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Abstract Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea
surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude
of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we
show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective
analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that
may be important for both internal variability and climate change. The two patterns that explain the
maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and
the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and
time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC
feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak
compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so
that stronger feedback produces more intense andmore realistic patterns of internal variability. To the extent
that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies
to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC
feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may
mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be
underestimating both future warming and the magnitude of modeled internal variability because of their
weak SST-LCC feedback.

Plain Language Summary Objective analysis of two long-term satellite cloud fraction data sets
together with observed sea surface temperature (SST) during the same periods suggest strong patterned
SST-low cloud fraction feedback. Internal modes of variability, the Interdecadal Pacific Oscillation and the
Atlantic Multidecadal Oscillation, emerge from this analysis, and associated with these SST variability modes
are corresponding low cloud fraction patterns that suggest a strong and positive local low cloud feedback to
the SST anomalies. Such SST-LCC feedback is important for both internal variability and future climate
change. We find that such feedback is too weak in current models, which implies stronger than expected
future latent warming and possibly higher climate sensitivity.

1. Introduction

Global scale climate change can be described in an energy balance framework (Gregory et al., 2002):
F(t) = N(t) + α(t)T(t) + ε(t). Radiative forcing, F(t), imposed on the climate system is balanced by the sum of
net downward radiative flux, N(t), radiative response α(t)T(t), and a small residual ε(t). α(t), the time-dependent
climate feedback parameter, measures the global radiative response per degree of surface air temperature T
change. Its reciprocal λ tð Þ ¼ 1 α tð Þ= , called the climate sensitivity parameter, measures the warming per unit

increase in radiative forcing (Gregory & Andrews, 2016). Assuming α(t) to be constant, equilibrium climate
sensitivity can be estimated by quantifying changes in temperature (ΔT), ocean heat uptake (excellent proxy

for ΔN), and radiative forcing (ΔF) over a period according to λeq ¼ ΔT
�
ΔF�ΔNð Þ.

In the instrumental record, the global mean warming rate, ΔT
�
Δt , is not constant and undergoes periods of

acceleration and deceleration (Figure 1a; Hansen et al., 2010; Morice et al., 2012). The warming rate is also spa-
tially heterogeneous with characteristic large-scale patterns (Figures 1b and 1c). Both internal variability and

changing (F(t)) can make ΔT
�
Δt and warming patterns change with time (Figures 1b and 1c). Model analyses
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suggest that time-varying patterns of sea surface temperature (SST)

can actively change α(t), and therefore ΔT
�
Δt, by convolving with indi-

vidual feedback processes (Andrews et al., 2015; Armour et al., 2013;
Held et al., 2010). The low cloud feedback plays a critical role in this
process (Andrews et al., 2015, 2012; Gregory & Andrews, 2016; Rose
et al., 2014; Zhou et al., 2016). It is perhaps best illustrated in an
idealized model experiment where simply changing the SST pat-
tern, without altering the global mean T, produces a nonzero N(t)
due to cloud anomalies (Andrews et al., 2015; Zhou et al., 2016).
Recent modeling studies also show that observed time-varying
patterns of SST in recent decades have significantly changed α(t)
(Gregory & Andrews, 2016; Marvel et al., 2018; Zhou et al., 2016).
Low cloud feedback can in turn affect modeled SST internal varia-
bility (Bellomo, Clement, & Norris, 2014; Brown et al., 2014; Myers
et al., 2017; Zhang et al., 2010). However, direct observational
evidence of patterned coupling between SST and low clouds are
needed.

Here we examine large-scale patterns of low-cloud cover (LCC) and
SST and their coupling at near-global scales (60°S–60°N) using satel-
lite data and compare them with patterns produced by global
climate models. LCC feedback is a major component of the overall
cloud feedback (Clement et al., 2009; Qu et al., 2014; Zelinka et al.,
2016). Previous regression analyses have shown that SST exerts a
prime control on local and regional mean LCC variations, with inver-
sion strength, a proxy for lower troposphere stability, being the
next most important factor (Brient & Schneider, 2016; Qu et al.,
2014). Patterns of large-scale LCC variability at interannual and
longer time scales and their coupling with SST have received less
attention, however. Here we focus on large-scale spatial patterns
and associated temporal variations. The LCC-SST feedback analyzed
here is assumed to encompass both the direct influence of SST on
LCC as well as the indirect meteorological influences (e.g., stability)
that vary in concert with SST. Our analysis does not separate out
the remote impact of SST anomaly on LCC through modifying
troposphere stability in remote areas (Qu et al., 2014; Zhou
et al., 2017).

2. Data and Analysis Methods
2.1. Data Sets

We use the bias corrected International Satellite Cloud Climatology Project (ISCCP) cloud fraction data (Norris
& Evan, 2015; Rossow & Schiffer, 1999). Artifacts removed include those associated with changes in viewing
geometry, satellite transitions, and other factors. The process for removing spurious variability also removes
any real variability occurring in the 60°S–60°N but has little impact on investigations of regional changes
examined in this study. Here the sum of low and midlevel cloud fraction is used to better represent the true
total low cloud fraction (Yuan et al., 2016). Aqua MODIS level-3 monthly products are also used to derive low
cloud fraction (Platnick et al., 2016). MODIS onboard Aqua is well calibrated. Specifically, we divide the total
number of pixels whose cloud top pressure is higher than 680 hPa by the total number of pixels in a grid. We
compare the climatology of MODIS and ISCCP LCC using these definitions, and their spatial patterns are
broadly similar with each other, with noticeable differences in places such as tropical Eastern Pacific (see
Figure S1 in the supporting information).

We use CRUTEM4 (Smith et al., 2008) for surface air temperature and Extended Reconstructed SST from the
NOAA Climatic Data Center (Dee et al., 2011) for SST data. Meteorological variables from European Centre for

Figure 1. (a) HadCRUT4 global mean surface temperature time series with a
10-year smoothing applied. For each decade, a 15-year trend is calculated. The
red triangles correspond to warming trends and the blue triangles to cooling
trends. (b) Map of local surface temperature trends between1960 and 1990.
(c) The same as (b), but for 1985–2015.
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Medium-Range Weather Forecasts Re-analysis (ERA) Interim (ERA-Interim) are used to derive the estimated
inversion strength (EIS; Wood & Bretherton, 2006).

2.2. Methods

We apply maximum covariance analysis (MCA; Bretherton et al., 1992) and empirical orthogonal function
(EOF) analysis to objectively obtain patterns naturally emerging from observations and their time series.
MCA performs a singular value decomposition of the covariance matrix between two different variables.
The spatial patterns of each variable are the singular vectors, and the temporal variability is obtained by
projecting the spatial patterns back onto the original data fields. The leading modes of MCA maximize the
covariance between the two variables. The method identifies modes (with spatial patterns and temporal
variability) that both dominate the variability in the two variables and are potentially strongly correlated with
one another. The correlation coefficients between expansion coefficients, that is, the temporal variability of
corresponding spatial patterns, indicate how tightly the two are related. EOF performed on individual data
sets finds dominant patterns that explain the most variance and their time series by projecting each pattern
back onto the original data. Here we present spatial patterns of each mode by regressing its time series, after
normalization, onto the original data set. Each grid value in the pattern quantifies the amount of change in
this variable associated with one standard deviation of change in the time series.

We address the challenge of interpreting decadal changes of LCC by examining two independent global
satellite data records and analyzing characteristic patterns instead of local or regional trends, that is, the
bias-corrected monthly mean gridded ISCCP LCC between 1984 and 2009 and the Aqua MODIS LCC between
2003 and 2015. Seasonal cycle of LCC is removed. Concurrent EIS and SST are also brought into the fold to
illustrate their accompanying changes.

3. Results

The leading MCA mode corresponds to the Interdecadal Pacific Oscillation (IPO; Power et al., 1999), and its
SST and LCC patterns consistently suggest a positive LCC-SST feedback across different oceans. In the leading
SST pattern (Figure 2a), the largest SST anomalies are found in the tropical East Pacific cold tongue region,
and they are flanked by two middle latitude anomalies of opposite sign in both hemispheres to the west.
SST anomalies along west coasts of the Americas have the same sign as the tropical peak. This pattern can
also be roughly discerned in Figures 1b and 1c. The corresponding pattern of LCC nearly mirrors that of
the SST mode, only with reversed sign (Figure 2b): Areas with negative SST anomalies are associated with
positive LCC anomalies, which suggests a positive SST-LCC feedback: The effect of reduced LCC has a warm-
ing effect and reinforces positive SST anomalies. For example, LCC in the Eastern Tropical Pacific strongly
increases when a La Niña-like, cool SST anomaly dominates. Concurrent negative SST anomalies in the
Californian and Peruvian stratocumulus regions, to the north and south of tropical anomalies, are accompa-
nied by LCC increase. Meanwhile, LCC decreases in areas where warm SST anomalies prevail in the southern
and northern flanks of the tropical cold anomalies. This MCA mode explains 50% of the interannual covar-
iance between SST and ISCCP LCC.

The second MCA mode corresponds to the Atlantic Multidecadal Oscillation (AMO; Enfield & Nuñez, 2001),
the dominant multidecadal variability in the Atlantic Basin, and its SST and LCC patterns also suggest a posi-
tive LCC feedback. The SST pattern of the second MCA mode (Figure 2d) has strong anomalies in both the
Pacific and the Atlantic Oceans. In the North Atlantic, the anomalies form a horseshoe pattern with two arms,
one in the middle latitudes and another in the tropical Atlantic (Figure 2d), which is a characteristic of the
AMO. Large positive SST anomalies are found in the Eastern Pacific and in the North Pacific. The Eastern
Pacific anomalies are much more spatially confined than those of a typical ENSO signal, while the North
Pacific anomalies are quite similar to the Pacific Decadal Oscillation (Deser et al., 2004). The overall Pacific pat-
tern is strikingly similar to the modeled pattern that represents the impact of AMO on the Pacific (Li et al.,
2016; Zhang & Delworth, 2007). The corresponding LCC pattern (Figure 2e) is nearly identical to the pattern
produced by regressing LCC onto the AMO index in the Atlantic (Yuan et al., 2016). Positive LCC anomalies are
again found over regions with negative SST anomalies. In the Pacific, the same negative coupling (i.e., posi-
tive feedback) between SST and LCC anomalies exists. For example, positive LCC anomalies are found over
cold tropical Eastern Pacific SST anomalies; similar negative coupling is observed for LCC and SST anomalies
in the North Pacific, which again suggests a positive LCC-SST feedback. This MCA mode explains 19% of the

10.1029/2018GL077904Geophysical Research Letters

YUAN ET AL. 4440



covariance. It should be emphasized that both patterns emerge naturally from the objective analysis method,
and they resemble known modes (IPO and AMO) of coupled internal variability. The emergence of such
congruent and physically meaningful SST and LCC patterns from observations suggests a
physical underpinning.

Our new observational evidence of the systematic large-scale patterns of positive SST-LCC feedback is con-
sistent with both theoretical (e.g., summarized in Bretherton, 2015 and previous empirical evidence; Brient
& Schneider, 2016; Qu et al., 2015, 2014). Physically, an increase in SST tends to decrease the inversion
strength, promote mixing of dry and warm free-troposphere air into the cloudy layer, and therefore reduce
cloud fraction. Regression analyses show that SST often exerts the primary control on LCC in current climate
(Brient & Schneider, 2016; Qu et al., 2014). The patterns of cloud change and its connection with SST are also
physically consistent with variations in EIS as shown in Figure 2f. The leading pattern of EIS has excellent
agreement with those from SST and LCC in both data sets, which suggests an SST-driven local stability
response in which warm SST anomalies reduce EIS.

Additional analysis further confirms the presence of a positive SST-LCC feedback that spans the decadal time
scale and has coherent spatial structures. For example, expansion coefficients of both patterns of LCC and SST
are significantly correlated with each other (r = 0.92 for the first mode and r = 0.7 for the second). They are
also highly correlated with indices of IPO (Power et al., 1999; r = 0.98 and r = �0.89 for the first mode of
SST and LCC, respectively) and AMO (Enfield & Nuñez, 2001; r = 0.83 and r = �0.59 for the second mode of
SST and LCC, respectively). These results reaffirm the similarity in spatial patterns and demonstrate the link
between SST and LCC patterns in the time dimension (Figure 3). Analysis of Aqua MODIS LCC data during
2003–2015 gives independent support to SST-LCC feedback. MODIS data coverage is shorter, and its

Figure 2. (a and d) Sea surface temperature anomalies corresponding to one standard deviation of expansion coefficients frommaximum covariance analysis, repre-
senting Interdecadal Pacific Oscillation (IPO) and Atlantic Multidecadal Oscillation for the period 1984–2009. (b and e) The same for low-cloud cover (LCC) using
International Satellite Cloud Climatology Project (ISCCP) data. (c) The same for IPO mode of LCC using MODIS data. (f) The same for estimated inversion strength
using ERA-Interim during 1984 and 2009 for the IPO mode. In (a), (b), (d), and (e), the area with longitudes between 30°E and 110°E is masked out because the lack of
geostationary satellite data makes the ISCCP LCC variance meaningless.
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patterns may have stronger signals of higher frequency variability.
Nevertheless, when applying the same procedure, patterns of lead-
ingmodes of SST andMODIS LCC are also found to be negatively cor-
related, and their spatial patterns and temporal variability are closely
related to IPO (mode 1), r = 0.78, and AMO, r = 0.62, (mode 3) indices,
broadly similar to ISCCP LCC (Figure 2c) with notable differences at a
few areas. This is significant because sampling, sensor characteristics,
and algorithms used for MODIS and ISCCP are all different, and they
cover different periods. The consistent and emergent results from
independent data suggest a robust patterned SST-LCC coupling.
Similar patterns also emerge from EOF analysis performed on indivi-
dual fields, which reveal that their principal components are strongly
correlated with each other. The fact that EOF analysis corroborates
the MCA analysis suggests that these patterns and their relationships
are robust.

We evaluate how skillful models are in simulating LCC response to
SST by applying similar analyses to cloud data from 10 models that
have run Atmospheric Model Intercomparison Project (AMIP) experi-
ments, where eachmodel is driven by observed boundary conditions
such as SST and sea ice concentration accompanied by best-estimate
concentrations of forcing agents (Taylor et al., 2012). An ISCCP simu-
lator (Klein & Jakob, 1999; Webb et al., 2001) was applied to model
cloud data to facilitate a more meaningful observation-model com-
parison. To simplify the analysis, we regress both observed and mod-
eled cloud data against IPO and AMO monthly indices, which can be
taken as less strict test for the models since it does not require the
model to correctly model the covariance structure between SST
and modeled LCC. Models are rather skillful at capturing the overall
pattern of SST-LCC coupling as pattern correlation coefficients
between modeled and observed regression patterns are above
0.44 (see Table S1 in the supporting information) for IPO. However,
the strength of SST-LCC coupling, measured by percent change in

LCC per degree of SST change, exhibits large variations across different models with the majority being
too weak in the critical subtropical low cloud regions (see Figures S5 and S6 and Tables S1 and S2).
HadGem2-ES is one of the best performing models with pattern correlation coefficients among the highest
for both modes of variability and regression values between SST and LCC for both Pacific and Atlantic basins
(Figures 4a and 4b and S2) that are closest to the observed values in high LCC regions (Figures 4a and 4b and
Tables S1 and S2).

Our observational analysis shows that large-scale SST anomaly patterns introduced by coupled atmosphere-
ocean internal variability are amplified by a robust SST-LCC feedback. Simulated SST-LCC feedback strength,
in turn, has been shown to affect the amplitude of SST internal variability in models (Bellomo, Clement,
Mauritsen, et al., 2014; Brown et al., 2016; Myers et al., 2017). We test the effect of feedback strength on
modeled internal SST amplitude by contrasting models with strong and weak SST-LCC feedback magnitude.
First, we select two regions that are dominated by low level clouds, one off Californian coast and the other in
the tropical North Atlantic as indicated by the red boxes in Figure 4 {Klein:1993vk}. The latitudinal and long-
itudinal boundaries for the two boxes are 10°N to 30°N and 100°W to 120°W, and 5°N to 25°N and 25°W to
45°W. We then regress detrended AMIP LCC anomalies against detrended observed SST anomalies and pick
three models with the highest regression slopes and three with the lowest. This AMIP-based calculation
selects models that have strong and weak LCC responses to SST. For both groups of models, we calculate
detrended SST anomalies at each oceanic grid point and regress it against boxmean SST anomalies in respec-
tive regions, which is used a measure of the internal variability (Bellomo, Clement, & Norris, 2014; Myers et al.,
2017). We then use Coupled Model Intercomparison Project Phase 5 historical simulations of coupled version
of each selected model to highlight the potential effect of SST-LCC on coupled simulations. Since we

Figure 3. (a) Interdecadal Pacific Oscillation index (black) between 1984 and
2015 plotted alongside time series of the first maximum covariance analysis
(MCA) mode indices for low-cloud cover (blue), sea surface temperature (red),
and the first empirical orthogonal function (EOF) of estimated inversion strength
(inverted, cyan). A 12-month moving average is applied to all indices. (b) Similar
to (a), but for Atlantic Multidecadal Oscillation index and the second MCA/EOF
modes.
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normalize the box mean SST anomaly time series, regression slopes for each grid point are SST anomaly
amplitude associated with one standard deviation of box-mean SST anomalies. These amplitudes
represent amplitude of internal SST variability linearly associated with the variability in the boxed region,
which has been used as a proxy for amplitude of internal SST variability (Myers et al., 2017). We plot the
three-model mean in Figure 4. Global maps of these quantities can be seen in Figure S4.

The amplitudes of internal SST variability at interannual time scales in models with high SST-LCC feedback
magnitude are nearly twice as large as those of low SST-LCC sensitivity in Coupled Model Intercomparison
Project Phase 5 coupled historical simulations in both the Pacific and Atlantic (Figures 4c to 4f and S3 and S4).
Their SST regression patterns (Figure S4) are also more realistic when compared to observed patterns
(Figure S3). The critical role of low cloud feedback in modulating the amplitude and persistence of internal
variability is supported by recent studies (Bellomo, Clement, Mauritsen, et al., 2014; Brown et al., 2014;
Myers et al., 2017; Zhang et al., 2010). Improving the overall SST-LCC coupling, which includes both the direct
SST influence and co-varying meteorological influences, is therefore important in order for models to simu-
late internal variability better.

4. Summary and Discussion: Relevance to Future Warming

The results here give new observational support to positive local SST-LCC feedback with characteristic
spatial patterns that can be decomposed into familiar IPO and AMO modes. Current models can

Figure 4. (a and b) Regression patterns of low-cloud cover (LCC) onto Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation, respectively, for the
HadGEM2-ES Atmospheric Model Intercomparison Project (AMIP) simulation. We compare the amplitude of internal variability of sea surface temperature (SST) in
coupled historical simulations as defined in the text for models that have the (c and e) highest and (d and f) lowest SST-LCC feedback strength in AMIP simulations.
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capture the IPO SST-LCC coupling pattern rather well, but their feedback magnitudes are weaker than
those inferred from observations. The SST-LCC feedback strength as measured by the regression slope
between them is important in determining model simulated magnitude and patterns of internal variabil-
ity. Models with stronger SST-LCC feedback tend to have better representation of internal variability pat-
terns and larger amplitudes. The patterned coupling between SST and LCC fields may serve as a holistic
constraint for model evaluation.

Similar physics will operate in the global warming context with regard to SST-LCC feedback. Analyses of CO2
quadrupling experiments have demonstrated that implied climate sensitivity generally increases with time. It
happens when forced SST warming eventually overwhelms SST cooling due to internal variability or ocean
heat uptake in the upwelling regions, which gets further amplified by positive cloud feedback (Andrews et
al., 2015). We refer to this warming as latent warming here. Intriguingly, the spatial pattern of additional cloud
feedback that drives the latent warming (Figures 4 and 5 in Andrews et al., 2015), that is, the delayed warming
that is amplified by cloud feedbacks, matches the leading LCC pattern reported here (Figure 2b). This pattern
also bears resemblance to the slow warming pattern in the Pacific from another state-of-the-art model (Held
et al., 2010). Our observational analysis when considered together with these modeling results implies
stronger latent warming and possibly higher climate sensitivity than current estimates for many models
because the SST-LCC feedback of current models is too weak. SST-LCC feedback being too weak in many
models suggests that a higher equilibrium climate sensitivity might be more realistic (see Klein et al., 2017,
and references therein). Indeed, we find that models capturing better the SST-LCC coupling, as measured
by the spatial correlation, have higher values of equilibrium climate sensitivity (Figure S7), which may be a
result of both stronger overall positive cloud feedback and stronger latent warming. For example,
HadGEM2-ES, the best overall performing model using our metric, has one of the highest climate sensitivities
and strong latent warming (Andrews et al., 2015). Since the remote effect of SST-LCC feedback is not sepa-
rated out and it would likely offset part of the local SST-LCC feedback discussed here, a complete understand-
ing of the overall impact of SST-LCC on climate sensitivity requires separate understanding of both effects,
which will be left for a future study.
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