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Abstract: Climate change affects crops development, pathogens survival rates and pathogenicity,
leading to more severe disease epidemics. There are few reports on early, simple, large-scale quantita-
tive detection technology for wheat diseases against climate change. A new technique for detecting
wheat stripe rust (WSR) during the latent period based on hyperspectral technology is proposed.
Canopy hyperspectral data of WSR was obtained; meanwhile, duplex PCR was used to measure
the content of Puccinia striiformis f.sp. tritici (Pst) in the same canopy section. The content of Pst
corresponded to its spectrum as the classification label of the model, which is established by dis-
criminant partial least squares (DPLS) and support vector machine (SVM) algorithm. In the spectral
region of 325–1075 nm, the model’s average recognition accuracy was between 75% and 80%. In
the sub-band of 325–1075 nm, the average recognition accuracy of the DPLS was 80% within the
325–474 nm. The average recognition accuracy of the SVM was 83% within the 475–624 nm. Corre-
lation analysis showed that the disease index of WSR was positively correlated with soil nitrogen
nutrition, indicating that the soil nitrogen nutrition would affect the severity of WSR during the
latent period.

Keywords: climate change; wheat stripe rust; hyperspectral remote sensing; identification model;
soil nitrogen

1. Introduction

The impact of climate change on agriculture is multi-level and multi-scale. It can
affect temperatures, precipitation, climate extremes, atmospheric CO2, crop yield, products
nutritional quality and plant pests and diseases [1]. For example, climate warming not only
shortens the growth period of crops and reduces the yield of corn and wheat, it also helps to
improve the survival rate, fecundity, and pathogenicity of pathogens [2]. Plant diseases are
one of the major threats to agriculture, which impact food production and natural systems,
especially under the influence of human activities (agronomic practices, plant material
movement) and climate change [3]. Plant diseases are the result of interaction between
pathogens, host plants and the environment; this interaction is a continuous process referred
to as the disease cycle. The quantification of the relationship between the disease cycle and
weather for a given plant disease is the basis for plant disease prediction models that can
be used to predict the timing and severity of plant disease in the future [4], that is, disease
prediction models have also simulated potential impacts of climate change [5]. Therefore,
climate change has a great influence on the plant disease risk.

Pathogens and host plants produce a series of interactions under environments, espe-
cially under climate change, and they will produce different response mechanisms. For
example, WSR resistance gene Yr39 is activated by both wheat developmental stages and

Life 2022, 12, 1377. https://doi.org/10.3390/life12091377 https://www.mdpi.com/journal/life

https://doi.org/10.3390/life12091377
https://doi.org/10.3390/life12091377
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0003-0521-9709
https://orcid.org/0000-0002-4910-5001
https://doi.org/10.3390/life12091377
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life12091377?type=check_update&version=1


Life 2022, 12, 1377 2 of 16

climate changes [5]; climate warming leads to the expansion of wheat planting areas and
the suitable range of rust fungi (Pucciniales). Spore germination and colonization depends
on the temperature and humidity, the increase of winter temperature make for the spore
overwintering, which is in favor of pathogen reproduction and causes the disease spread
earlier and more serious yield loss in the following year [2]. At the same time, a suitable
climate is more conducive to the pathogens reproduction and spread, but it is difficult
to control the pathogens, especially in areas with high levels of inter-annual variability
in climate [6]. In addition to climatic factors, soil nutrients are also an important factor
affecting the occurrence of diseases. Some studies have pointed out that nitrogen applica-
tion will aggravate the occurrence of wheat powdery mildew and wheat scab. Excessive
nitrogen application leads to an increase in free amino acids, amides and soluble sugars,
a decrease in total phenols, flavonoids, and peroxidase activities in plants, and affects
the epidermal structure and metabolic activity of the host leaf [7], thereby weakening
crop disease resistance and aggravating the crop disease. Meanwhile, excess nitrogen
nutrition provides a favorable microclimate for the invasion, development and spread
of pathogens [8]. Therefore, climate warming and soil nutrients have created favorable
conditions for the outbreak of wheat diseases.

Wheat stripe rust (WSR) is caused by the fungus Puccinia striiformis f.sp. tritici (Pst) [9]
that is widely distributed in major wheat-producing regions of the world [10–12]. In China,
WSR causes an estimated 13.88 billion kg of loss every year [13]. Pst is a living obligate
parasite that can spread over long distances with atmospheric pathways [14]. The infection
process of Pst is divided into a contact period, an invasion period, a latent period, and
a symptom period. The latent period is an important stage during which Pst multiplies
and spreads in the host, and it cannot be directly perceived with the naked eye. Although
the wheat does not show symptoms at this time, the parasitic relationship between the
pathogen and the wheat will significantly affect the cell internal structure, pigment content,
and water content of the wheat [15]. After the latent period, the disease will enter the
symptom period in favorable conditions, and the fungus will rapidly expand, causing
serious damage for production [16]. The duration of the latent period is one of the most
important indicators for evaluating the resistance of crop cultivars [17], and it is also an
important parameter in the epidemics of diseases [18]. Early detection and estimation of
the dynamic of WSR during the latent period under climate change, could be obtained
with more time to take prevention measures and minimize losses before the disease has
become widespread.

With the rapid development of information technology, remote sensing has become
increasingly used in agriculture [19–22]. Different plants have different spectral features
due to their unique morphology and composition. The spectral features of plants comprise
comprehensive spectral information generated by their continuous interactions with en-
vironmental factors (including biological and non-biological factors) during the growth
process, and hyperspectral technology can identify the changes in the characteristic spec-
trum to determine the corresponding stress factors [23,24]. For example, plant disease
caused by the fungal pathogenes destroyed the physical structure and physiology of crops,
and manifested typical symptoms, such as foliar chlorosis, wilting or necrosis, and poor
growth and development. Hyperspectral technologies have a nanometer-scale spectral
resolution, which can respond to the unique disease spectrum, so the hyperspectral remote
sensing is gradually applied to detect plant diseases [8,25,26]. However, traditional disease
investigation techniques such as manual field scouting and quantitative PCR analysis after
manual sampling [27], which has higher accuracy, is labor-intensive, inefficient, expen-
sive and subjective, making it difficult to adapt to large-scale, non-destructive, real-time
predictions of disease risk [28].

The objectives of this study were: (1) detecting the field infestation of Pst via the wheat
canopy hyperspectral during the latent period, and (2) confirming the relationship between
soil nitrogen nutrition and the severity of WSR during the latent period and symptom
period. The proposed method can accurately, efficiently, and timely monitor the potential
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spread of WSR during the latent period, and thus is of great significance for forecasting
and controlling epidemics of WSR under climate change, while also providing theoretical
foundation for the optimization of nitrogen fertilizer application during the epidemic
of WSR.

2. Materials and Methods
2.1. Experimental Material

The wheat cultivars used were Mingxian 169, a variety highly susceptible to Pst,
Beijing 0045, a variety moderately susceptible to Pst, and Nongda 195, a variety highly
resistant to Pst. The test strains were three races of Pst, CYR31, CYR32, and CYR33, that
were mixed in equal proportions. The gradients of Pst spore suspension in 2016–2017 were
2 mg/mL, 1 mg/mL, 0.5 mg/mL, 0.25 mg/mL, and 0.125 mg/mL; in 2017–2018, these
were 80 mg/L, 40 mg/L, 20 mg/L, and 10 mg/L. The above materials were provided by
the Plant Disease Epidemiology Laboratory of China Agricultural University.

2.2. Experimental Designs

The experiment was conducted at the Kaifeng Experimental Station (34.5◦ N, 114.2◦ E)
of China Agricultural University during 2016–2018. The Kaifeng Experimental Station is
located in Kaifeng, Henan Province, China. There was no source of foreign stripe rust; thus,
the location was suitable for artificial inoculation experiments.

A total of 54 plots (3 m × 4 m) were designed for field experiments during 2016–
2017 (five inoculation concentration treatments and one healthy controls) and 2017–2018
(four inoculation concentration treatments and two healthy controls). Figure 1 showed
the distribution of field plots in this study. The experiment was designed as a complete
randomized block with three replicates, and there were protection rows between the plots,
with an interval of 1.5 m. The sowing rate was about 225 g/plot, planted in mid-October in
2016 and 2017. Mingxian 169 was planted in the center of the community as an artificial
source of induced inoculation. The field inoculation was carried out on 13 March 2017.
On the 26th day after inoculation, field investigations revealed that the inoculated wheat
had urediniospores, indicating that Pst was successfully inoculated. Therefore, the latent
period of WSR in this year was 25 days. During the entire latent period, five spectroscopic
measurements were performed, one day before inoculation and on the 5th, 10th, 15th, and
20th day after inoculation. The field was treated by spraying a spore suspension, carried
out on20 March 2018. On the 21st day after inoculation, the presence of urediniospores
was observed, and the latent period of WSR in 2018 was 20 days. During the entire latent
period, five spectroscopic measurements were performed, one day before inoculation and
on the 1st, 7th, 14th, and 19th day after inoculation. Meanwhile, the 0–20 cm soils of four
inoculation concentration treatments with 3 replicates for each treatment were collected to
analyze the correlation between the soil nitrogen and the disease index of WSR. The soil
total nitrogen was determined by the semi-micro Kjeldahl method. Statistical analysis was
performed using SAS v. 9.0 (SAS Institute INC., Cary, NC, USA). The framework of the
study is shown in Figure 2.
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2.3. Hyperspectral Data Acquisition and Preprocessing

An ASD spectrometer (ASD FieldSpec® HandHeld™ 2, ASD Inc., Boulder, CO,
USA) was used to collect wheat canopy hyperspectral data in the wavelength range of
325–1075 nm with a bandwidth of 3 nm. The wavelength accuracy was ±1 nm; the field of
view was 25◦, and the minimum integration time was 8.5 ms. All hyperspectral data were
collected during cloudless weather between 11:30 and 14:30 (Beijing Time). The sampling
height was 1.3 m.

In this study, canopy spectrum data were collected three times for each sample, and
the average value was used as the canopy spectrum of the sample. During 2016–2017, a
total of 4050 canopy spectra were collected in the field experiments, including 810 healthy
canopy spectra before inoculation, 540 healthy canopy spectra during the same period
(control), and 2700 canopy spectra of different concentration treatments during the latent
period. A total of 4320 canopy spectra were obtained in 2017–2018, including 1080 canopy
spectra of healthy wheat before inoculation, 1080 canopy spectra of healthy wheat during
the same period (control), and 2160 canopy spectra of different concentration treatments
during the latent period.

Hyperspectral reflectance is susceptible to environmental and background noise that
will affect the accuracy of the signal recognition. Therefore, it was necessary to preprocess
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the hyperspectral data. The derivative transformation can be used to remove low-frequency
background noise spectra [29]. At the same time, the logarithmic transformation of the
original spectrum not only reduces the impact of changes in illumination [30] but also
enhances the hyperspectral difference in the visible region [31]. In this study, the wheat
canopy hyperspectral curve was processed using the ViewSpecPro software and converted
into the original hyperspectral reflectance values, and the first derivative and second
derivative of the hyperspectral reflectance values were calculated according to Formulas
(1) and (2). There were six parameters: reflectance (R), the first derivative of R (R_1st.dv),
the second derivative of R (R_2nd.dv), the logarithm of the reciprocal of R (log10 (1/R)),
the first derivative of log10 (1/R) (log10(1/R)_1st.dv), and the second derivative of log10
(1/R) (log10(1/R)_2nd.dv), as the first type of hyperspectral feature. The log10 (1/R) is also
called the pseudo absorption coefficient, as it can reflect the absorption characteristics of
objects [24]. There were 22 vegetation indices, and trilateral variable parameters were used
as the second type of spectral feature (refer to references [32]). At the same time, to be able
to find the waveband that represented the most effective information, the 325–1075 nm
wavelength range was divided into five spectral regions of the same size as the third type
of spectral feature. The above three types of spectral features were modeled according to
different ratios of the training set to the testing set. The hyperspectral data were statistically
analyzed by ViewSpecPro (ASD), SAS 9.0, and Excel 2003.

R
′
(λi) =

dR(λi)

dλ
=

R(λi+1)− R(λi−1)

2∆λ
, (1)

R”(λi) =
d2R(λi)

dλ2 =
R
′
(λi+1)− R

′
(λi−1)

2∆λ
=

R(λi+2)− 2R(λi) + R(λi−2)

4(∆λ)2 , (2)

2.4. Pst Detection by Duplex Real-Time PCR during Latent Period

DNA of wheat leaves was extracted from 30 leaves per sampling point according
to [33], and the DNA of Pst was processed as described in [34].

The primers and probes of Pst and wheat are refer to references [35,36]. The 20 µL
reaction system of duplex PCR comprised 2.0 µL DNA template (500 pg), 2.0 µL Buffer
(Mg2+ Free), 4.0 µL MgCl2 (25 µM), 2.0 µL dNTP (2500 µM), four primers of Pst and wheat
0.4 µL (10 µM) each, two probes 0.3 µL (10 µM) each, 0.4 µL (5 U/µL) Tag enzyme, and
7.4 µL ddH2O. The reaction conditions were 94 ◦C for 3 min pre-denaturation; 94 ◦C for
20 s, 57 ◦C for 30 s, 72 ◦C for 20 s, 40 reaction cycles, and fluorescence signal collection
at the end of each cycle. The fluorescence intensity thresholds used for threshold cycle
(CT) value collection were all set to 100. The equipment used was a MyiQTM2 instrument
(Bio-Rad, Hercules, CA, USA). The DNA concentration of Pst was calculated according to
Equation (3):

y = −0.2573x + 5.4837
(

R2 = 0.9739
)

, P < 0.01, (3)

The DNA concentration of wheat was calculated according to Equation (4):

y = −0.2863x + 8.811(R2 = 0.9696, P < 0.01), (4)

where x is the CT value; y is the logarithm (log10C) value of the DNA concentration. The
minimum content detection limits of Pst DNA and wheat DNA were 0.4 pg and 0.5 ng,
respectively [34].

The molecular disease index (MDI) of Pst was calculated according to Equation (5):

MDI = PstDNA(pg)/WheatDNA(ng), (5)
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MDI reflects the DNA content of Pst in the latent period. The area under the disease
progress curve (AUDPC) reflects the cumulative effect of the development of the disease
within a certain period [37]. AUDPC can be obtained with Equation (6).

AUDPC = ∑n−1
i=1

(
Yi + Yi+1

2

)
(ti+1 − ti), (6)

where Yi represents the MDI after inoculation, and ti represents the inoculation time.

2.5. Field Disease Index Acquisition

After the symptoms of wheat leaves appeared, the five-point sampling method was
used to investigate the field diseases, and 30 plants were marked with GPS. For each
plant, we surveyed the antepenult leaves, penultimate leaves, and flag leaves for a total
of 90 leaves per point. The investigation was performed every seven days until the wheat
was mature.

The incidence (I) and severity (S) of disease in the symptomatic period were recorded.
Incidence is an indicator reflecting the epidemic degree of a disease and was quantified
using Equation (7):

I =
n
N
× 100, (7)

where I is the incidence; n is the number of diseased leaves, and N is the total number of
leaves investigated. Severity (S) refers to the degree of damage to plants in the field, and
is described in [33]. The severity of WSR was measured every seven days; the average
severity was calculated according to Equation (8):

S =
∑(S× ni)

n
× 100, (8)

where S is the average severity; S is the severity; ni is the number of diseased leaves
corresponding to the severity of the disease; and n is the total number of diseased leaves.
Disease Index (DI) is a comprehensive index that considers the incidence and severity given
by Equation (9):

DI = I × S× 100, (9)

where DI is the disease index; I is the incidence; and S is the average severity. AUDPC
is quantified using Equation (6). SAS 9.0 software was used to analyze the correlation
between MDI-AUDPC and DI-AUDPC to verify whether the MDI during the latent period
of WSR could predict the actual disease’s occurrence during the symptoms period.

2.6. Recognition Model

On the sampling points marked by GPS, the Pst DNA content and the canopy hy-
perspectral data were obtained at the same time, and the canopy hyperspectral data were
matched with MDI point-to-point. The MDI was converted into a classification label of the
model. The hyperspectral data were randomly divided into a training set and a testing set.
The ratios of the training set to testing set were equal to 1:1, 2:1, 3:1, 4:1, or 5:1 to compare
the influence of different ratios on modeling. The DPLS and SVM methods were used to
classify healthy and diseased wheat using the three types of spectral features listed above.
DPLS is effective in processing data with a small sample size, high dimensionality, and
multicollinearity [38] due to its dimension reduction effect [39]. Therefore, the amount of
calculation can be reduced, and the calculation efficiency can be improved. SVM can better
solve the problems of small samples, over-learning, nonlinearity, high dimensionality, and
local minima [40]. These two recognition models were constructed based on MATLAB v.8.2
(R2013b) software (Mathworks, Natick, MA, USA). The model performance was evaluated
using the overall identification accuracy.
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3. Results
3.1. Wheat Canopy Spectra

During the latent period, after averaging the canopy spectral data of the four sampling
times, the spectral curve is shown in Figure 3. The variation trends of the wheat canopy
spectral curves at the four sampling times were similar, and there were large differences in
the range of 720–1075 nm. In the first 14 days of the latent period, the reflectance increased
with the time increase, and reached the maximum on the 14th day; the reflectance values
on the 19th day were lower than the 14th day. This phenomenon may be due to the rapid
accumulation of Pst, breaking through the leaf epidermis to release spores, which changes
the physiological structure and biochemical components of wheat leaves, thereby affecting
the spectral reflectance. It showed that hyperspectral technology can effectively detect the
latent period of WSR.
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3.2. Correlation between MDI and DI

This study used MDI-AUDPC and DI-AUDPC for correlation analysis. The results
are shown in Table 1. There was a significant correlation between MDI-AUDPC and the
DI-AUDPC in 2016–2018. This indicated that the MDI of Pst in the latent period could
predict the DI symptoms period of WSR.

Table 1. Correlation analysis between MDI-AUDPC and DI –AUDPC in different years.

Year Correlation
Coefficient Significance Level Regression

Equation R2 Root Mean
Square Error

2016–2017 0.84840 <0.0001 y = 0.0415 + 11.973X 0.7198 0.1221
2017–2018 0.90056 <0.0001 y = 0.6176 + 6.4193X 0.8110 3.1608

3.3. WSR Recognition with Hyperspectral Features in the 325–1075 nm Waveband

The disease recognition results during 2016–2018 are shown in Figures 4 and 5. The
average recognition accuracy values of the models built using DPLS in 2016–2017 and
2017–2018 were 78.56% and 74.42%, respectively. The average recognition accuracy values
of the models built using SVM in 2016–2017 and 2017–2018 were 79.58% and 77.39%,
respectively. The accuracy of the model built by the SVM was superior to that built using
DPLS. The average accuracy of the first type of spectral feature and the second type of
spectral feature in 2016–2018 was 77.49% and 68.17%, respectively. Therefore, the average
accuracy and the stability of the first type of spectral feature were better than the second
type of spectral feature.
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Figure 5. Prediction accuracy of models resulting from different spectral features and modeling
methods in the 325–1075 nm waveband.

Tables 2 and 3 show that the recognition accuracy of the best models using DPLS
and SVM methods were both in the range of 80–85%. The results demonstrated that it
was feasible to use the wheat canopy hyperspectral data and the MDI of Pst to establish a
mathematical model to detect the occurrence of WSR.

Table 2. Prediction accuracy of the best models based on DPLS in the 325–1075 nm waveband.

Year Spectral
Features

The Ratio of the
Training Set to

Testing Set

The Principal
Component

Number
Accuracy F1 Score

Matthews
Correlation
Coefficient

2016–2017 log10(1/R) 4: 1
4: 1

30 84.57 84.21 82.75
2017–2018 R 30 82.29 81.82 80.84

Table 3. Prediction accuracy of the best models based on SVM in the 325–1075-nm waveband.

Year Spectral
Features

The Ratio of the
Training Set to

Testing Set

Optimal Parameter
Accuracy F1 Score

Matthews
Correlation
CoefficientBest c Best g

2016–2017 R_1st.dv 3: 1 6.9644 64 83.17 83.15 82.23
2017–2018 R_1st.dv 4: 1 2.2974 64 84.03 83.65 82.19
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3.4. WSR Recognition with Hyperspectral Features in the Sub-Waveband Range
3.4.1. Recognition Results of the DPLS Model in 2016–2017

The 325–1075 nm waveband was divided into five spectral regions (325–474 nm,
475–624 nm, 625–774 nm, 775–924 nm, and 925–1075 nm) of the same size. The DPLS
algorithm was used to identify WSR based on different ratios of the training set to testing
set and different spectral features during 2016–2017. It can be seen in Figures 6 and 7 that
the accuracy of the DPLS model built by the pseudo absorption coefficient was relatively
good in all wavebands, and the average accuracy of the testing set was 80.45%.
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Figure 6. The testing sets average accuracy based on different spectral features and the same
waveband using DPLS in 2016–2017.
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The recognition accuracy of the DPLS model had the highest values at the waveband
range 325–474 nm when using R as the spectral feature, where the average accuracy of the
testing set was 81.66%. These values were given priority as the candidate waveband and
spectral feature for model establishment. The best model was based on 325–474 nm with
R as the spectral feature, with a sampling ratio of 4:1. The accuracy of the testing set was
85.19%.
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3.4.2. Recognition Results of SVM Model in 2016–2017

When the R_1st.dv was used as the spectral feature in all wavebands, the average
accuracy of the testing set was 82.37%. When log10(1/R)_1st.dv was used as the spectral
feature, the model showed a peak within the 475–624 nm range, and the average accuracy
of the testing set was 83.32% (Figures 8 and 9). These values were used as the preferred
waveband and spectral feature for the model establishment. The best model was charac-
terized by the R_2nd.dv in the range of 325–474 nm. When the sampling ratio was 4:1,
the optimal parameters of the model were c = 588.1336; g = 1024, and the accuracy of the
testing set was 87.04%.
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3.4.3. Recognition Results of DPLS Model in 2017–2018

The recognition accuracy of the model built by R was relatively good in all wavebands,
and the average accuracy of the testing set was 79.57%. When the waveband range was
325–474 nm and R was the spectral feature, the average accuracy of the model was the best
at 80.14% (Figures 10 and 11), and these values can be given priority as the candidate wave-
band and spectral feature for model establishment. The best model comprised 325–474 nm
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as the range; the original spectrum was the spectral feature; the sampling ratio was 4:1, the
accuracy of the testing set was 81.60%.
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3.4.4. Recognition Results of SVM Model in 2017–2018

When the R_1st.dv was used as the spectral feature, the recognition accuracy was
the best in all wavebands, and the average accuracy of the testing set was 82.05%. When
the first derivative of the absorption coefficient was used as the spectral feature within
the range 475–624 nm, the average accuracy of the model was the highest at 83.56%
(Figures 12 and 13), and thus these values could be prioritized as the candidate wave-
band and preferred spectral feature for model establishment. The best model used the
325–474 nm range, the original spectrum as the feature, and a sampling ratio of 4:1; the
optimal parameter c was 2.2974; g was 337.7940, and the accuracy of the model on the
testing set was 85.76%.
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3.5. Correlation between Soil Nitrogen Nutrition and WSR Severity

The correlation between the severity of WSR and soil nitrogen nutrition of different
inoculation concentrations of pathogens and different varieties of wheat during the latent
period and symptom period were analyzed (Table 4). The results showed that the severity
of WSR was positively correlated with soil nitrogen nutrition under artificial inoculation
conditions. The correlation between different inoculation concentrations and soil nitrogen
nutrition was extremely significant. The correlation between the symptom period and
soil nitrogen was slightly higher than the latent period. As the inoculation concentration
increased, the severity of the disease gradually increased. With the decrease of inoculation
concentration, the correlation between disease index and soil nitrogen nutrition gradually
decreased. The disease severity of different wheat resistant varieties under artificial inoc-
ulation conditions showed the same regularity as the natural incidence. The susceptible
varieties (Mingxian169) had the higher correlation coefficient. Middle-resistant varieties
and resistant varieties showed a weaker correlation. Correlation analysis showed that
soil nitrogen nutrition was correlated with the occurrence of WSR during the latent and
symptom period, but the inoculation concentration and variety had a greater impact on it.
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Table 4. Correlation between soil total nitrogen nutrition and disease index of WSR.

Growth
Stage

Inoculation
Concentration (mg/L)

Mingxian169
Disease Index

Beijing0045
Disease Index

Nongda195
Disease Index

Latent 80 0.916 ** 0.574 0.517
Period 40 0.922 ** 0.493 0.513

20 0.801 * 0.354 0.487
10 0.599 0.277 0.101

Symptom 80 0.982 ** 0.673 0.599
Period 40 0.895 ** 0.54 0.466

20 0.838 * 0.13 0.084
10 0.711 0.063 0.058

Note: *, ** Indicate significant differences at the 5% and 1% levels, respectively.

4. Discussion
4.1. Recognition of Wheat Stripe Rust with Hyperspectral Remote Sensing

Based on the results, it appears feasible to establish models based on the DPLS and
SVM methods to identify WSR during the latent period in field settings. Meanwhile, the
spectral ranges and spectral characters were good candidates for the fingerprint method
for the rapid estimation of Pst-infected wheat leaves.

The two-year test results showed that, based on the R spectral feature, the average
recognition accuracy of the DPLS algorithm was about 80% in the bands of 325–474 nm.
Based on the first derivative of the absorption coefficient as the spectral feature within the
475–624 nm range, the average recognition accuracy of the SVM algorithm was about 83%.
In other words, the visible part of the spectrum (400–680 nm) was relevant in distinguishing
between the latent period and the symptomatic period of WSR, suggesting that Pst infection
alters the spectral properties of wheat leaves. For fresh plants, leaf reflectance in the
visible spectrum is usually low due to the absorption of pigments (e.g., chlorophyll and
anthocyanin) in leaves. However, in the latent period of Pst infected wheat leaves, although
the external morphology has not changed, internal changes have occurred that destroy
leaf pigments, leading to changes in the color of plant leaves and increases in spectral
reflectance [41]. Each host–pathogen interaction is unique, and the resulting spectral
changes are also unique. By monitoring these spectral changes it is possible to analyze
the severity and spread of diseases. This analysis has further confirmed that the canopy
spectrum of WSR has a very significant correlation with the disease index.

The highest recognition accuracy rate was 87.04% in 2016–2017, and the highest
rate was 85.76% in 2017–2018. The recognition accuracy of the model built in the field
experiments was generally lower than for the indoor experiment model [42]. The reason
may be due to the complex field environment, the many interference factors, such as
illumination intensity, and soil nutrients. Therefore, continuing to optimize the model
parameters, wavebands, and spectral characters can improve the model’s recognition
accuracy. Meanwhile, the detection limit of Pst by measuring the hyperspectral data of the
wheat canopy with a spectrometer will be the focus of our further studies.

4.2. Correlation between Soil Nitrogen Nutrition and WSR Severity

Climatic factors are the direct factors leading to the WSR, because of its airborne.
Additionally, a warmer climate will lead to more days for sporulation, shorter latent period
and higher spore reproductive rate will lead to more spores produced in the suitable
temperatures [2]. Therefore, it is particularly important to be able to perform a high-
throughput screening WSR during the latent period. However, there are many factors
affecting the severity of the disease, such as varieties, fertilization, and soil environment.
When the crop reaches the optimal “nutrient balance” for growth, the disease resistance is
the strongest, but it will change as the nutrient status deviates from the optimal growth
degree [43]. Reasonable fertilization promotes the balance of various nutrients in wheat,
which is conducive to the control of WSR. It has been reported that high nitrogen application
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results in increased wheat rust severity [2], and wheat rust disease and N deficiency both
cause changes in foliar pigments that result in chlorosis [44]. Therefore, it is crucial for
hyperspectral remote sensing to distinguish disease infection from nitrogen nutrient effects
during the latent period. We will continue to verify the influence of different nitrogen
application levels on disease severity, spectral diagnosis, and the effects of WSR and soil
nitrogen interaction on spectral characteristics of wheat during the latent period.

5. Conclusions

In this study, we developed a high degree of accuracy approach for high-throughput
detection WSR directly during the latent period.

1. In the 325–1075 nm waveband, the average recognition accuracy of the model built by
SVM was better than that using DPLS. The average accuracy of the model built by
the first type of spectral feature was better than the model using the second type of
spectral feature. The average accuracy values of the DPLS and SVM methods were
75–80%, and the accuracy of the best-performing model was between 80–85%.

2. In the sub-wavebands, the models built based on the DPLS method with the best
accuracy in two years were all concentrated in the 325–474 nm range using the
original spectrum (R) as the spectral character. The models built based on the SVM
method with the best recognition accuracy in the two years were concentrated in
the 475–624 nm range using the first derivative of the pseudo absorption coefficient
(log10(1/R)_1st.dv) as the spectral feature.

3. There was a significant positive correlation between wheat stripe rust and soil nitro-
gen nutrients during latent period and symptom period, which also provided the
theoretical basis for more accurate remote sensing monitoring on the wheat stripe rust.
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