𝜆

layers {𝐿𝑖(𝑡)}𝜆𝑖=1 sharing 𝜈 nodes {𝑣𝑗}𝜈𝑗=1, as displayed in Figure 3.

The metric projection. Construct now the metric projection  (𝑡) of  (𝑡) as the full 

undirected weighted network with 𝜆 nodes {𝑤𝐿 }𝜆 where the weight of the edge 

𝑖 𝑖=1
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Figure 4. Construction of the metric projection  (𝑡) at a given time point 𝑡 = 𝑖 for a multiplex network 
with 𝜆 = 5 layers; the metric projection is a new network with one node for each layer of the original net, 
and the edge weight is given by the complement of the HIM distance between the corresponding layers.

connecting vertices 𝑤𝐿𝑖
and 𝑤𝐿𝑗

is defined by the HIM similarity between layers 

𝐿𝑖(𝑡) and 𝐿𝑗(𝑡): thus, if 𝐴 (𝑡) is the adjacency matrix of  (𝑡), then

𝐴
𝑖𝑗

(𝑡) = 1 − HIM(𝐿𝑖(𝑡), 𝐿𝑗(𝑡)) .

In Figure 4 an example of the construction of  (𝑡) is shown for a multiplex network 

with five layers.

The collapsed projection. Moreover, if 𝐴𝐿𝑖(𝑡) is the adjacency matrix of 𝐿𝑖(𝑡), define 

the collapsed projection  (𝑡) of  (𝑡) on nodes {𝑣𝑗}𝜈𝑗=1 as the network where a 

link exists between 𝑣𝑘 and 𝑣𝑞 if it exists in at least one layer {𝐿𝑖(𝑡)}𝜆𝑖=1 (for binary 

layers); in case of weighted layers, the weight of the link 𝑣𝑘−𝑣𝑞 is the average of the 

weights across all layers. Thus, if 𝐴 (𝑡) is the adjacency matrix of  (𝑡), then

𝐴
𝑘𝑞

(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜆⋁
𝑖=1

𝐴
𝐿𝑖

𝑘𝑞
(𝑡) for binary layers

1
𝜆

𝜆∑
𝑖=1

𝐴
𝐿𝑖

𝑘𝑞
(𝑡) for weighted layers .

In Figure 5 we show a graphical sketch of the collapsing of a multiplex network with 

five layers.

Caveat: consider a sequence of binary multiplex networks such that, for each of 

the possible 𝜈(𝜈−1)2 links and for each timestep, there exists at least one layer including 

this link. Then the collapsed projection, at each time step, is the full graph on 𝜈 nodes, 
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Figure 5. Construction of the collapsed projection  (𝑡) at a given time point 𝑡 = 𝑖 for a multiplex 
network with 𝜆 = 5 layers; the collapsed projection is a new network sharing the same nodes of the 
original multiplex net, where a link exists in the projection if the same link appears in at least one of the 
layers of the multiplex network, as if all the layers were collapsed into a single one.

and, as such, it has no temporal dynamics, regardless of the evolution of each single 

layer.

The distance series. To investigate the dynamics of  (𝑡) for 𝑡 = 1, … , 𝜏, we 

construct a suite of associated time series by means of three different procedures, 

all involving the HIM distance between each network in a given sequence and the 

first element of the sequence itself. The first group D1 of distance series is obtained 

by evaluating the dynamics of each layer considered separately:

{
HIM(𝐿𝑖(𝑡), 𝐿𝑖(1)), 𝑡 = 2,… , 𝜏

}
𝑖 = 1,… , 𝜆 . (D1)

In Figure 6 we show the construction of the distance series D1 for the first layer of 

the multiplex network in Figure 3.

The second series, D2, collects the metric dynamics of the collapsed projection 

 :

HIM( (𝑡), (1)), 𝑡 = 2,… , 𝜏 . (D2)

An example of construction of D2 for the five layers multiplex network of Figure 5

is shown in Figure 7.
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Figure 6. Construction of the distance series D1 for the first layer of the sequence  of multiplex network 
in Figure 3. The value of the time series at time point 𝑡 = 𝑖 is the HIM distance between the layer 𝐿1 at 
time 𝑡 = 𝑖 and at time 𝑡 = 1.

Figure 7. Construction of the distance series D2 for the sequence  of collapsed networks in Figure 5. 
The value of the time series at time point 𝑡 = 𝑖 is the HIM distance between  at time 𝑡 = 𝑖 and at time 
𝑡 = 1.

Finally, the last series D3 collects the metric dynamics of the metric projection 

 , and the corresponding example for the multiplex networks in Figure 4 is shown 

in Figure 8:

HIM( (𝑡), (1)), 𝑡 = 2,… , 𝜏 . (D3)

Dynamics indicators. The dynamics of the time series 𝐷 ∗ is quantitatively analyzed

by means of a set of indicators, assessing the series’ information content and 

detecting occurring tipping points.
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Figure 8. Construction of the distance series D3 for the sequence  of metric projections in Figure 4. 
The value of the time series at time point 𝑡 = 𝑖 is the HIM distance between  at time 𝑡 = 𝑖 and at time 
𝑡 = 1.

The first indicator is the Increment Entropy (IncEnt), introduced in [21] as a 

measure the complexity of time series in terms of its unpredictability [30]. The 

starting point is increment series of a time series as an informative encoder of the 

characteristics of dynamic changes hidden in a signal. In practice, the increments are 

grouped in vectors of size 𝑚, and each increment is mapped into a two-letters word, 

with a sign and its size coded in this word according to a resolution parameter 𝑅. 

Finally, the IncEnt is computed as the Shannon entropy of these words: the larger is 

the IncEnt value, the less predictable is the series.

The second indicator meanvar belongs to the family of the changepoint detection 

indicators as implemented in R by the changepoint package [20]. In general, 

changepoint detection algorithms are the solutions to the problem of estimating 

the points in a time series where the statistical properties change. The subset of 

the meanvar functions search for changes in both the mean and the variance, and a 

number of alternative are known in literature [31, 32, 33, 34, 35, 36]. In particular, 

in what follows we will employ the recent Pruned Exact Linear Time (PELT) 

algorithm [37], based on the classical segment neighborhood technique minimizing 

the combination of a cost function (for instance, twice the negative log-likelihood) 

with a linear penalty function through dynamic programming. Finally, we will use 

Changepoints for a Range of PenaltieS (CROPS) [38] to obtain optimal changepoint 

segmentations of data sequences for all penalty values across a continuous range.
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4. Results & discussion

4.1. A synthetic example

Consider now a sequence of binary multiplex networks with 𝜏 = 30, 𝜆 = 5 and 

𝜈 = 10, generated as follows.

Define the perturbation function Π(𝑁, (𝑚, 𝑀)) taking as entries a binary simple 

network 𝑁 on 𝑛 nodes, and a couple of real values (𝑚, 𝑀) with 0 ≤ 𝑚 ≤ 𝑀 ≤ 1, 

and returning a network 𝑁 ′ obtained from 𝑁 by swapping the status (present/not 

present) of ⌊𝑔 𝑛(𝑛−1)
2 ⌋ links, where 𝑔 is a random value in the interval [𝑚, 𝑀]. Further, 

define the default transition as the pair 𝜎𝑑 = (0.05, 0.2), a small transition as 𝜎𝑠 =
(0.2, 0.3), a medium transition as 𝜎𝑚 = (0.25, 0.4) and, finally, a large transition as 

𝜎𝑙 = (0.5, 0.7). Moreover, let 𝑅 be an Erdós–Rényi 𝐺(𝜈, 0.3) random model and 

define 4 special timepoints: the initial time step 𝜏0 = 1, the first spike 𝜏1 = 10, the 

second spike 𝜏2 = 17 and the third spike 𝜏3 = 24.

Then, each layer 𝐿𝑖 at a given time step 𝑡 is defined through the following rule:

𝐿𝑖(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π(𝑅, 𝜎𝑠) if 𝑡 = 𝜏0 and 𝑖 = 1, 2

Π(𝑅, 𝜎𝑚) if 𝑡 = 𝜏0 and 𝑖 = 3, 4

Π(𝑅, 𝜎𝑙) if 𝑡 = 𝜏0 and 𝑖 = 5

Π(𝐿𝑖(𝑡 − 1), 𝜎𝑠) if 𝑡 = 𝜏1 and 𝑖 = 1, 3, 5

or if 𝑡 = 𝜏2 and 𝑖 = 3, 5

or if 𝑡 = 𝜏3 and 𝑖 = 5

Π(𝐿𝑖(𝑡 − 1), 𝜎𝑚) if 𝑡 = 𝜏2 and 𝑖 = 1, 2

or if 𝑡 = 𝜏3 and 𝑖 = 3

Π(𝐿𝑖(𝑡 − 1), 𝜎𝑙) if 𝑡 = 𝜏1 and 𝑖 = 2, 4

or if 𝑡 = 𝜏2 and 𝑖 = 4

or if 𝑡 = 𝜏3 and 𝑖 = 1, 2, 4

Π(𝐿𝑖(𝑡 − 1), 𝜎𝑑) otherwise .

In Figure 9 we show the evolution along the 30 timepoints of the 5 curves for 𝐷1(𝐿𝑖), 
its average 𝐷1 = 1

5
∑5

𝑖=1 𝐷𝑖(𝐿𝑖) and 𝐷2, 𝐷3. To assess the information content of 

each curve we use the Increment Entropy indicator IncEnt, whose value increases 

with the series’ complexity: the IncEnt values are reported in Table 1.

Among the evolving layers, 𝐿2 and 𝐿4 have the largest IncEnt, while the other 

three layers show a lower level of complexity. As expected, the average 𝐷1 and 

the collapsed network distance 𝐷2 has very low IncEnt value, yielding that both 

averaging the distances and collapsing the layers lose information about the overall 
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Figure 9. 𝐷1, 𝐷2, 𝐷3 for a synthetic example on 5 layers and 30 timepoints; in the right column, third 
row, we plot 𝐷1 =

1
5
∑5

𝑖=1 𝐷𝑖(𝐿𝑖).

Table 1. Increment Entropy values for the distance 
sequences of the synthetic example, with parameters 
𝑚 = 2, 𝑅 = 2.

Dist. IncEnt Dist. IncEnt
𝐷1(𝐿1) 2.52 𝐷1(𝐿2) 2.78

𝐷1(𝐿3) 2.59 𝐷1(𝐿4) 2.83

𝐷1(𝐿5) 2.44 𝐷1 2.27

𝐷2 1.82 𝐷3 3.04

dynamics. Finally, distance 𝐷3 is the metric which better detects the network 

evolution along time, conserving most of the information. This is also supported 

by the meanvar indicator with CROPS range [2 log(𝜏), 10 log(𝜏)] with the PELT 

algorithm: in fact, the meanvar indicator detects correctly in 𝐷3 the three points 

𝜏1 −1, 𝜏2 −1 and 𝜏3 −1 as changepoints, while in 𝐷2, other than the 𝜏1 −1, meanvar 

detects 𝑡 = 20 and = 28 which are unrelated to the designed dynamics.
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4.2. The Gulf Dataset

Data description.

Part of the Penn State Event Data http :/ /eventdata .psu .edu/ (formerly Kansas 

Event Data System), available at http :/ /vlado .fmf .uni-lj .si /pub /networks /data /KEDS/,

the Gulf Dataset collects, on a monthly bases, political events between pairs of 

countries focusing on the Gulf region and the Arabian peninsula for the period 

15 April 1979 to 31 March 1999, for a total of 240 months. The 304401 political 

events involve 202 countries and they belong to 66 classes (including for instance 

“pessimist comment”, “meet”, “formal protest”, “military engagement”, etc.) as 

coded by the World Event/Interaction Survey (WEIS) Project [39, 40, 41] http :

/ /www.icpsr.umich .edu /icpsrweb /ICPSR /studies /5211, whose full list is reported in 

Table 2, 3.

In the notation of Sec. 3, the Gulf Dataset translates into a time series of 𝜏 =
240 multiplex networks with 𝜆 = 66 unweighted and undirected layers sharing 

𝜈 = 202 nodes. The landmark event for the considered zone in the 20 years data 

range of interest is definitely the First Gulf War (FGW), occurring between August 

1990 and March 1999. However, other (smaller) events located in the area had 

a relevant impact on world politics and diplomatic relations. Among them, the 

Iraq Disarmament Crisis (IDC) in February 1998 significantly emerges from the 

data, as shown in what follows. During that month, Iraq President Saddam Hussein 

negotiated a deal with U.N. Secretary General Kofi Annan, allowing weapons 

inspectors to return to Baghdad, preventing military action by the United States and 

Britain.

4.3. Network statistics

Consider in this section the set of 304401 edges connecting the 202 nodes 

independently of their class. In Table 4 we list the top-10 countries/institutions 

participating in the largest number of edges across different time spans, together 

with the absolute number of shared edges and the corresponding percentage over the 

total number of edges for the period. In general, USA, Iraq and Iran are the major 

players, with different proportions according to the specific period: in particular, Iraq 

is the main character in both the major events, FGW and IDC. Other key actors are 

Israel, the United Nations and the Saudi Arabia, with a relevant presence in each 

key event in the area. Note that, overall, the top 20 institutions (also including, other 

than those listed in the table, the Arab world, France, Syria, Egypt, Russia, Turkey, 

Jordan, Libya, Germany and the Kurd world) are responsible for 82.57% of all edges.
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Table 2. Part 1 of the full table of WEIS codes [39], with the 66 layers considered in the Gulf 
dataset case study; entries with no layer number were not monitored in the Gulf dataset events 
collection.

Layer# WEIS code WEIS cat Description

1 011 Yield Surrender, yield or order, submit to arrest, etc.

2 012 Yield Yield position, retreat; evacuate

3 013 Yield Admit wrongdoing; retract statement

014 Yield Accommodate, Cease-fire

4 015 Yield Cede Power

5 021 Comment Explicit decline to comment

6 022 Comment Comment on situation – pessimistic

7 023 Comment Comment on situation – neutral

8 024 Comment Comment on situation – optimistic

9 025 Comment Explain policy or future position

026 Comment Appoint or Elect

027 Comment Alter Rules

10 031 Consult Meet with at neutral site, or send note.

11 032 Consult Consult & Visit; go to

12 033 Consult Receive visit; host

034 Consult Vote, Elect

13 041 Approve Praise, hail, applaud, condole

14 042 Approve Endorse other’s policy or position; give verbal support

043 Approve Rally

15 051 Promise Promise own policy support

16 052 Promise Promise material support

17 053 Promise Promise other future support action

18 054 Promise Assure; reassure

055 Promise Promise Rights

19 061 Grant Express regret; apologize

20 062 Grant Give state invitation

21 063 Grant Grant asylum

22 064 Grant Grant privilege, diplomatic recognition

23 065 Grant Suspend negative sanctions; truce

24 066 Grant Release and/or return persons or property

067 Grant Grant Position

25 070 Reward Reward

26 071 Reward Extend economic aid (as gift and/or loan)

27 072 Reward Extend military assistance

28 073 Reward Give other assistance

29 081 Agree Make substantive agreement

30 082 Agree Agree to future action or procedure; agree to meet, to negotiate

083 Agree Ally

084 Agree Merge; Integrate

31 091 Request Ask for information

32 092 Request Ask for policy assistance

33 093 Request Ask for material assistance

34 094 Request Request action; call for

35 095 Request Entreat; plead; appeal to

096 Request Request policy change

097 Request Request rights

Out of all potential 202⋅2012 = 20301 unique edges, only 4394 are represented in 

the Gulf Dataset. In Table 5 we list the top-10 links ranked by occurrence, together 

with the number of occurrences itself and the corresponding percentage over the 

total number of edges for the period. As it happens for the nodes, there are a few key 

links throughout the whole timespan which are consistently present in most of the 
liyon.2016.e00136

ished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00136
http://creativecommons.org/licenses/by/4.0/


Article No~e00136

Table 3. Part 2 of the full tab

no layer number were not mo

Layer# WEIS code

36 101

37 102

38 111

39 112

113

40 121

41 122

123

42 131

43 132

133

44 141

45 142

46 150

151

152

47 160

48 161

162

49 171

50 172

51 173

52 174

53 181

54 182

55 191

56 192

57 193

58 194

59 195

196

197

60 201

61 202

203

62 211

63 212

213

64 221

65 222

66 223

1 As negative sanctions.
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le of WEIS codes [39], with the 66 layers considered in the Gulf dataset case study; entries with 
nitored in the Gulf dataset events collection.

WEIS cat Description

Propose Offer proposal

Propose Urge or suggest action or policy

Reject Turn down proposal; reject protest demand, threat, etc

Reject Refuse; oppose; refuse to allow

Reject Defy law

Accuse Charge; criticize; blame; disapprove

Accuse Denounce; denigrate; abuse

Accuse Investigate

Protest Make complaint (not formal)

Protest Make formal complaint or protest

Protest Symbolic act

Deny Deny an accusation

Deny Deny an attributed policy, action role or position

Demand Issue order or command; insist; demand compliance; etc

Demand Issue Command

Demand Claim Rights

Warn Give warning

Warn Warn of policies

Warn Warn of problem

Threaten Threat without specific negative sanctions

Threaten Threat with specific non-military negative sanctions

Threaten Threat with force specified

Threaten Ultimatum; threat with negative sanctions and time limit specified

Demonstrate Non-military demonstration; to walk out on

Demonstrate Armed force mobilization

Reduce Relations1 Cancel or postpone planned event

Reduce Relations1 Reduce routine international activity; recall officials; etc

Reduce Relations1 Reduce or halt aid

Reduce Relations1 Halt negotiations

Reduce Relations1 Break diplomatic relations

Reduce Relations1 Strike

Reduce Relations1 Censor

Expel Order personnel out of country

Expel Expel organization or group

Expel Ban Organization

Seize Seize position or possessions

Seize Detain or arrest person(s)

Seize Hijack; Kidnap

Force Non-injury obstructive act

Force Non-military injury-destruction

Force Military engagement

important events, with different proportions. However, in some of the events, there 

is an interesting wide gap in the number of occurrences between the very top edges 

and the remaining ones, e.g., Iraq–USA in FGW (and post) and IDC, and Iran–Iraq 

during the corresponding war and in the pre-FGW, yielding that these are the links 

mainly driving the whole network evolution.

In Figure 10 we display the dynamics of the occurrence along time of the top 

edges, showing their different trends during the diverse events. It is interesting to 

note how two top links, Iran–Iraq and Iran–USA are preponderant from 1979 to 1989, 
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Table 4. Top-10 countries/in

number of links in the consid

Arabia; UN: United Nations.

Apr79–Mar9
Edges 30440

Inst. Degree
USA 93900

Iraq 84974

Iran 61782

Israel 32204

UN 30097

SA 20503

Lebanon 19130

Palestine 18607

UK 18415

Kuwait 17405

Apr79-FGW
Edges 130990

Inst. Degree
Iran 43818

USA 34710

Iraq 25606

Israel 12731

Palestine 10622

Lebanon 10374

SA 10290

Arab 
world

8237

Syria 8089

UN 6876
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stitutions ranked by number of shared links, absolute and in percentage over (twice) the total 
ered period. The Iran–Iraq War started in September 1980 and ended in August 1988. SA: Saudi 

9 FGW IDC
1 Edges 41181 Edges 7712

% Inst. Degree % Inst. Degree %
15.42 Iraq 18691 22.69 Iraq 3830 24.83

13.96 USA 15584 18.92 USA 2876 18.65

10.15 Kuwait 5245 6.37 UN 1946 12.62

5.29 SA 3548 4.31 Russia 896 5.81

4.94 Israel 3420 4.15 UK 715 4.64

3.37 UN 3363 4.08 France 651 4.22

3.14 UK 2997 3.64 Iran 468 3.03

3.06 Iran 2104 2.55 Arab world 321 2.08

3.02 France 2076 2.52 China 309 2.00

2.86 Arab world 2053 2.49 Kuwait 306 1.98

FGW-Mar99 Iran–Iraq War
Edges 132230 Edges 95189

% Inst. Degree % Inst. Degree %
16.73 USA 43606 16.49 Iran 32812 17.24

13.25 Iraq 40677 15.38 USA 24111 12.66

9.77 UN 19858 7.51 Iraq 21019 11.04

4.86 Israel 16053 6.07 Israel 9189 4.83

4.05 Iran 15860 6.00 SA 8089 4.25

3.96 UK 9209 3.48 Palestine 7521 3.95

3.93 Lebanon 8143 3.08 Lebanon 6992 3.67

3.14 France 6925 2.62 Syria 6072 3.19

3.09 Russia 6875 2.60 Arab world 5726 3.01

2.62 SA 6665 2.52 Kuwait 4890 2.57

i.e., throughout the whole Iran–Iraq War, while they go decaying quickly afterwards, 

with a minor spike for FGW. Complementarily, two other major links Iraq–USA and 

Iraq–United Nations have the opposite trend, remaining almost uninfluential until 

FGW and growing later on, with a noticeable spike for IDC; moreover, Iraq–United 

Nations does not show any trend change for FGW, while Iraq–USA does. The Iraq–

Kuwait link has a very limited dynamics, with the unique important spike for FGW. 

Very similar are also the Saudi Arabia–USA and the Israel–USA links, showing 

an additional lower spike in correspondence of the raise of the terroristic actions 

between 1995–1996. This last event is crucial in the Israel–Lebanon relations, where 

it has the largest effect; FGW, instead, has almost no impact here.

𝐷 ∗ indicators analysis. The two main events FGW and IDC generate sudden 

changes in the D1 time series for most of the layers: an example is given in 

Figure 11 for the layer 37, corresponding to WEIS code 102 (“Urge or suggest 

action or policy”), where we highlight FGW by a blue background, and IDC by a 

red dashed line. The complete panel of the 𝐷1 curves for all the 66 layers is shown 

in Figure 12–14: most of the layers show a decise change in trend in correspondence 

of the two main events, although some of the layers display a different behavior (e.g., 
layer 59, “Break diplomatic relations”), sometimes due to the paucity of data (e.g., 
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Table 5. Top-10 countries/in

number of links in the consid

Arabia; UN: United Nations.

Apr79–Mar99
Edges 304401

Edge Degr
Iran–Iraq 191

Iraq–USA 190

Iran–USA 140

Iraq–UN 127

Israel–Lebanon 65

Israel–USA 58

Iraq–Kuwait 51

SA–USA 44

Israel–Palestina 44

UN–USA 42

Apr79-FGW
Edges 130990

Edge Degre
Iran–Iraq 16015

Iran–USA 9928

Israel–USA 2714

Iran–UN 2105

Israel–Lebanon 1981

Israel–Palestina 1932

Lebanon–USA 1722

Lebanon–Syria 1591

SA–USA 1554

France–Iran 1418
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stitutions ranked by number of shared links, absolute and in percentage over (twice) the total 
ered period. The Iran–Iraq War started in September 1980 and ended in August 1988. SA: Saudi 

FGW IDC
Edges 41181 Edges 7712

ee % Edge Degree % Edge Degree %
21 6.28 Iraq–USA 6061 14.72 Iraq–USA 1021 13.24

02 6.24 Iraq–Kuwait 2306 5.60 Iraq–UN 927 12.02

51 4.62 SA–USA 1169 2.84 UN–USA 337 4.37

75 4.20 Iraq–UN 1118 2.71 Iraq–Russia 315 4.08

90 2.16 Kuwait–USA 1050 2.55 Iraq–UK 241 3.12

03 1.91 Iraq–UK 1012 2.46 France–Iraq 191 2.48

87 1.70 Iran–Iraq 989 2.40 UK–USA 184 2.39

68 1.47 Israel–USA 935 2.27 France–UN 171 2.22

66 1.47 Iraq–Israel 851 2.07 Russia–USA 170 2.20

09 1.38 Iraq–SA 796 1.93 Iraq–Turkey 136 1.76

FGW-Mar99 Iran–Iraq War
Edges 132230 Edges 95189

e % Edge Degree % Edge Degree %
12.23 Iraq–USA 11647 8.81 Iran–Iraq 14470 15.20

7.58 Iraq–UN 10605 8.02 Iran–USA 6456 6.78

2.07 Israel–Lebanon 4471 3.38 Israel–USA 2124 2.23

1.61 Iran–USA 3797 2.87 Iran–UN 1402 1.47

1.51 UN–USA 2575 1.95 Israel–Lebanon 1391 1.46

1.47 Iraq–Kuwait 2371 1.79 Lebanon–USA 1327 1.39

1.31 UK-U-SA 2206 1.67 SA–USA 1271 1.34

1.21 Israel–USA 2154 1.63 Israel–Palestina 1247 1.31

1.19 Israel–Palestina 2144 1.62 France–Iran 1193 1.25

1.08 Iran–Iraq 2117 1.60 Lebanon–Syria 999 1.05

“Halt negotiations” or “Reward”). Note that many other spikes exist in many layers, 

corresponding to different geopolitical events occurring throughout the considered 

timespan.

All the information conveyed by the 66 𝐷1 time series can be summarized by 

using the 𝐷2 and 𝐷3 indicators displayed in Figure 15. The two curves show a 

similar trend, with two major spikes corresponding to the FGW and the IDC, neatly 

emerging in both time series. Furthermore, both indicators are consistent in showing 

that the two periods pre- and post-FGW are not part of the FGW spike, implying that 

in these two periods the structure of the occurring binary geopolitical events is closer 

to the analogous structure for the “no-war” periods.

However, as expected, the indicator 𝐷2 includes a lower level of information than 

𝐷3: this is particularly evident (also for the smoothed curves, in black in the plots) 

in the periods 85–89 and 95–97, where the dynamics of 𝐷2 is much flatter than 

the dynamics of 𝐷3. Note that a nontrivial dynamics in the two periods 85–89 and 

95–97 exist in many layers, as shown in Figure 12–14, triggered by a number of 

important events impacting the geopolitical relations: the final part of the Iran–Iraq 

War (1980–1988), the decline and fall of the Soviet Empire (not directly related to 

the Middle East area, but reflecting also there), the dramatic change of the situation 

of the Middle East conflicts induced by the outbreak of the First Intifada in December 
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Figure 10. Occurrences along time of the top-8 most frequent links. The blue area marks FGW, while the 
red dashed line indicates IDC in February 98.

Figure 11. 𝐷1 time series for the layer 37, corresponding to WEIS code 102 (“Urge or suggest action or 
policy”). The period corresponding to FGW is marked by the blue background, while the red dashed line 
indicates IDC in February 1998.

1987 [42], and the terrorism excalation (Dhahran, Tel Aviv, and Jerusalem) in Middle 

East in 95/96 causing a bursting increase in the number of victims just to name the 

more relevant events.
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Figure 12. Curves of indicator 𝐷1 for the 24 layers 𝐿𝑖(𝑡), for 𝑖 = 1, … , 24: the blue area marks 
FGW, while the red dashed line indicates IDC in February 98. For each curve, the corresponding World 
Event/Interaction Survey category is indicated in the top left corner.

Thus, this case study, too supports the superiority of 𝐷3 as a global indicator to 

summarize the evolution of a series of multiplex networks.

We also computed all the 240⋅239
2 HIM distances for 𝐷2 (respectively, 𝐷3) {

HIM( (𝑡𝑖), (𝑡𝑗))
}
1≤𝑖≤𝑗≤𝜏=240 (resp. 

{
HIM( (𝑡𝑖), (𝑡𝑗))

}
1≤𝑖≤𝑗≤𝜏=240), 

which are then used to project the 240 networks on a plane through a

MultiDimensional Scaling (MDS) [43]: the resulting plots are displayed in Figure 16.
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Figure 13. Curves of indicator 𝐷1 for the 21 layers 𝐿𝑖(𝑡), for 𝑖 = 25, … , 45: the blue area marks 
FGW, while the red dashed line indicates IDC in February 98. For each curve, the corresponding World 
Event/Interaction Survey category is indicated in the top left corner.

Both indicators yield that the months corresponding to FGW (in blue in the plots) 

are close together and confined in the lower left corner of the plane, showing both a 

mutual high degree of homogeneity and, at the same time, a relevant difference to the 

graphs of all other months. Interestingly, this holds also for the months immediately 

before and after (in green and orange in the figures) the conflict, which are quite 

distant from the war months’ cloud, as previously observed. This confirms that, only 

at the onset of the conflict the diplomatic relations worldwide changed consistently 

and their structure remained very similar throughout the whole event.

From both the multidimensional scaling plots in Figure 16 it is clear that the both 

the  and  networks for the FGW months can be easily discriminated from all 

other nets. However, from the MDS projections it is not evident whether the months 
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Figure 14. Curves of indicator 𝐷1 for the 21 layers 𝐿𝑖(𝑡), for 𝑖 = 46, … , 66: the blue area marks 
FGW, while the red dashed line indicates IDC in February 98. For each curve, the corresponding World 
Event/Interaction Survey category is indicated in the top left corner.

Apr 1979 – Dec 1989 (in grey) could be separated from the Nov 91 – Dec 99 months. 

By using a Support Vector Machine classifier with the HIM kernel [10, 25] (with 𝛾 =
172.9 for  and 𝛾 = 110 for  ), a 5-fold CV classification gives as best result 

the accuracy 81.2% for  (𝐶 = 103) and 73.3% for  (𝐶 = 104). Thus, in both 

cases, machine learning provides a good separation between the networks belonging 

to the two periods.

Community structure of  . We conclude by analyzing the dynamics of the 

mesostructure of the layer network  as extracted by the Louvain community 

detection algorithm [44, 45, 46, 47]. For any temporal step, the Louvain algorithm 

clusters the 66 nodes (WEIS categories) of  into two or three communities, 
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Figure 15. Time evolution of a global view of the (monthly) Gulf Dataset. (top) 𝐷2 dynamics of the 
collapsed projections { (𝑡)}240

𝑡=1 and (bottom) 𝐷3 dynamics of the metric projections { (𝑡)}240
𝑡=1. For 

each date, the value on y-axis is the HIM distance from the first element of the time series. Different 
colors mark different time periods. The black line represents the fixed-interval smoothing via a state-space 
model [48].

whose dimension along time is shown in Figure 17. In Figure 18 we show, for each 

date, which community each category (on the rows) belongs to; WEIS categories 

are ranked according to their community distribution, i.e., decreasing number of 

presences in Comm. #1 and increasing for Comm. #2. Thus in top rows we have the 

categories lying in Comm. #1 during all the 240 months (layers 7,10,11,28,34,40), 

while bottom rows are reserved to the categories always belonging to Comm. #2 

(3,4,19,25,48,52,58): their description in terms of WEIS categories is shown in 

Table 6, while the full community distribution is reported in Table 7 and graphically 

summarized by the triangleplot in Figure 19. Focusing on the categories that 

are consistently lying in a given community throughout all 240 months, some of 

them are semantically similar: for instance, consult, assistance, action request in 

community #1 while two distinct groups emerge in community #2, namely admit 

wrongdoing, cede power, apologize, reward on one side and warn of policies, 

sanction threats and halt negotiations characterizing the second group. However, it is 
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Figure 16. Planar multidimensional scaling plot with HIM distance of the collapsed (top) and metric 
(bottom) projection for the monthly Gulf Dataset. Colors are consistent with those in Figure 15.

interesting the constant presence of the category charge/criticize/blame/disapprove 

in community #1. Moreover, there is no strong polarization for Community #3. Many 

layers sharing the same (or similar) WEIS second level category (Yield, Comment, 

Consult, etc.) are quite close in the community distribution ranked list, with a general 

escalating trend proceedings from help request (or other more neutral actions) to 

more severe situations growing together with the community distribution rank.

5. Conclusion

We introduced here a novel approach for the longitudinal analysis of a time series 

of multiplex networks, defined by mean of a metric transformation conveying the 

information carried by all layers into a single network for each timestamp, with 

the original layers as nodes. The transformation is induced by the Hamming–Ipsen–

Mikhailov distance between graph sharing the same nodes, and it preserves the key 

events encoded into each instance of the multiplex network time series, making 

it more efficient than the collapsing of all layers into one collecting all edges for 
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Table 6. The 13 layers not swapping community across all 240 timepoints.

Community #1
Layer WEIS code WEIS category

7 023 [Comment] Comment on situation – neutral

10 031 [Consult] Meet with at neutral site, or send note

11 032 [Consult] Consult & Visit; go to

28 073 [Reward] Give other assistance

34 094 [Request] Request action; call for

40 121 [Accuse] Charge; criticize; blame; disapprove

Community #2
Layer WEIS code WEIS category

3 013 [Yield] Admit wrongdoing; retract statement

4 015 [Yield] Cede power

19 061 [Grant] Express regret; apologize

25 070 [Reward] Reward

48 161 [Warn] Warn of policies

52 174 [Threaten] Ultimatum; threat with negative sanctions and time limit 
specified

58 194 [Reduce Relations] Halt negotiations

Table 7. Community distribution for the 66 WEIS categories: for each layer, we report the 
number of occurrences in the three detected communities.

Rank Layer #1 #2 #3 Rank Layer #1 #2 #3

1 7 240 0 0 34 8 86 108 46

2 10 240 0 0 35 17 86 106 48

3 11 240 0 0 36 24 71 130 39

4 28 240 0 0 37 12 58 131 51

5 34 240 0 0 38 47 56 130 54

6 40 240 0 0 39 27 54 140 46

7 66 239 0 1 40 26 51 154 35

8 9 236 0 4 41 18 45 153 42

9 37 234 2 4 42 42 31 170 39

10 38 234 1 5 43 53 27 174 39

11 29 233 2 5 44 61 26 179 35

12 30 232 2 6 45 51 21 182 37

13 6 230 2 8 46 1 17 204 19

14 35 230 0 10 47 60 15 204 21

15 41 222 3 15 48 57 14 214 12

16 39 220 7 13 49 50 9 221 10

17 43 208 12 20 50 59 7 225 8

18 14 196 18 26 51 23 5 219 16

19 62 175 29 36 52 32 5 231 4

20 63 170 32 38 53 15 4 232 4

21 2 164 28 48 54 16 2 236 2

22 56 150 51 39 55 20 2 236 2

23 46 148 49 43 56 33 2 237 1

24 36 146 48 46 57 5 1 235 4

25 55 136 46 58 58 21 1 238 1

26 45 122 64 54 59 44 1 231 8

27 64 121 71 48 60 3 0 240 0

28 65 119 64 57 61 4 0 240 0

29 31 116 64 60 62 19 0 240 0

30 22 110 79 51 63 25 0 240 0

31 54 109 86 45 64 48 0 240 0

32 13 97 91 52 65 52 0 240 0

33 49 97 80 63 66 58 0 240 0
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Figure 17. Dimension of the three communities identified by the Louvain algorithm in  along the 
240 months.

Figure 18. Community evolution along time for each of the 66 WEIS categories, ranked by community 
distribution.

detecting important fluctuations in the original network’s dynamics. Moreover, a 

community detection analysis on the obtained network can help shading light on the 

relations between the original layers throughout the whole time span.
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Figure 19. Triangleplot projection of the 66 WEIS categories defined by their community distribution.
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