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Multi-color single-molecule 
tracking and subtrajectory analysis 
for quantification of spatiotemporal 
dynamics and kinetics upon T cell 
activation
Yuma Ito1, Kumiko Sakata-Sogawa1,2 & Makio Tokunaga1,2

The dynamic properties of molecules in living cells are attracting increasing interest. We propose a 
new method, moving subtrajectory analysis using single-molecule tracking, and demonstrate its 
utility in the spatiotemporal quantification of not only dynamics but also the kinetics of interactions 
using single-color images. Combining this technique with three-color simultaneous single-molecule 
imaging, we quantified the dynamics and kinetics of molecules in spatial relation to T cell receptor (TCR) 
microclusters, which trigger TCR signaling. CD3ε, a component of the TCR/CD3 complex, and CD45, a 
phosphatase positively and negatively regulating signaling, were each found in two mobility states: 
faster (associated) and slower (dissociated) states. Dynamics analysis suggests that the microclusters 
are loosely composed of heterogeneous nanoregions, possibly surrounded by a weak barrier. Kinetics 
analysis quantified the association and dissociation rates of interactions with the microclusters. The 
associations of both CD3ε and CD45 were single-step processes. In contrast, their dissociations were 
each composed of two components, indicating transient and stable associated states. Inside the 
microclusters, the association was accelerated, and the stable association was increased. Only CD45 
showed acceleration of association at the microcluster boundary, suggesting specific affinity on the 
boundary. Thus, this method is an innovative and versatile tool for spatiotemporal quantification.

Recently, owing to technical developments and an increased number of commercially available instru-
ments, remarkable progress has been made in the elucidation of biological macromolecule dynamics at the 
single-molecule level1, 2, providing fundamental insight into the understanding of molecular functions in living 
cells3, 4. Biological molecules function through interactions with many other proteins such as co-worker and reg-
ulatory proteins, resulting in complicated molecular dynamics. Numerous studies have revealed that the behavior 
of proteins in living cells is heterogeneous5, 6. Therefore, it is important to analyze these proteins simultaneously; 
however, it is difficult to simultaneously capture the movements of different proteins.

T-lymphocyte cell activation in the immune system is a complicated process, in which kinases, phosphatases, 
and adaptor proteins act simultaneously and/or sequentially. T cell receptor (TCR), composed of TCR subunits 
and CD3 subunits, recognizes antigenic peptides presented by major histocompatibility complex (MHC) mole-
cules. MHC-TCR complexes induce phosphorylation of the TCR/CD3 complex via a tyrosine kinase, Lck. This 
causes clustering of signaling molecules and triggers subsequent signal transduction. Lck is activated by a phos-
phatase, CD45, which dephosphorylates an inhibitory tyrosine of Lck to relieve autoinhibition. Conversely, CD45 
negatively regulates signaling by dephosphorylating TCR7, 8. Lck shows different activity depending on whether it 
is diffuse, clustered, or co-clustered with TCR8. Thus, CD45 regulates signaling both positively and negatively7, 8.

TCR signaling proteins assemble into spatially segregated supramolecular activation clusters (SMAC) at 
the area of cell contact9, 10. A previous study using live cell imaging found that activation causes formation of 
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microclusters of TCR molecules and that the initial stages of the signaling cascade are spatiotemporally controlled 
on the TCR microclusters11. Previous studies using single-molecule tracking on T cell surfaces revealed differ-
ences in diffusion coefficients between the inside and outside of lipid rafts12–14. However, differences in mobility 
related to the microclusters were unknown. Furthermore, the kinetics related to the microclusters have not been 
sufficiently explored.

Here, we have introduced a new method of moving subtrajectory analysis to quantify both dynamics 
and kinetics spatiotemporally. Use of glass-supported lipid bilayers15 via a facile preparation method16 ena-
bled us to hold cells onto the surfaces, preserving the mobility of membrane proteins. We applied three-color 
single-molecule imaging to analyze different kinds of proteins simultaneously. Obtained images were analyzed 
using moving subtrajectory analysis, and we demonstrated that the new method quantifies not only dynamics but 
also kinetics in spatial relation to the microclusters.

Results
Three-color simultaneous imaging of living cells.  We visualized the single-molecule dynamics of 
CD3ε, a subunit of TCR, and CD45. Jurkat cells, an immortalized line of human T cells, stably expressing CD3ζ-
EGFP were immobilized onto glass surfaces using biotinylated anti-CD3ε antibodies and planar lipid bilayers 
on coverslips to preserve the intrinsic mobility of membrane proteins16 (Fig. 1A). Therefore, TCR signaling was 
activated immediately after binding with anti-CD3ε antibodies. CD3ζ-EGFP was used as a marker protein for 
TCR. CD3ε and CD45 on cell surfaces were fluorescently labeled using antibodies against extracellular domains 
of CD3ε and CD45 conjugated with quantum dots 655 (Qdot 655) and 585 (Qdot 585), respectively. Fluorescence 
labeling with Qdots enabled clear visualization of single molecules, as well as tracking for extended periods of 
time.

Three-color simultaneous imaging of the TCR microcluster, CD3ε, and CD45 was achieved by total inter-
nal reflection fluorescence (TIRF) microscopy17 using a 488-nm laser beam to excite CD3ζ-EGFP, anti-CD3ε 
antibody-Qdot 655, and anti-CD45 antibody-Qdot 585 simultaneously (Fig. 1A). The concentration of 
Qdot-labeled antibodies in staining was optimized for single molecule imaging depending on protein expression 
level and antibody affinity, and was 3 nM for both anti-CD3ε antibody-Qdot 655 and anti-CD45 antibody-Qdot 
585 (Fig. 1B).

Real-time imaging of the surfaces of activated Jurkat cells showed that both CD3ε and CD45 molecules were 
extensively mobile when the cell was immobilized via planar lipid bilayers (Movie S1)16. We examined the fraction 
of mobile molecules using image averaging (Fig. 2). After averaging over 200 frames (6.67 s), immobile molecules 
remained as bright spots, whereas mobile molecules blended into the background and disappeared. When Jurkat 
cells were immobilized via planar lipid bilayers, 70% of the CD45 molecules disappeared (were mobile) (Fig. 2A 
and B). In contrast, when Jurkat cells were immobilized via anti-CD3ε antibody-coated glass surfaces, only 10% 
of the CD45 molecules were mobile (Fig. 2C and D). Furthermore, the lipid bilayer prevented nonspecific binding 
to glass surfaces, as only a few fluorescent spots were detected outside cells. This result clearly indicates that the 
mobility of molecules on the cell surface is not impaired by immobilization via planar lipid bilayers.

Single-molecule tracking.  Molecular dynamics were investigated in spatial relation to the microclusters by 
single-molecule tracking analysis. After intensity-based centroid calculation, trajectories were obtained as coor-
dinates over a series of time steps (Fig. 3A and B). The trajectories of CD3ε and CD45 were superimposed on an 
average image of the TCR microclusters fluorescently labeled with CD3ζ-EGFP (Fig. 3A). CD3ε and CD45 some-
times followed trajectories along the boundaries of the microclusters. Occasionally, CD3ε entered the microclus-
ters through the boundary, whereas CD45 rarely entered. This finding suggests that the boundary may function 
as a weak barrier, especially for CD45.

To distinguish the dynamics between the inside and outside of the microclusters, the average images of 
the microclusters (CD3ζ-EGFP) were binarized and superimposed onto the trajectories (Fig. S1A and B). The 

Figure 1.  Simultaneous triple-color single-molecule observation using planar lipid bilayers. (A) Schematic 
illustration. (B) Representative image of simultaneous three-color single-molecule observation of CD3ζ-EGFP 
(green), Qdot 655-labeled CD3ε (red), and Qdot 585-labeled CD45 (blue) in living Jurkat cells at 37 °C. Bar, 
5 μm.

http://S1
http://S1A and B


www.nature.com/scientificreports/

3Scientific ReportS | 7: 6994 | DOI:10.1038/s41598-017-06960-z

movement of the microclusters was negligible in the analysis, as it was much slower than that of the molecules; the 
movement velocity of the microclusters was 24.9 ± 12.6 nm/s11, i.e., 0.8 ± 0.4 nm/frame, whereas most displace-
ments of molecules during a frame were much larger than 10 nm (Fig. S1C–F).

Standard analysis using single-molecule tracking.  The overall dynamics were quantified by calculat-
ing the mean square displacement (MSD) (Equation 1), yielding the diffusion coefficient (Equation 2). The overall 
diffusion coefficient D of CD3ε and CD45 was calculated from the slope of the ensemble-averaged MSD curves 
(Fig. S2, Table S1). High diversity was observed in individual MSD vs. time curves. The individual curves suggest 
that the molecules have three diffusion types (simple, directional, and confined)18, 19 and that the diffusion type of 
an individual molecule changes over time.

Heterogeneity in mobility was shown using probability distribution functions (PDF, Equation S1, Fig. S1C–F). 
Bimodal PDF with faster and slower mobility states were obtained for both the inside and outside of the micro-
clusters (Table S1). However, the goodness-of-fit in the PDF analysis is not necessarily sufficient, as the PDF 
curves are noisy. Moreover, because these standard methods use all spots for each trajectory, they could not ana-
lyze temporal and spatial variation of movements along individual trajectories.

Moving subtrajectory analysis using single-molecule tracking.  Aiming to eliminate this prob-
lem and to enable quantification of kinetics, we propose a new method, moving subtrajectory (MST) analysis 
(Fig. 3C). The MSD as a function of space and time (Equation 4) was calculated for a subtrajectory, which is 
part of a trajectory and is composed of Nsub successive spots, i.e., (Nsub − 1) successive steps. In the present study, 
we set Nsub = 11. The MSD vs. time curve of each subtrajectory was fitted with three equations, Equations 5–7, 
describing the two-dimensional simple, directional, and confined diffusion18, 19, respectively. Every subtrajectory 
was sorted into one of the three diffusion types based on the goodness-of-fit (Fig. 3D–F). Subtrajectories were 

Figure 2.  Usage of planar lipid bilayers for examination of molecular mobility in living cells. Single-molecule 
images of Qdot 585-labeled CD45 in living Jurkat cells on a lipid bilayer (A,B) and on an antibody-coated glass 
surface (C,D). Single-frame images (A,C) and 200-frame averaged images (B,D) recorded at 33 ms/frame are 
shown. The difference between single-frame images and multi-frame averaged images indicates high molecular 
mobility. Bar, 10 μm.

http://S1C�F
http://S2
http://S1
http://S1
http://S1C�F
http://S1


www.nature.com/scientificreports/

4Scientific ReportS | 7: 6994 | DOI:10.1038/s41598-017-06960-z

also sorted into one of three groups by location, i.e., the inside, boundary, and outside of the TCR microcluster 
(Fig. 3G). Subtrajectories that crossed the boundary line were assigned to the boundary group. These analyses 
were performed for all subtrajectories of all trajectories.

Moving subtrajectory analysis provides dynamics quantification as a function of space and time. It enables 
the variations along single trajectories to be followed. For example, variation in both the diffusion coefficient 
and the diffusion type of single trajectories was visualized in relation to the inside, boundary, and outside of the 
microclusters (Fig. 4A–C). Furthermore, it yields an abundance of data, whose number is the same as that of the 
subtrajectories.

Residence time.  Cumulative distributions of trajectory durations of both CD3ε and CD45 were fit-
ted with a double-exponential decay function (Equation 10, Table S2), as they could not be adequately fitted 
with a single-exponential decay function. The possible causes of the end of the trajectory were: 1) fluorescence 
quenching by the blinking of Qdots; 2) out-of-focus imaging by three-dimensional diffusion; and 3) failure of 
single-molecule tracking. Shorter lifetimes τtraj_short might be attributed chiefly to blinking, and longer lifetimes 
τtraj_long to out-of-focus imaging and tracking failure.

Residence times on the inside, at the boundary, and on the outside of the microclusters were calculated 
from the number of subtrajectories that belong continuously to the same regions (Fig. 4A). The number of sub-
trajectories was used rather than that of steps to ensure consistency with the dynamics and kinetics analyses. 
Cumulative distributions of all residence times classified by locations for both CD3ε and CD45 were well fitted 
with a single-exponential decay function (Equation 11, Table S2). Because the residence time is terminated by 
either exit to another region or by the end of the trajectory, the distributions obey the residence time distribution 
multiplied by the trajectory duration distribution (Equation 11).

The lifetimes of the residence times have significance not in the absolute values but in the relative values, as 
they are dependent on the areas and configurations of the regions. The ratios of the lifetime on the outside to that 
on the inside (τres_out/τres_in) were 1.27 ± 0.10 and 1.03 ± 0.14 (Table S2) for CD3ε (Fig. 4D) and CD45 (Fig. 4E), 
respectively. That is, CD3ε remained longer on the outside than CD45. This suggests that movement of CD3ε on 
the outside involves intermolecular interactions. In contrast, CD45 on the outside may move with relatively less 
or weaker interactions.

The residence times at the boundary were separated into two subgroups based on whether the subtrajecto-
ries exited to the inside or to the outside. For the same reason, relative values are significant, and their lifetime 

Figure 3.  Schematic representation of moving subtrajectory analysis and kinetics analysis. (A) Shown is a 
gallery of single-molecule trajectories of Qdot 585-labeled CD45 (cyan) and Qdot 655-labeled CD3ε (red) 
superimposed upon 200-frame averaged CD3ζ-EGFP images, which were obtained by analysis of simultaneous 
triple-color single-molecule movies recorded at 33.33 ms/frame. Arrows indicate trajectories inside TCR 
microclusters. Bar, 1 μm. (B) Standard MSD analysis using single-molecule tracking. (C) Moving subtrajectory 
MSD analysis. All subtrajectories were composed of successive Nsub spots (Nsub = 11 in the present study), 
i.e., (Nsub − 1) steps were extracted from each trajectory, and their MSD curves were calculated. (D–F) 
Representative examples of sorting of the subtrajectories into the three diffusion types: simple (D), directional 
(E), and confined (F). After each subtrajectory was fitted to all three equations for the simple (Equation 5, 
green), directional (Equation 6, blue), and confined (Equation 7, red) diffusion, it was assigned to the diffusion 
type giving the least residual standard error of the fitting (solid line: assigned, dashed line: not assigned). 
Within 10 data points of the MSD of a single subtrajectory, the first 5 points (filled circle) were used for the 
fitting and the later points (open circle) were not. (G) Schematic representation of sorting of the subtrajectories 
of a trajectory into the three location groups: the inside (red), boundary (blue), and outside (green) of the 
microcluster.
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ratios (τres_bou–>in/τres_bou–>out) were 0.87 ± 0.07 and 0.60 ± 0.06 for CD3ε and CD45, respectively (Table S2). It is 
noteworthy that the corresponding ratios of the number of data elements (Nres_bou–>in/ Nres_bou–>out) were 0.83 and 
0.56 for CD3ε and CD45, respectively (Fig. 4F, Table S2), indicating that the number of subtrajectories of CD45 
exiting to the inside is smaller than that exiting to the outside as compared to CD3ε. This corresponds with the 
observation that the boundary might function as a weak barrier, especially for CD45 (Fig. 3A).

Quantification of heterogeneous diffusion.  Moving subtrajectory analysis provided distributions of 
the diffusion coefficients D, distinguishing the locations and the diffusion types (Fig. 5A and B, Table S3). The 
distributions of log10(D) of both CD3ε and CD45 were bimodal with the slower and faster mobility states. This 
separation into two mobility states was performed by fitting Equation 9 to both overall distributions, which were 
the total of the three diffusion types, and to distributions separated into the simple, directional, and confined 
diffusion types. Notably, moving subtrajectory analysis provides much clearer peak separation in the diffusion 
coefficient distributions (Fig. 5A and B) compared to that in the PDF of the standard analysis (Fig. S1C–F).

The overall diffusion coefficients Dfast of the faster mobility state of CD3ε on the outside, at the boundary, and 
on the inside were 0.095 ± 0.002, 0.094 ± 0.002, and 0.066 +0.007/−0.006 μm2/s, respectively. Those of CD45 
were 0.23 ± 0.01, 0.25 ± 0.01, and 0.14 ± 0.02 μm2/s, respectively (Fig. 5A and B, Table S3). Those of CD45 on 
the outside and at the boundary are comparable to the diffusion coefficients of the free streptavidin-conjugated 
Qdot 655 and Qdot 585 directly bound on the biotinylated lipid bilayer, which were 0.28 +0.07/−0.05 and 
0.27 ± 0.02 μm2/s, respectively. This indicates that molecules in the faster mobility state are nearly freely mobile, 
i.e., dissociated.

The overall proportions of the slower mobility states on the outside, at the boundary, and on the inside 
were roughly 10%, 5%, and 50%, respectively, for both CD3ε and CD45 (Table S3). The overall diffusion coeffi-
cients Dslow of the slower mobility state of CD3ε on the outside, at the boundary, and on the inside were 0.0024 
+0.0006/−0.0004, 0.009 +0.043/−0.008, and 0.0025 +0.0004/−0.0003 μm2/s, respectively. Those of CD45 were 
0.0030 +0.0004/−0.0003, 0.006 +0.004/−0.002, and 0.0015 ± 0.0002 μm2/s, respectively. The diffusion coeffi-
cients Dslow were approximately two orders of magnitude lower than Dfast.

Figure 4.  Single-molecule trajectories of CD3ε and CD45 relative to TCR microclusters on the cell membrane 
of a living Jurkat cell. (A) Schematic representation of trajectory durations, residence times, dissociated-state 
durations, and associated-state durations for lifetime and kinetics analyses. Each square indicates the diffusion 
coefficient of a single subtrajectory. The locations of the subtrajectories relative to the microclusters are 
indicated by background colors: inside (white), boundary (light gray), and outside (gray). (B,C) Representative 
time courses of the diffusion coefficient D of CD3ε (B) and CD45 (C) obtained by the moving subtrajectory 
MSD analysis. The three diffusion types are shown as follows: simple (green square), directional (cyan square), 
and confined (magenta square). The squares and the background colors are the same as in (A). (D,E) Lifetimes 
of the residence times of CD3ε (D) and CD45 (E) on the inside and outside of the microclusters. (F) Ratio for 
Nres_bou–>in/Nres_bou–>out between the number of data elements of the residence times at the boundary exiting to 
the inside and those exiting to the outside.
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The slower mobility state on the inside and outside for both CD3ε and CD45 was mainly composed of the 
directional diffusion type (Fig. 5A and B), whose velocity vdirec corresponds to the first peak of the bimodal vdirec 
distributions (Fig. 5C and D). This velocity vdirec at all the locations for both CD3ε and CD45 was approximately 
30 ± 10 nm/s (Table S4). This agrees well with the velocity (24.9 ± 12.6 nm/s) of the CD3ζ microcluster movement 
from the periphery toward the center of primary cultured T cells at steady state11. Together with the very low 
value of Dslow and the finding of a high proportion of the slower mobility state on the inside, this clearly indicates 
that molecules in the slower mobility state are associated with the microclusters.

The faster mobility state on the outside and at the boundary for both CD3ε and CD45 was a mix of the three 
diffusion types, i.e., directional, simple, and confined (Fig. 5A and B), which may be a feature of movement in the 
narrow space between the microclusters. Supporting this, the confinement radii rconf of 0.19 ± 0.01 μm (CD3ε) 
and 0.30 ± 0.01 μm (CD45) on the outside (Fig. 5E and F, Table S4) were comparable to the dimension of the 
narrow space remaining (Fig. 3A).

Figure 5.  Two mobility states and their properties for CD3ε and CD45 revealed by moving subtrajectory 
analysis. (A,B) Distributions of log10(D/[μm2/s]) on the inside, at the boundary, and on the outside of the 
microclusters obtained by moving subtrajectory analysis. The three diffusion types are shown as follows: simple 
(green), directional (cyan), and confined (magenta). The histograms of overall distributions, which were the 
total of the three diffusion types, were fitted by the dual normal distribution corresponding to the two-state 
diffusion model (Equation 9, black line) composed of the slower (red dashed line) and faster (blue dashed line) 
mobility states. The distributions separated into the three diffusion types were also well fitted by the dual normal 
distribution (Table S4)), (C,D) Distributions of log10(vdirec/[μm/s]), where vdirec is the velocity of the directional 
movement of the directional diffusion mode (Equation 6). The histograms were fitted by the dual normal 
distribution (black line), composed of the slower (red dashed line) and faster (blue dashed line) components. 
(E,F) Distributions of log10(rconf/[μm]), where rconf is the confinement radius of the confined diffusion mode 
(Equations 7 and 8). The histograms were fitted by the normal distribution (black line).
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In contrast, the faster mobility state on the inside for both CD3ε and CD45 was mainly composed of the con-
fined diffusion type (Fig. 5A and B), coinciding with the finding that both CD3ε and CD45 remained inside the 
microclusters for tens of frames once they entered and that the boundary might work as a weak barrier (Fig. 3A). 
The confinement radii rconf of 0.11 ± 0.01 μm (CD3ε) and 0.20 ± 0.02 μm (CD45) on the inside (Fig. 5E and F, 
Table S4) were comparable to the radius of the microclusters (Fig. 3A). The finding that the faster diffusion coeffi-
cients on the inside were smaller than those on the outside and at the boundary (Fig. 5A and B, Table S3) indicates 
that both CD3ε and CD45 in the faster mobility state inside the microcluster are involved in weak intermolecular 
interactions.

Kinetics of mobility state transitions.  Moving subtrajectory analysis also enabled kinetics quantification 
through analysis of the transition between the faster and slower mobility states. We sorted the subtrajectories into 
slower mobility state, i.e., associated state, and faster mobility state, i.e., dissociated state, according to whether 
their diffusion coefficients were smaller than a threshold diffusion coefficient Dthr. We used 10−1.8 μm2/s as Dthr for 
both CD3ε and CD45ε, which corresponds to the valley between the two peaks in the distribution. The durations 
Tslow and Tfast were calculated as continuous durations in the same associated state and dissociated state, respec-
tively (Fig. 4A). Cumulative histograms of Tslow and Tfast were fitted using a single- or double-exponential decay 
function. For the same reason given in the residence time analysis (Equation 11), the functions used in the fitting 
were multiplied by both the trajectory-duration and residence-time distribution functions (Equations 12–15).

Association rates kon were obtained by fitting distributions of the dissociated-state duration Tfast using a 
single-exponential decay function (Equations 12 or 13, Fig. 6A and B), meaning that the association reaction is a 
single-step stochastic process for both CD3ε and CD45. Inside the microclusters, association rates were approx-
imately 5–10 times higher than those on the outside for both CD3ε and CD45 (Fig. 6C and D, Table S5), poten-
tially reflecting the intermolecular interactions on the inside.

At the boundary, the association rate kon of CD45 was also higher than that on the outside and relatively 
similar to that on the inside (Fig. 6D, Table S5). This suggests that CD45, but not CD3ε, interacts with the micro-
clusters at the boundary.

Figure 6.  Heterogeneity in the interaction of CD3ε and CD45 with the microclusters is found in dissociation 
but not in association, as revealed by kinetics analysis. (A,B) Cumulative distributions of the overall durations 
Tfast of the dissociated state (faster mobility state) of CD3ε (A) and CD45 (B). Overall data were obtained and 
analyzed without location classification. The distributions were well fitted by a single-exponential function 
in terms of the transition (Equation 12, red line), which gave overall association rates kon. (C,D) Association 
rates of CD3ε (C) and CD45 (D). Location-classified association rates kon_in, kon_bou, and kon_out on the inside, at 
the boundary, and on the outside of the microclusters, respectively, were obtained in the same manner using 
Equation 13. (E,F) Cumulative distributions of the overall durations Tslow of the associated state (slower mobility 
state) of CD3ε (E) and CD45 (F). In contrast to the association rate analysis, the distributions were fitted by 
a double-exponential function in terms of the transition (Equation 14, red line), which gave slower overall 
dissociation rates koff_slow (blue dashed line) and faster overall dissociation rates koff_fast (green dashed line). 
(G,H) Faster dissociation rates of CD3ε (G) and CD45 (H). Location-classified faster dissociation rates koff_in_fast, 
koff_bou_fast, and koff_out_fast on the inside, at the boundary, and on the outside of the microclusters, respectively, 
were obtained in the same manner using Equation 15. (I,J) Fraction ν of the slower dissociation of CD3ε (I) and 
CD45 (J) (Equations 14 and 15). The relative occurrences of the slower and faster dissociations are ν and 1 − ν, 
respectively.
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Dissociation rates koff were obtained by fitting distributions of the associated-state duration Tslow using a 
double-exponential decay function (Equations 14 or 15, Fig. 6E and F) rather than a single-exponential function, 
and some residual remained in the fitting. This means that the dissociation reaction is a process composed of at 
least two components for both CD3ε and CD45. The faster dissociation rates koff_fast were much higher than the 
association rate kon at all regions for both CD3ε and CD45 (CD3ε: ten to several tens times higher, CD45: one 
hundred to several hundred times higher) (Fig. 6G and H, Table S5). This indicates that the faster rate represents 
dissociation from a transient state.

The slower dissociation rates koff_slow were not significantly achieved by the fitting due to the large relative 
values of the standard deviations. This means that all koff_slow are much slower than the inverse of the trajectory 
lifetimes 1/τtraj_long (Equations 14 and 15). That is, the dissociation lifetimes 1/ koff_slow are much longer than the 
trajectory lifetimes τtraj_long (CD3ε: 1/ koff_slow ≫ 0.91 s, CD45: 1/ koff_slow ≫ 32 s) (Table S5). This means that the 
slower rate represents dissociation from a stable associated state. Relative occurrences of the slower and faster dis-
sociations were obtained (Fig. 6I and J, Table S5). The fractions ν of slower dissociations were approximately half 
(CD3ε: 43 ± 4%, CD45: 60 ± 10%) on the outside but represented a large majority on the inside (CD3ε: 81 ± 3%, 
CD45: 100 ± 100%; the large error for CD45 was caused by the small number of subtrajectories). It is noteworthy 
that the fraction of slower dissociations largely increased only on the inside for both CD3ε and CD45.

Discussion
Here, we describe a novel method, moving subtrajectory analysis using single-molecule tracking, which increases 
accuracy in analysis and enables quantification of kinetics. Using single-color single-molecule images, it quanti-
fies dynamics and kinetics, such as diffusion coefficient, diffusion type and its parameters, association rate, and 
dissociation rate, as a function of space and time. It enables changes along individual trajectories to be followed.

The moving subtrajectory method markedly reduced analysis errors compared to those in the PDF analysis 
because it uses several to tens of steps for composing subtrajectories for calculation, whereas the PDF analysis 
uses single steps. In addition, it uses a large number of data elements equal to the number of subtrajectories. 
Indeed, histograms of the dynamics parameters showed clear single-peak or bimodal distributions. The accuracy 
of this analysis has been demonstrated based on the directional-diffusion velocity and the confinement radius.

Kinetics are quantified with spatial relationships by analyzing transitions between different mobility states. 
This was achieved because the analysis enables mobility changes to be followed along individual trajectories. The 
association and dissociation rates, as well as the types of reaction mechanisms, were obtained. The association 
was a single-step process. In contrast, the dissociation was composed of at least two components: the faster disso-
ciation component was faster than association, whereas the slower dissociation component was stable and lasted 
much longer than a few seconds. This most likely indicates that the associated state is composed of both transient 
and stable associated states for both CD3ε and CD45. This might be explained by isomerization mechanisms, 
such as induced fitting or multimerization of the associated state20. The discovery of the transient state demon-
strates the utility of this method.

Inside the microclusters, approximately half of the molecules of both CD3ε and CD45 were in the slower 
mobility state. Their diffusion type was almost directional diffusion, and their velocity coincided well with that of 
the microcluster movement. This clearly indicates that they were associated with the microclusters. The other half 
of the molecules were in the faster mobility state and relatively freely mobile with weak interactions, as their diffu-
sion coefficient was slightly smaller than that on the outside. Their diffusion type was almost confined diffusion, 
and the confinement radius was comparable to the radius of the microclusters. These findings clearly indicate that 
movements are confined within the microclusters. Kinetics analysis showed that the association was accelerated 
and the stable associated component was increased on the inside compared to the outside, indicating that the 
interactions of both CD3ε and CD45 with the microclusters are strengthened on the inside.

The present finding of the two mobility states inside the microclusters indicates structural heterogeneity of 
microclusters. A previous study using live cell imaging revealed that TCR microclusters occasionally split and 
merged11, suggesting that the interactions between the molecules forming the microclusters are not tight but 
loose. Studies using super-resolution photoactivated localization microscopy (PALM) revealed that TCR mole-
cules and the key signaling molecule (adaptor) LAT existed in separate membrane domains (protein islands) in 
resting cells, and that they were concatenated after activation21. Another study using PALM reported that most 
LAT molecules were present in very small nanoclusters containing only two to a few molecules in resting cells, 
and that activation increased the clustering extent by a modest shift toward larger clusters, leaving the very small 
nanoclusters22. Together, the present findings most likely indicate that the TCR microclusters are composed of 
heterogeneous nanoregions.

Outside the microcluster and at the boundary, in contrast to the inside, most CD3ε and CD45 molecules were 
present in the faster mobility state. They showed a distinctive feature in that the diffusion type was a mixture 
of the three diffusion types: directional, simple, and confined. The presence of multiple diffusion types may be 
explained by the classification of movements in some thin, narrow, irregularly shaped regions as directional, 
whereas movements in other narrow, irregularly shaped regions were classified as confined.

The other small fraction on the outside and at the boundary was in the slower mobility state. The directional 
diffusion velocity was equal to that of the microclusters, indicating involvement in interactions. The kinetics anal-
ysis also showed that they are involved in interactions based on the existence of slower dissociation. These find-
ings suggest that TCR/CD3 nanoclusters or sub-microclusters are present on the outside and at the boundary, and 
that CD3ε and CD45 interact with these nanoclusters. The smaller fraction of CD45 in the slower mobility state 
compared to that of CD3ε again shows fewer or weaker interactions for CD45 compared to CD3ε on the outside.

We observed that CD45 rarely entered microclusters across the boundary, whereas CD3ε occasionally entered. 
This was quantitatively shown by the ratio Nres_bou–>in/Nres_bou–>out. This result corresponds well with previous 
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studies. It was previously reported that CD45 is mostly excluded from the central SMAC at cell–cell contacts23, 24 
and from large TCR microclusters with an average diameter of 0.52 ± 0.06 μm25. A recent study using fluorescence 
microscopy of single microclusters in vitro showed that the CD45 density in physiological TCR clusters is low 
because of the exclusion of CD458. These findings support our observation that the boundary might function as 
a weak barrier against CD45.

Furthermore, the present quantification yielded findings on specific affinity of CD45 at the boundary, i.e., that 
the association rate kon at the boundary was higher than that on the outside. In particular, the ratio of kon/koff_fast 
for CD45 at the boundary was much higher than that on the outside. A recent study using PALM revealed that 
recruitment of a downstream signaling molecule, ZAP-70, and TCR activation were localized inside the TCR 
microclusters except at the boundary26. These findings suggest a unique property, i.e., that the boundary of the 
microcluster functions as a weak barrier and, conversely, has some affinity for CD45.

The diffusion coefficients obtained in the present study agree with those of previous reports: 1) those of the 
faster mobility state Dfast of CD45 on the outside and at the boundary (0.225 ± 0.007 and 0.249 ± 0.008 μm2/s, 
respectively) are the same as those of lipid raft-associated glycosylphosphatidylinositol (GPI) proteins CD48 
and CD59 (0.23 ± 0.016 and 0.24 ± 0.048 μm2/s, respectively) determined using Alexa647-labeled Fab frag-
ments13; and 2) those of the faster mobility state Dfast of CD3ε and CD45 on the inside (0.066 +0.007/−0.006 
and 0.14 ± 0.002 μm2/s, respectively) are almost the same as those of CD3ε and CD45 on unstimulated naive 
CD4+CD25− T lymphocytes (0.06 ± 0.01 and 0.087 ± 0.012 μm2/s, respectively)13. The diffusion coefficients Dfast 
of CD45 were 2 to 2.5 times larger than those of CD3ε at all locations. This means that movement of CD45 
involves more rapid interactions than movement of CD3ε. This may be explained by the finding that the sum of 
the overall association and dissociation rate kon + koff_fast of CD45 was 5 times larger than that of CD3ε, as it pro-
vides a measure of reaction velocity.

Furthermore, it has been reported that Qdot labeling does not affect the diffusion of membrane proteins27. 
Indeed, the diffusion coefficients of free streptavidin-conjugated Qdot 655 and Qdot 585 on the lipid bilayer in 
the present study were 0.28 +0.07/−0.05 and 0.27 ± 0.02 μm2/s, respectively. Therefore, the potential influence 
of the difference between Qdot 655 and Qdot 585, which were used for labeling CD3ε and CD45, respectively, is 
not a cause for concern. However, in the interest of accuracy, we compared the diffusion coefficients of CD3ε and 
CD45 not by the absolute values but rather by the relative values, for example, by comparing the ratios between 
the different states and locations.

We stimulated Jurkat T cells using the CD3 antibody. Costimulation with CD3 and CD28 is required for full 
activation of T cells, and differences in downstream activation of signaling pathways have been revealed between 
CD3 stimulation and CD3/CD28 costimulation, such as in the PKC and MAPK/ERK pathways28, 29. Differences 
between Jurkat cells and primary T cells in signaling activation have been also investigated, with observation 
of differences caused by PTEN deficiency30 and differences in PI3K activation mediated via Ras31. It has been 
reported that Jurkat cells showed centripetal movements upon activation, similarly to primary T cells32. The pres-
ent method should enable further elucidation of these mechanisms.

In the present study, we demonstrated that moving subtrajectory analysis quantitatively produces a consider-
able amount of spatiotemporal information on dynamics and kinetics from single-color single-molecule images. 
Combined use of multi-color single-molecule imaging enables the analysis of different kinds of proteins simul-
taneously and yields much more information. Thus, the present method is innovative and opens new avenues for 
quantification to elucidate molecular mechanisms of function.

Materials and Methods
Reagents and cell preparation.  DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) was purchased from 
Avanti Polar Lipids (AL, USA). N-((6-(biotinoyl)amino)hexanoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoe-
thanolamine (Biotin-X-DHPE) and streptavidin were purchased from Invitrogen (Japan). Monoclonal antibody 
against CD45 (MEM-28) was obtained from Abcam (Japan). Monoclonal antibody against CD3ε (HIT3a; BD 
Pharmingen, Japan) was biotinylated using NH2-reactive biotin (Dojindo Molecular Tech., Japan). Qdot 655 
and Qdot 585 were conjugated to anti-CD3ε and -CD45 antibodies, respectively, using the Qdot Antibody 
Conjugation Kit (Invitrogen) according to the manufacturer’s instructions. CD3ζ-EGFP cDNA was a gift from 
Drs. T. Yokosuka and T. Saito (RIKEN, Yokohama, Japan). cDNA was subcloned into the Gateway destination 
vector pEF5/FRT/V5-DEST (Invitrogen). Flp-In Jurkat T cells (Invitrogen) were cultured in RPMI 1640 medium 
supplemented with 10% fetal bovine serum, 2 mM l-glutamine, 50 U/ml penicillin, and 50 μg/ml streptomycin 
at 37 °C in a 5% CO2 atmosphere. Subcloned cDNA was transfected by electroporation into Flp-In Jurkat cells 
to generate a stably expressing cell line as previously described16. Cells were fluorescently labeled on the outer 
surfaces with Qdot-conjugated antibodies for 5 min before imaging.

Planar lipid bilayers.  Supported planar bilayers were formed by liposome fusion on 35-mm glass-bottom 
dishes (MatTek, MA, USA) as described previously with minor modifications16. DOPC lipid films containing 
0.1 mol% Biotin-X-DHPE were rehydrated in TBS buffer (50 mM Tris, 137 mM NaCl, 2.7 mM KCl, pH 7.5) with 
2% octyl β-d-glucopyranoside (Sigma-Aldrich, Japan) and sonicated with a water-bath sonicator (UT-104; Sharp, 
Japan) for 30 min. The liposome suspension was filtered with a 0.22-μm filter (Millipore, Japan) and dialyzed for 
36 h at 4°C. Liposomes were deposited on a glass surface, and then streptavidin and biotinylated anti-CD3ε anti-
bodies were sequentially conjugated with the lipid bilayers. Imaging medium (25 mM HEPES and MEM without 
phenol red, riboflavin, and folic acid) was added to the lipid bilayers before observation.

Single-molecule microscopy.  For T cell stimulation, the CD3ζ-EGFP expressing Jurkat cells were allowed 
to attach to the lipid bilayers at 37 °C for 2 min prior to imaging. For stimulation by antibody coating as a control 
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experiment, anti-CD3ε-antibody-coated surfaces were used rather than the lipid bilayers. The surfaces were pre-
pared by adsorbing 1 μg/mL anti-CD3ε antibody solution overnight at 4°C onto a coverslip30.

Cells were imaged with a custom-built TIRF and HILO (highly inclined and laminated optical sheet) micro-
scope setup17, 33 based on an inverted microscope (IX-81, Olympus, Japan) equipped with an infinity-corrected 
objective (PlanApo 100× NA 1.45 oil TIRFM, Olympus, Japan). A beam from a solid-state laser (488 nm 
and 20 mW; Sapphire 488-20-OPS; Coherent, Japan) was used for fluorescence illumination. Optical filters 
(custom-order, Olympus) included a dichroic mirror (DM488) and emission filters (Em 495-545 for EGFP, Em 
569-624 for Qdot 585, and Em 650-705 for Qdot 655). Images were captured with three electron-multiplying 
charge-coupled device (EMCCD) cameras (C9100-13, Hamamatsu Photonics, Japan) controlled by 
AQUACOSMOS software (Hamamatsu Photonics). Specimens were observed at 37 °C using a temperature con-
trol system with a stage top incubator and an objective heater (IBC-IU2-TOP/-CB/-LH, MI-IBC-IU2, Tokai Hit, 
Japan).

Image analysis.  After noise reduction was applied to the acquired images, differences in magnification, shift, 
and rotation among color channels were corrected with a square lattice using ImageConverter (Olympus Software 
Technologies, Japan). Images for CD3ζ-EGFP were averaged over 200 frames (33.33 ms/frame). Averaged images 
were processed with a Fourier transform filter to reduce background and then binarized manually12. Binary 
images were superimposed on the single-molecule images of CD3ε and CD45, and these were used as the regions 
of the TCR microclusters.

Single-molecule tracking.  Trajectories of individual molecules were determined using the Particle Tracker 
plug-in for ImageJ34. Each trajectory was composed of a series of spots, and intervals between the adjacent spots 
were steps. The time interval of adjacent spots was the frame interval Δt, 33.33 ms.

Standard analysis methods.  Mean square displacement analysis.  The mean square displacement (MSD) 
of the k-th trajectory (k = 1,…, Ntraj), where Ntraj is the number of the trajectories, was calculated according to the 
definition35, 36:
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where ρ Δn t( )k  is the MSD of duration nΔt, Nk is the number of spots on the k-th trajectory, and →ri  = (xi, yi) is the 
position of the ith spot. This definition uses all available displacements of the duration nΔt (Fig. 3B). The averaged 
MSD ρ̄(nΔt) was calculated by averaging ρk(nΔt) for all the trajectories (k = 1,…, Ntraj). The diffusion coefficient 
D was determined by fitting the averaged MSD curve, ρ Δ¯ n t( ) vs. nΔt, with the following equation:

ρ =t Dt( ) 4 , (2)

where ρ(t) is the theoretical function of MSD for simple diffusion against time t = nΔt.

Analysis using probability distribution function.  The probability distribution function PDF(r, t) is defined as a 
probability density as follows: r t rPDF( , )d  is the probability that a displacement during time interval t is found 
between r and r + dr 37, 38. In the case of two-dimensional simple diffusion, theoretical PDF(r, t) is derived as 
follows:
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meaning that it follows the Rayleigh distribution.

Moving subtrajectory analysis.  Moving subtrajectory MSD analysis.  MSD analysis was performed using 
a “subtrajectory” composed of Nsub spots (Nsub = 11 in the present study), i.e., (Nsub − 1) steps (Fig. 3C). The MSD 
of the j-th subtrajectory (j = 1,…, Nk − Nsub + 1) of the k-th trajectory (k = 1,…, Ntraj) was calculated as follows:
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Every subtrajectory was sorted into three diffusion types: simple, confined, and directional. MSD curves, 
ρ Δn t( )j k,  vs. nΔt, were fitted on the n = 1 to Nfit values ( ≤N Nfit sub, Nfit = 5 in the present study) with the three 
following equations describing the two-dimensional simple, directional, and confined diffusion, respectively18, 19:

ρ =t Dt( ) 4 , (5)simple
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ρ = +t Dt v t( ) 4 , (6)direc direc
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where vdirec is the magnitude of the velocity of directional diffusion, rconf is the confinement radius, and τ is a time 
constant defined as follows:
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It is noteworthy that Equation 7 approaches Equation 5 in the vicinity of the origin ( τt ):
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Each subtrajectory was assigned to a diffusion type based on the residual standard errors of the fitting (Fig. 3D–F).

Analysis using histograms of diffusion coefficients.  Histograms of the logarithms of diffusion coefficients obtained 
by the moving subtrajectory MSD analysis were fitted by the dual normal distribution corresponding to the 
two-state diffusion model,
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where u = log10(D/[μm2/s]), ξ is a relative occurrence, Ndata is the number of data elements, Δu is the histogram 
bin-width, and Dslow and Dfast are diffusion coefficients of slower and faster mobility states, respectively.

Sorting of subtrajectories by location.  Using the superimposed binary images of TCR microclusters 
(CD3ζ-EGFP), every subtrajectory was sorted into three location groups: the inside, boundary, and outside of 
the microcluster (Fig. 3G). Subtrajectories that crossed the boundary line were assigned to the boundary group.

Lifetime analysis.  Lifetime of trajectory durations.  Cumulative histograms of trajectory durations Ttraj 
(Fig. 4A) were fitted by a double-exponential decay function,
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data
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where the variable t represents Ttraj, Ndata is equal to the number of trajectories Ntraj, Δt is the histogram bin-width 
(i.e., the frame interval), ξ is a relative occurrence, and τtraj_short and τtraj_long are lifetimes.

Lifetime of residence times.  Residence times Tres_in, Tres_bou, Tres_out on the inside, boundary, and outside of the 
microclusters were calculated as Δt multiplied by the number of subtrajectories that belong continuously to the 
same inside, boundary, and outside group, respectively (Fig. 4A). The residence time Tres_bou at the boundary was 
separated into two subgroups, i.e., Tres_bou–>in and Tres_bou–>out, according to whether the subtrajectories exited to 
the inside or outside, respectively.

Cumulative histograms of residence times Tres_* (*represents in, bou, out, bou–> in, or bou–> out) were fitted 
by a single-exponential decay function of Tres_*,
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where the variable t represents Tres_*, τtraj_* is a lifetime, and Ndata is equal to Nres_*. During the fitting procedure, 
the relative occurrence ξ is variable, whereas the lifetimes τtraj_short and τtraj_long are the constants obtained by the 
trajectory duration analysis with Equation 10.

Kinetics analysis.  The subtrajectories were sorted into two categories, i.e., associated state (slower mobility state) 
and dissociated state (faster mobility state), according to whether their diffusion coefficients were smaller than 
a threshold diffusion coefficient Dthr. The threshold Dthr was determined as the boundary between the two peaks 
of the slower and faster mobility states in the distribution of log10(D/[μm2/s]). Durations Tslow and Tfast were 
calculated as durations where the frame interval Δt was multiplied by Nslow and Nfast, which are the number of 
subtrajectories that belong continuously to the same associated state and dissociated state, respectively (Fig. 4A). 
The durations Tslow and Tfast were further separated into three groups, i.e., Tslow_in, Tslow_bou, and Tslow_out, and Tfast_in, 
Tfast_bou, and Tfast_out, based on the location groups, i.e., inside, boundary, and outside, respectively.
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Overall association rate.  The overall association rates, i.e., association rates without location classifications, of 
the transitions from the dissociated state to the associated sate were obtained by fitting cumulative histograms of 
the dissociated-state durations Tfast using a single-exponential decay function in terms of the transition,
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where the variable t represents Tfast, and kon is an overall association rate. During the fitting procedure, the relative 
occurrence ξ was variable, whereas the lifetimes τtraj_short and τtraj_long were the constants obtained by the trajectory 
duration analysis (Equation 10).

Location-classified association rate.  Association rates with location classifications were obtained by fitting cumu-
lative histograms of the dissociated-state durations Tfast_* (*represents in, bou, or out) using a single-exponential 
decay function in terms of the transition,
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where the variable t represents Tdis_*, and kon_* is an association rate. During the fitting procedure, the relative 
occurrence ξ was variable, whereas the lifetimes τres_*, τtraj_short, and τtraj_long were the constants obtained by the 
residence time analysis (Equation 11) and trajectory duration analysis (Equation 10).

Overall dissociation rate.  Overall dissociation rates, i.e., dissociation rates without location classifications, of the 
transitions from the associated state to the dissociated state were obtained by fitting cumulative histograms of the 
associated state durations Tslow using a double-exponential decay function in terms of the transition,
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where the variable t represents Tslow, and koff_slow and koff_fast are the overall dissociation rates. During the fitting 
procedure, the relative occurrences ν and ξ were variable, whereas the lifetimes τtraj_short and τtraj_long were the 
constants obtained by the trajectory duration analysis (Equation 10).

Location-classified dissociation rate.  Dissociation rates with location classifications were obtained by fit-
ting cumulative histograms of the associated-state durations Tslow_* (*represents in, bou, or out) using a 
double-exponential decay function in terms of the transition,

ν ν

τ
ξ

τ
ξ

τ

= Δ − + − −

×




−



















−






+ −






−















∗ ∗

∗

f t N t k t k t

t t t

( ) [ exp( _ _ ) (1 )exp( _ _ )]

exp
_

exp
_

(1 )exp
_

,
(15)

data off slow off fast

res traj short traj long

where the variable t represents Tslow_*, and koff_*_slow and koff_*_fast are dissociation rates. During the fitting proce-
dure, the relative occurrences ν and ξ were variable, whereas the lifetimes τres_*, τtraj_short, and τtraj_long were the 
constants obtained by the residence time analysis (Equation 11) and trajectory duration analysis (Equation 10).
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