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Gut immunity in a protochordate involves a
secreted immunoglobulin-type mediator binding
host chitin and bacteria
Larry J. Dishaw1, Brittany Leigh2, John P. Cannon1, Assunta Liberti3, M. Gail Mueller1,4, Diana P. Skapura4,

Charlotte R. Karrer1, Maria R. Pinto3, Rosaria De Santis3 & Gary W. Litman1,4

Protochordate variable region-containing chitin-binding proteins (VCBPs) consist of

immunoglobulin-type V domains and a chitin-binding domain (CBD). VCBP V domains

facilitate phagocytosis of bacteria by granulocytic amoebocytes; the function of the CBD is

not understood. Here we show that the gut mucosa of Ciona intestinalis contains an extensive

matrix of chitin fibrils to which VCBPs bind early in gut development, before feeding. Later in

development, VCBPs and bacteria colocalize to chitin-rich mucus along the intestinal wall.

VCBP-C influences biofilm formation in vitro and, collectively, the findings of this study

suggest that VCBP-C may influence the overall settlement and colonization of bacteria in the

Ciona gut. Basic relationships between soluble immunoglobulin-type molecules, endogenous

chitin and bacteria arose early in chordate evolution and are integral to the overall function of

the gut barrier.
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P
rotochordate species lack an adaptive immune system
but possess multigene families of innate immune
receptors1, including the secreted immunoglobulin

variable region-containing chitin-binding proteins (VCBPs)2,
which are not found in vertebrates. Unlike V-region-containing
antibodies and T-cell antigen receptors, the VCBPs do not
undergo somatic rearrangement but some exhibit regionalized
hyperpolymorphism3. The V-region domains4 of VCBPs bind
and promote the opsonization of bacteria5; the distinctive
C-terminal chitin-binding domain (CBD) likely is also integral
to overall function2,5,6.

The expression of VCBP genes in both Branchiostoma floridae
(amphioxus)2 and Ciona intestinalis is confined largely to the
gut5,6, where distinctive patterns of both spatial and temporal
expression of VCBPs during development are seen6. Genes
encoding VCBPs in Ciona are expressed abundantly at early
stages in the juvenile, corresponding to the development of
both the stomach and intestinal compartments and preceding
the onset of feeding6; VCBPs represent an early marker of
gut development. VCBPs are expressed primarily in the gut
epithelium and are secreted into the lumen where they bind
bacteria5.

Here we show that endogenous expression of chitin occurs
within the gut of Ciona and that this chitin is an integral
component of gut-specific mucus. The expression of VCBP-C can
be detected from the earliest stages of development; VCBP-C and
ultimately bacteria both bind and colocalize to the resulting
chitin-rich mucus matrix. VCBPs, through association with an
extensive network of chitin fibrils, may influence settlement of
bacterial communities by modulating adherent biofilms on
epithelial surfaces. Thus, in chordate taxa that diverged before
the evolutionary emergence of adaptive immunity, soluble
immune mediators encoding V-type immunoglobulin domains
likely serve a role in the establishment and maintenance of gut
homeostasis by modulating bacterial community structure.

Results
The epithelium-associated mucus is chitin-rich. Staining of
paraffin-embedded intestinal sections with Alcian blue
indicates that the mucus lining the gut epithelium of adult Ciona
consists primarily of acidic mucopolysaccharides (Fig. 1a–c)7, a
characteristic of vertebrates8. The layer immediately adjacent to
the epithelium is rigid and resembles the intestinal glycocalyx of
mammals, whereas that facing the lumen consists either of a
densely woven layer of mucus, which is thinner in the stomach
(Fig. 1a and Supplementary Fig. 1a) and thicker throughout
most of the midgut (Fig. 1b) or loose/more dispersed in the
remaining distal gut areas (Fig. 1c). The latter form is prone to
becoming dislodged during histological processing, and its
appearance also may result from offset or angled sections
(incorporating intestinal curvature). Both forms of mucus
have been described in mammals9. Thick ribbon-like
chitin-rich mucus often is seen accumulating at the base of the
stomach epithelial folds (Supplementary Fig. 1b), consistent
with the stomach epithelial expression patterns of VCBP-C
(Supplementary Fig. 1c)6. Staining with Alcian blue/periodic
acid-Schiff identified neutral polysaccharides that were confined
mostly to the intracellular vacuoles of the secretory epithelial cells
forming the gut wall (Fig. 1d).

A recombinant Fc-chimeric probe derived from the CBD of
VCBP-C (Fc-CBD-C) revealed prominent immunohistochemical
(IHC) staining of epithelium-associated mucus lining the gut wall
(Fig. 2a and Supplementary Fig. 1a), extending from the stomach
through the midgut and hindgut. This signal can be diminished
with chitinase treatment (Fig. 2b). Notably, the abundant mucus
that is associated with the branchial basket largely is to staining
with Fc-CBD-C, suggesting that most chitin production begins
downstream of the pharynx. Indistinguishable staining patterns
were observed using calcofluor white (Fig. 2c,d and
Supplementary Fig. 1d), a chitin-specific general histological
stain, as well as a different recombinant chitin-binding protein
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Figure 1 | Two types of epithelium-associated mucus line the Ciona gut. A

thin layer of mucus (a) covers the epithelium of the stomach in the adult

gut, while thicker mucus (b,c) is found in the mid- to distal-gut epithelium.

(a–c) Alcian blue staining suggests abundant acid mucopolysaccharides.

(d) Staining with Alcian blue/periodic acid-Schiff identified neutral

polysaccharides that were confined mostly to the intracellular vacuoles of

the secretory epithelial cells forming the gut walls. Sections (a–c) were

counterstained with nuclear fast red. Scale bars (a,c), 50mm and (b,d)

25mm. Arrows indicate two types of mucus: dense and layered (b) and

loosely associated (c). E, epithelium; L, lumen.
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Figure 2 | Detection of chitin within Ciona gut mucus. (a) Chitin was

detected initially (arrow) within the mucus throughout the gut by staining

with Fc-CBD-C DyLight 488 (green) and (b) subsequently was depleted by

treatment with chitinase. The absence of Fc-CBD signal also is achieved by

pre-treating tissue sections with chitinase. (c) Calcofluor white staining

confirmed the presence of chitin at the epithelial surface (arrow); copious

amounts of loose chitin-rich mucus often are detectable in the lumen

(d). Identical chitin staining patterns were detected with Alexa Fluor

488-coupled chitin-binding protein (New England BioLabs; Supplementary

Fig. 1f). Staining with isotype and secondary antibody controls was negative.

Scale bars (a–c), 25mm and (d) 100 mm). E, epithelium; L, lumen; S, stool.
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probe (Alexa Fluor 488-CBP, New England Biolabs;
Supplementary Fig. 1e,f). Copious amounts of free, chitin-rich,
mucus often are seen in the gut lumen (Fig. 2d); a chitin-rich
glycocalyx encasing fecal pellets throughout the intestinal
compartments also is evident (Supplementary Fig. 2).

VCBP-C and bacteria colocalize at surface of the gut epithelium.
Double immunofluorescent staining of gut mucus with the
Fc-CBD reagent as well as with antibody directed to the V2
domain of VCBP-C is illustrated in Figs 3 and 4. VCBP-C has been
shown previously to be expressed by the gut epithelium, stored in
granules and released into the lumen5. VCBP-C and chitin-rich
mucus are shown here to colocalize to the surface of the gut
epithelium (Fig. 3). VCBP-C colocalizes to chitin fibrils within
mucus but also can be detected in other chitin-deficient, mucus-
rich areas of the gut, as well as under the glycocalyx, in more
intimate contact with the epithelium. This latter effect is most
apparent where the glycocalyx has become partially detached
during tissue-processing (Fig. 4a and Supplementary Fig. 3a,b).
VCBP-C colocalizes to mucus even in the adult midgut, in which
the epithelium is not known to secrete significant amounts of
VCBP-C; the interaction of VCBP-C with the chitin matrix may
originate in upstream gut compartments. The sparse or loose
mucus found in the distal gut (Fig. 1c) often is interwoven with
loosely packed chitin fibrils (Fig. 4b) and, correspondingly, the
reactivity with antibody to VCBP-C can appear interspersed.
VCBP-C also is found in the gut lumen where it previously was
shown to interact with dietary contents that include bacteria5. It is
likely that in adult animals a portion of the secreted VCBP-C is
captured at the surface mucus (Fig. 4a,b and Supplementary
Fig. 3c) through interaction with chitin, and another portion enters
the lumen.

Bacteria, which associate with surface mucus and can be
visualized by DNA staining using acridine orange or Hoechst
dyes (Fig. 4c and Supplementary Fig. 3d), colocalize with the
VCBP-C signal in the mucus layers (Fig. 4d and Supplementary
Fig. 3d–f). Microbial cells appear in either sparse or dense clusters

throughout the gut mucus but are most abundant in the loosely
packaged mucus of the distal gut (Fig. 4c and Supplementary
Fig. 3d). The presence of microbes along the gut wall varies by
compartment and is not necessarily continuous. The DNA stains
also produce microbe-free signals in some mucosal areas, which
likely represent reactivity with extracellular DNA integrated into
biofilms10. Most of the bacterial signals are consistent with the
fluorescent in situ hybridization patterns produced by a probe
complementing 16S genes (Eubacterial 16S probe cy3-338;
Fig. 4d)11. Sparse organization of distal mucus is consistent
with observations in mammals, in which bacterial and host-
associated metabolic activity often contribute to loosened
mucus12.

VCBP-C and chitin colocalize in early non-feeding gut. Ciona
represents a particularly well-defined model of chordate devel-
opment6,13 (http://bioinfo.s.chiba-u.jp/ciaba/). Juveniles initiate
feeding during late stages of metamorphic development. Different
compartments of the digestive tract such as the oesophagus,
stomach and intestines can be discerned histologically at stage 5
of the first ascidian stage juvenile. To determine whether the
chitin found in the gut is of endogenous or exogenous origin,
whole-mount immunofluorescent staining was used to localize
chitin during various stages of metamorphosis before or after the
initiation of feeding. At the late rotation stage, chitin and VCBP-
C colocalize in the tube-shaped structure of the developing
intestine (Fig. 5a) and fill the gut lumen later in development
(Fig. 5b–e). At stage 7 of the first ascidian stage juvenile, chitin
and VCBP-C are detected and mucus can be seen in the lumen
(Fig. 5b–d); both signals colocalize in the stomach and intestine
where chitin-rich mucus forms pellet-like structures even before
the onset of feeding. A consistent pattern of VCBP-C expression
throughout most of the gut is evident in whole-mount embryos
from the late rotation stage onwards. VCBP-C and chitin staining
are colocalized when mucus begins to fill the lumen. Ciona
juveniles begin to acquire adult-like morphological features14 at
stages corresponding to 12–20 days post settlement (last half of
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Figure 3 | VCBP-C colocalizes with chitin-rich mucus at the surface of the

stomach epithelium near the midgut and is visualized with confocal

microscopy. (a) Chitin staining (arrow) detected by Fc-CBD-C DyLight 488

(green), (b) VCBP-C staining (arrow) detected by Alexa Fluor 594 (red) at

the surface mucus as well as within granules of the epithelium, (c) Hoechst

staining of DNA and (d) merged (arrow; overlay indicated in yellow).

Staining with isotype and secondary antibody controls at varying

concentrations was negative. Scale bars, 50mm. E, epithelium; L, lumen.
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Figure 4 | Detection of VCBP-C in both dense and loosely associated

mucus. (a,b) Colocalization (yellow-merged signal) of chitin (Fc-CBD-C

DyLight 488, green) and VCBP-C (Alexa Fluor 594, red). Dense mucus

(glycocalyx-like) of the midgut can form (a) ribbon-like structures (arrow)

as opposed to (b) less dense mucus (arrow) seen in the distal gut.

(c) Microbiota-sized particles (arrow) seen in the mucus detected by

Hoechst staining of DNA were confirmed as bacteria by 16S FISH (arrow)

(d). Staining is negative with isotype and secondary antibody controls.

Scale bars,10mm. E, epithelium; L, lumen.
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the first ascidian stage), during which final development of the
branchial basket occurs and abundant expression of chitin in the
stomach and midgut can be detected by staining with Fc-CBD-C
(Fig. 5e). In these more mature juveniles, the stomach, a major
site of mucus and chitin production, possesses a thick layer of
chitin-rich mucus (and a small-volume lumen) where VCBP-C is
found to colocalize strongly (Supplementary Fig. 4a–c). A
prominent unilateral signal is evident on the ventral side of the
gut wall (Fig. 5e and Supplementary Fig. 4a); in the distal gut,
chitin staining is restricted to fecal pellets. Fecal pellets appear to
become coated by a chitin-rich glycocalyx as the pellet exits the
stomach (Supplementary Fig. 4d,e); long fibres of chitin-rich

mucus are secreted in juveniles (Supplementary Fig. 4d,e) and
adults (Supplementary Fig. 4f). After day 20 of development
(second ascidian stage), chitin staining fills the entire gut from
stomach through to the anus (Fig. 5f).

Expression of chitin synthase in the stomach and midgut areas
can be detected by RNA in situ hybridization in early stages of
development (Supplementary Fig. 5). Because chitin can be
detected in juveniles before the onset of feeding, the expression
and colocalization of both chitin and VCBP-C are not coupled to
dietary sources and are independent of bacterial exposure.

The presence of VCBP-C modulates biofilm formation in vitro.
Most bacterial members of the gut microbiome colonize and
reside as adherent communities by forming biofilms15,16, a
process that is influenced by both biophysical properties and
physiological conditions. Various host factors, which are
secreted into the lumen by epithelial cells, can become trapped
or immobilized in the mucus layers where they also can interact
with colonizing flora and influence adherence and biofilm
formation17–19. The presence of chitin at the mucosal surfaces
of Ciona is unlikely to be bacteriolytic on its own; however, it may
provide both a potential carbon source and a structural matrix for
biofilm formation for a subset of gut microbes. The same chitin
also may serve as a physical barrier to colonization by other
microbes. Because VCBPs and chitin colocalize to the host
epithelial-associated mucus so conspicuously, a further question
arises as to whether or not the formation of the biofilms is
influenced by VCBPs directly.

The potential role for VCBPs in modulating adherent biofilms
was investigated by deriving single bacterial isolates from the gut
of Ciona. Five bacterial species closely related to gut core
operational taxonomic units20, including two Vibrio sp., one
Pseudoalteromonas sp., one Bacillus sp. and one Shewanella sp.,
were grown either in the presence or absence of hydrolysed
chitin. Production of biofilms involves the formation of an
exopolysaccharide-rich sheet that, in vitro, adheres to plastic
dishes and can be stained and quantified with crystal violet21.
Biofilm production was significantly increased in the Bacillus sp.,
Pseudoalteromonas sp. and Shewanella sp. with the addition
of either affinity-purified5 or recombinant VCBP-C protein
(6.5 mg ml� 1; Fig. 6a–e). Hydrolysed chitin alone or in
combination with VCBP-C had a significant influence on
biofilm formation in Shewanella sp. (Fig. 6b) and
Pseudoalteromonas sp. (Fig. 6c); however, the addition
of hydrolysed chitin was not required for the observed effect
of VCBP-C. Two of the Vibrio species tested exhibited no effect of
VCBP-C on biofilm production; however, one species (6251;
Fig. 6d) demonstrated a mild but significant enhancement in
biofilms when exposed to both VCBP-C and hydrolysed chitin.
The observed effects also have been confirmed with native,
affinity-purified, VCBP-C. Stereomicroscopy using the ALI Assay
(Supplementary Fig. 6)22 indicates that the increase in crystal
violet staining (Fig. 6) corresponds with a general increase in
surface coverage by the maturing, adherent, biofilm. The
estimated concentration of VCBP-C from affinity isolation
experiments5 in the stomach extract of adult Ciona is
15 mg ml� 1. Enhancement of biofilm production by soluble
VCBPs was concentration-dependent, and the effect was reversed
by heat inactivation. VCBPs at concentrations ranging from
6.5 mg ml� 1 to 0.5 mg ml� 1 (the highest tested) influence biofilm
formation by direct contact with bacteria within the biofilm
(Fig. 7a,b). A recombinant VCBP-C lacking the CBD (V1V2)
was tested at similar concentrations and found to be consistently
less effective than full-length VCBP-C at inducing biofilms,
suggesting a role for the CBD in biofilm modulation. The reduced
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Figure 5 | Chitin is expressed endogenously and its colocalization with

VCBP-C is independent of microbial exposure. (a) Signals for VCBP-C

(Alexa Fluor 594, red) and chitin (Fc-CBD-C DyLight 488, green) are

colocalized (yellow, arrow) in the intestinal region of the gut primordium of

late rotation stage juveniles maintained under germ-free conditions and

persists throughout development. Gut development is complete by stage

5/7, with the immediate onset of feeding13. (b) Intestinal mucus is chitin-

rich (in green, arrow). (c) Magnified view of gut (from b) in which VCBP-C

(in red, arrow) is distributed primarily at the edges of the gut tissue

surfaces. Chitin-rich pellets are seen in the distal gut and are purged into

environment before feeding. (d) Magnified view of the stomach

demonstrates chitin-rich mucus and VCBP-C in the epithelium, red.

(e) Chitin (green) is prominent and restricted to the stomach and midgut

epithelium 2–3 weeks post fertilization; chitin-rich mucus cannot be

detected in the oesophagus or branchial basket. Intense signal is evident at

the outer edges and are more prominent on the ventral side (arrows) of the

stomach and midgut; a chitin signal also is prominent in fecal pellets (not

visible in e) but cannot be detected in the hindgut epithelium. (f) Chitin is

prominent throughout the gut to the anus in the whole-mount staining of

young adults (second ascidian stage and onwards); images of both sides of

the stomach are included to emphasize enhanced signal in ridges of the

epithelial grooves (inset). Bright field overlays are shown in a,b,e. Scale bars

(a,c), 50mm; (b,e), 100 mm; (d) 25 mm; and (f) 200 mm. BB, branchial

basket; E, epithelium; es, oesophagus; hg, hindgut; L, stomach lumen; mg,

midgut; st, stomach.
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effect of the V1V2 protein is demonstrated in both the ALI assay
(Supplementary Fig. 6d) and by immunostaining (Supplementary
Fig. 6e,f).

Previously, it was demonstrated that one of the many functions
of secretory IgA (SIgA) in mammals involves the modulation of
biofilm production23; histologically, SIgA can be found integrated
into the mucus layers of the gut18,24,25. Non-pathogenic
Escherichia coli have been induced to produce more abundant
in vitro biofilms in the presence of SIgA23, suggesting that these
biofilms could enhance barriers in the gut24–26. We reproduced
the original findings, here quantified using the crystal violet

staining approach (see Fig. 6f and Supplementary Fig. 7)21, and
demonstrate that SIgA also is bound to the bacteria of the biofilm
(Fig. 7c,d).

Extensive differences in the effects of both chitin and VCBP-C
on biofilm formation and stability by different species of bacteria
are consistent with their involvement in a selective process,
especially considering that VCBP-C (as demonstrated for SIgA
and E. coli) can bind directly to bacteria within an adherent
biofilm (Fig. 7). These observations warrant future studies aimed
at determining the role(s) of VCBP-C in modulating adherent
properties and biofilm formation among distinct communities of
bacteria that colonize the gut.

Discussion
The gut of both vertebrates and invertebrates has evolved to
house rich communities of microorganisms16. The host utilizes
diverse mechanisms, including immune mediators, to protect it
from invading pathogens while ignoring, not responding to or
protecting certain beneficial microbes. The epithelium-associated
mucus is an important component of gut barriers and
abundant non-pathogenic bacterial communities colonize these
surfaces12,18,24. Details remain lacking on the mechanisms by
which both vertebrates or invertebrates modulate the
composition of bacteria in mucosal barriers. In vertebrates,
SIgA plays important roles27.

Ciona represents a potentially informative model system for
understanding gut immunity16,28. Specifically, Ciona ingests food
through a siphon system that forces relatively large volumes of
water through an extensive branchial basket, in which gas
exchange occurs and food particles are selected and sieved before
entering the oesophagus and ultimately passing to the stomach
and intestines. Ciona feeds on a diverse diet of fine and
microscopic carbon sources (for example, phytoplankton and
bacteria), but the gut is colonized by a distinct and presumably
functionally relevant microbiome20,28. Additional advantages
include the following: a relatively large size; striking histological
resemblance of its gut to that of more advanced chordates; an
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Figure 6 | VCBP-C affects in vitro biofilm formation differentially in five

gut bacterial isolates recovered from C. intestinalis. (a) Stationary

cultures of a Bacillus sp. isolated from the Ciona gut forms biofilms within

3–5 days. Biofilm formation is enhanced in the presence of recombinant

VCBP-C (6.5mg ml� 1); a similar effect is noted for gut isolates of

(b) Shewanella sp. and (c) Pseudoalteromonas sp. (d) Vibrio isolate 6251

(laboratory-assigned number) exhibits a significant increase only with the

addition of VCBP-C plus chitin; (e) no significant difference is seen with

Vibrio isolate 6269. (f) E. coli biofilms are increased in the presence of SIgA;

VCBP-C at similar concentrations does not influence E. coli biofilms.

Biofilms were stained with crystal violet, dried, re-dissolved in acetic acid

and absorbance (Abs) was read at OD550. Increased absorbance reflects

the increased surface biofilm. Each experiment was performed in triplicate a

minimum of four separate times; results shown represent one triplicate

experiment. s.d. is shown by black error bars. Significant differences from

control samples were calculated by using analysis of variance with post hoc

Dunnett’s test. *Po0.05; **Po0.01; CTL, control; VCBP, VCBP-C; V/C,

VCBP-C plus hydrolysed chitin.
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Figure 7 | VCBP-C associates with bacteria in a Shewanella sp. biofilm.

Shewanella were stationary-cultured in the presence of VCBP-C.

Immunofluorescent staining detected VCBP-C bound to the bacteria of the

biofilms using anti-VCBP-C (Alexa Fluor 594, red). (a) Control stain

(no addition of VCBP-C) using primary and secondary antibodies,

(b) VCBP-C-positive biofilm. SIgA influences biofilm formation in a non-

pathogenic E. coli strain. (c) Control stain (no addition of SIgA) using

fluorescently tagged anti-IgA antibodies and (d) SIgA-positive biofilm.

Scale bars, 20mm.
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experimentally tractable model system with a sequenced,
streamlined genome; a well-defined developmental programme;
ability to be reared under germ-free conditions until the second
ascidian stage is reached; and long-established mariculture
approaches29,30. Ciona VCBP-C interacts with bacteria, is
opsonic for granular (gut) amoebocytes5 and exhibits patterned,
compartmentalized expression that is established at the earliest
stages of development6. The V domains bind bacteria and elicit
opsonization; however, until now the role of the CBD in VCBP
function is unknown.

Many species of arthropods31 as well as many vertebrates32,
with the exception of mammals, produce endogenous chitin in
the gut. The midgut surfaces in some protostome invertebrates
(for example, Drosophila) are lined by peritrophic matrices33,
which are rich in both chitin and peritrophins34, glycoproteins
that possess CBDs. A dense gel-like layer termed the
peritrophic matrix is formed33, which establishes a barrier
along the gut epithelium35. The resulting surface is fortified
against parasites and the peritrophic matrix also functions in
subcompartmentalization (for example, when fragments encase
stool pellets) of metabolic processing of dietary material. Chitin
production may not be limited to the gut, as blood cells from
various invertebrates have been implicated36. The occurrence of
chitin in the gut of Ciona and other tunicates has been reported
previously37,38; our data suggest further that in Ciona chitin-rich
mucosal surfaces not only provide physically enhanced barriers
but also may provide a surface where proteins with CBD domains
can anchor. The recent description of chitin in the gut of non-
mammalian vertebrates is of potential significance to host-barrier
defense; however, no vertebrate immune mediators have yet been
shown to associate with a host-associated chitin matrix, which
may serve as a primary interface with the adherent microbiome.
Here we show that since the earliest developmental stages of gut
formation, colocalization of VCBPs with endogenous chitin
occurs. Soon thereafter, chitin forms long parallel fibrils that are
integrated with epithelial-associated mucins of the Ciona gut.
VCBP-C colocalizes to this matrix (via the CBD domain) and,
taking into account early observations on the phagocytic function
of VCBP-C, it is reasonable to assume that the interaction of
bacteria with this matrix is mediated via the V domains of VCBP-
C. Additional roles for VCBP-C in host immunity and barrier
defenses are suggested by the results of in vitro biofilm assays in
which we show that VCBP-C protein also can affect the
formation of biofilms. Thus, while hydrolysed chitin was
demonstrated to have a minimal influence on biofilm formation
(Fig. 6), the presence of the CBD of VCBP-C appears to serve an
important role.

The mammalian gut is protected not only by physical barriers
and other innate mucosal defenses but also by SIgA, which
effectively can agglutinate and/or opsonize bacteria27. SIgA can
influence the development and composition of the gut
microbiome39–41. In mammals, SIgA has been shown to
associate with mucosal barriers and also influence bacterial
biofilm formation via mechanisms that remain to be
determined12,18,23,24. Interestingly, the massive glycan complex
that forms the core of the secretory component of SIgA is
chitobiose-rich and interacts directly with bacteria42; however,
the overall significance of this association to host defense is not
known. Analogies can be drawn, albeit speculative, between the
observed associations of VCBPs in the gut and SIgA of mammals.
Specifically, the interaction of SIgA with bacteria in the lumen
regulates adherence to the epithelial surface through immune
exclusion, an integral component of barrier defenses in mucosal
tissues43. Subsequently, based on in vitro experimental
observations, it was proposed that non-pathogenic bacteria
residing as adherent biofilm communities among mucin-rich

epithelial surfaces were the result of SIgA colocalization and
agglutination of some bacterial strains18,26. This observation was
reproduced in our in vitro assays; as a control, we demonstrate
that even at 2 mg ml� 1 (the concentration at which SIgA is most
active on E. coli biofilms in vitro), VCBP-C does not influence
E. coli biofilm assembly, further demonstrating an unexpected
discriminatory potential of the interactions shown (Supplemen-
tary Fig. 7). The observations described herein suggest that
VCBPs in the lumen, as well as VCBP colocalized to epithelial
surfaces, modulate adherence and biofilm formation at the
surface of intestinal epithelium. These functional properties could
be predicted to serve important roles in maintaining homeostasis
and place VCBP-C at the host–environment interface where the
settlement of some transient bacteria are regulated in a process
that resembles immune exclusion by SIgA; modulating the
formation of biofilms is likely essential for barrier stability44.

It remains unclear why some immune mediators, such as
VCBP-C in protochordates or SIgA in mammals, would induce
the formation of biofilms in some bacteria. It is possible that some
bacteria common to the lumen induce biofilms in direct response
to being bound by these immune mediators, which often induce
agglutination or are effective as opsonins. With non-pathogens,
one can also easily envision a scenario where this ‘arms race’
eventually developed into mutualistic interactions where both the
bacteria and the host (for example, by enhancing barriers) can
benefit from the resulting biofilms.

Immunoglobulin-mediated adaptive immunity as we know it
in vertebrate species has long been thought to have originated in
the gut where it serves important roles in barrier functions and
likely predated the emergence of the rearranging antigen-binding
receptors45–47. Specific intermediates in the evolutionary
pathways that ultimately gave rise to the adaptive receptors of
jawed vertebrates may never be able to be traced definitively as
such efforts are confounded by the rapid divergence and
heterogeneity of these families of molecules as well as their
relatively sparse sequence conservation. Immunoglobulin V-type
domains are well known to function in the context of immunity;
historically, CBDs most often have been associated with chitin
utilization pathways. We herein provide evidence that CBDs can
function as components of immune-type molecules that function
at the interface of host and microbiome. It would appear that
fundamental relationships between soluble V-region-containing
molecules and the gut microbiome were established before the
origins of vertebrates and the adaptive immune system.

Methods
Animals. Wild-harvested C. intestinalis were obtained from harbors in the San
Diego vicinity (M-REP). Animals were shipped overnight, immediately acclimated
into filtered seawater and, if necessary, placed under continuous light for harvesting
of gametes for mariculture5,6,20.

Histological preparations. Animal guts were cleared for 48–72 h in filtered sea-
water with water being changed every several hours, dissected and placed into
4% paraformaldehyde (in artificial seawater) overnight with gentle rocking at 4 �C.
Tissues were prepared for either frozen or paraffin-sectioning. After fixation,
tissues for frozen sectioning were washed 5� in PBS, soaked for at least 2 h or
overnight in 20% sucrose/PBS and subsequently embedded and frozen on dry ice in
OCT freezing media (Fisher Scientific). Frozen blocks were sectioned at 8–20mm in
a cryostat. Fixed tissue was dehydrated through a gradient ethanol series and
paraffin-embedded via standard methods without the use of vacuum. Paraffin
blocks were sectioned at 6–12 mm. The mucus of the Ciona gut can resist some
forms of traditional histological processing, likely due to the fixation of mucus that
is interwoven with polymerized chitin fibrils and bacterial biofilms (see below).
Individual-specific modifications in handling and washing were introduced in the
procedure to optimize results, including suturing the anterior and posterior ends of
the gut, fixation of the gut with minimal handling, lowering of dissected gut
compartments into fixative with rocking gently overnight at 4 �C and adopting
additional precautions when handling the subsequent sections and slides. When
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possible, smaller animals were fixed and sectioned as whole animals, that is,
without dissection, resulting in minimal disruptions to the gut architecture.

Mariculture and development of germ-free animals. Animals were cultured and
maintained under germ-free conditions according to slightly modified methods
originally established for zebrafish48. The outer tunic of Ciona was brushed with
ethanol and povidone iodine. Eggs and sperm were isolated from ducts by
surgical manipulation in a laminar flow hood. Following in vitro fertilization,
embryos were handled in 100-mm mesh baskets. To circumvent handling
complications with embryos that had shed the chorion after sterilization, culture
dishes were coated with 1% agarose and treated with ultraviolet light for 1 h while
drying. Germ-free embryos were then allowed to develop into swimming larvae
before being transferred to uncoated Petri dishes that were maintained in bench
top clean hoods. Animals were maintained in 50–100-IU ml� 1 of penicillin and
50–100 mg ml� 1 of streptomycin for at least the first week. Culture media and/or
artificial seawater, as well as random animal samples, were checked weekly for
contamination by monitoring growth on media that support the growth of a variety
of marine microorganisms, including marine, tryptic soy, nutrient and brain–heart
infusion agars, all with and without sea salts. Culture media also were screened
with 16S PCR using 27F and 1492R primers49,50.

Expression of recombinant VCBP-C forms. Construction of a chimeric human
IgG1 Fc-CBD reagent was performed as previously described51 where cDNA
sequences encoding the CBD (region 265–303 of NP_001190979) of VCBP-C were
subcloned into the pcDNA3.0 vector. The human IgG1 Fc was positioned to be
50 to the CBD sequence. Recombinant (Fc-CBD-C) protein was expressed in
HEK293T cells (ATCC, CRL-3216); supernatants were harvested and Fc-CBD-C
fusion protein was harvested using affinity purification with Protein A.
Recombinant protein was washed and concentrated on Amicon spin columns
(Millipore). The primary specificity of the reagent and reactivity with the second
antibody were evaluated and confirmed.

Recombinant VCBP-C or V1V2 (CBD minus) proteins were expressed in
bacteria, refolded and purified using previously established conditions5. Briefly, a
cDNA fragment encoding the mature secreted form of VCBP-C was expressed in E.
coli Tuner cells (Novagen) and inclusion bodies were isolated after lysis in
detergent with added lysozyme and nuclease (Bugbuster and Lysonase; Novagen).
Isolated inclusion bodies were denatured in 8-M guanidine, reduced using
immobilized TCEP (Pierce Biotechnology) and refolded in 1 M guanidine/0.88 M
arginine/2 mM glutathione. After dialysis against 50 mM NaCl/10 mM Tris pH 8.0,
refolded VCBP-C was purified with fast protein liquid chromatography using a
HiLoad 16/60 Superdex 75 gel filtration column (GE Healthcare Life Sciences).
Purified protein was verified with SDS–PAGE and stored in aliquots at � 80 �C in
50 mM NaCl/10 mM Tris pH 8.0.

Histological and immunohistochemical staining. Established protocols were
followed for histochemical staining of intestinal mucus with Alcian blue (0.5–2 h in
1 mg ml� 1, pH 2.5 using 3% acetic acid) or Alcian blue/periodic acid-Schiff52,53

and acridine orange25. DNA counterstaining also was performed with Hoechst in
deionized water. Uvitex-2B and calcofluor white are biological dyes that detect
chitin54,55. Chitinase (Streptomyces, C6137, Sigma-Aldrich) treatment was
performed for 1 h at 37 �C at 1 mg ml� 1. Conditions for IHC and
immunofluorescent antibody staining to VCBP and the human IgG1 Fc-CBD-C
reagent utilized previously described methods5,6. Briefly, dewaxed paraffin tissue
sections were incubated with 0.1% Triton/1� PBS for 5 min and blocked in
non-animal block buffer (Vector Laboratories, Burlingame, CA) for 1 h. Primary
antibodies at appropriate dilutions were incubated overnight at 4 �C, and secondary
antibodies were hybridized at room temperature for 2 h or overnight at 4 �C.
Throughout, secondary antibodies were DyLight 488-conjugated (goat anti-human
IgG1 for Fc-CBD-C detection; Invitrogen) and Alexa Fluor 594-conjugated (goat
anti-rabbit IgG for VCBP-C detection; Abcam) and visualized with fluorescence
microscopy.

16S fluorescent in situ hybridization. Detection of bacteria on biological sections
was performed as described previously11,56. Briefly, tissue sections were
permeabilized in 0.1% Triton/PBS for 5 min and treated with 0.1 M glycine for
10 min at room temperature. Prehybridization was at 37 �C for 1 h using a
nonspecific blocking oligonucleotide. Hybridization of the sections using 50 ng of
Cy3-conjugated 16S rRNA-specific universal oligonucleotide, EU338, was carried
out overnight at 37–45 �C in hybridization buffer, 0.9 M NaCl, 20 mM Tris-HCl
(pH 7.6), 0.01% SDS and formamide at 10–30%. A control sense oligonucleotide
(non-EU338) was hybridized on corresponding sections.

Production of hydrolysed chitin. Hydrolysed chitin was produced with minor
modification of a previously described method57. Briefly, 20 g of chitin (crab shells,
practical grade C7170; Sigma) was mixed with 200 ml of 12 N HCl and stirred for
B15 h at 4 �C. The mostly dissolved suspension was adjusted to pH 8.4 using
sodium carbonate, brought to a final volume of 1 l and autoclaved. Dilutions of the
resulting buffered suspension were utilized in bacterial cultures and biofilm assays.

VCBP-C binds to chitin prepared in this manner, which has been immobilized on
columns5.

Isolation and culturing of native gut bacteria. Fecal material was cleared by
starving animals for 72 h, with repeated changes of 0.2-mm filtered seawater. Gut
compartments (stomach, midgut and hindgut) were dissected, aseptically, from
Ciona adults. A Dounce homogenizer was used to disrupt tissue and liberate or
release bacteria from the mucosal surface of the gut compartments. Large tissue
debris was eliminated by processing through a 40-mm filter at 500g for 30 s. Bac-
teria were isolated by pelleting at 1,500g for 10 min, washed once and resuspended
in 0.2-mm filtered artificial seawater. Approximately 10–50 ml of the suspension was
plated onto various media plates. Clonal growth was established and maintained by
replica-plating and/or streaking. Bacterial classification is based on sequencing of
16S PCR products.

In vitro biofilm assays. Bacterial isolates from fresh replica plates were grown in
liquid culture at the appropriate temperature with continuous shaking or under
stationary conditions; growth rates were determined by OD600. Cultures were
diluted to a final concentration of 106 cells per ml and plated (1 ml) onto 3-cm
uncoated plastic Petri dishes in triplicate for stationary growth at 18 �C. Biofilms
were developed for 2–5 days without agitation; excess liquid and planktonic
(unbound) bacteria were removed by decanting or wicking with high-absorbance
blotting pads cut into 0.5-cm strips, depending on the bacterial species and specific
properties of the biofilm. The plates and adherent biofilms were dried in a biolo-
gical safety cabinet for B2 h at room temperature, rinsed in water to remove loose
material and stained in 0.1% crystal violet for 10 min (ref. 21). Biofilm production
was estimated semiquantitatively by dissolving the stained material in ethanol or
acetic acid using the same volume as the original culture and determining OD550.
Biofilm staining levels of experimental groups were compared with those of parallel
control groups using Dunnett’s Multiple Comparison Test in InStat (GraphPad
Software Inc., La Jolla, CA, USA). Statistically significant differences were
presumed for P valueso0.05. The observation that SIgA can enhance the
formation of biofilms in a typical, non-pathogenic, version of E. coli (MG1655;
ATCC 700926)58 was explored. E. coli was grown in stationary cultures in the
presence of 0.5–2 mg ml� 1 of SIgA (Thermo Fisher; 50-489-911); biofilms were
induced most strongly at 2 mg ml� 1 as previously shown58. E. coli was also
cultured in the presence of 2 mg ml� 1 recombinant VCBP-C. To visualize VCBP-
C bound to established biofilms, bacterial cultures derived from the Ciona gut were
grown in the presence of VCBP-C for 5 days and incubated with additional VCBP-
C for 2 h before fixation. After the supernatant was removed, the biofilms were
washed two times and fixed in paraformaldehyde and then washed an additional
two times. Biofilms were stained with rabbit anti-VCBP-C and detected by goat
anti-rabbit Alexa Fluor 594 (red). SIgA was detected with Alexa Fluor 488-
conjugated AffiniPure F(ab0)2 Fragment Goat Anti-Human Serum IgA, a-Chain
Specific (Jackson ImmunoResearch). Control biofilms were established without
exposure to VCBP-C or SIgA and then stained with primary and secondary
antibodies as before. Biofilm visualization was achieved with the air–liquid
interface (ALI) assay22, modified to include visualization using a Leica stereoscope
(M205 FA) and advanced optics, allowing up to � 320 magnification.

RNA in situ hybridization. Whole-mount RNA in situ hybridization was per-
formed on appropriately staged juveniles5,6. The expression of a putative chitin
synthase gene (XM_004227126) from gut samples of unchallenged animals was
verified using RT–PCR. A fragment of the chitin synthase transcript was amplified
by PCR using S-50-TTCGTCACTCAAGGCTGTTG-30 and AS-50-CGACACACA
CAATCCCTGTC-30 oligonucleotides, cloned into TOPO vectors (Invitrogen) and
riboprobes were generated with T3 and T7 polymerases according to the
manufacturer’s protocols. Endogenous alkaline phosphatase signal was quenched
from gut tissues with an overnight incubation at 4 �C using 24 mg ml� 1 of
levamisole before developing with NBT/BCIP substrates (Roche Diagnostics,
Indianapolis, IN).
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