
sensors

Article

Object Tracking Based on Vector Convolutional
Network and Discriminant Correlation Filters

Yuan Liu , Xiubao Sui *, Xiaodong Kuang, Chengwei Liu , Guohua Gu and Qian Chen

School of Electronic and Optical Engineering, Nanjing University of Science and Technology,
Nanjing 210094, China; liu_yuan_eo@163.com (Y.L.); 113104000436@njust.edu.cn (X.K.);
njust_liu@163.com (C.L.); gghnjust@163.com (G.G.); cq1964@163.com (Q.C.)
* Correspondence: sxbhandsome@njust.edu.cn; Tel.: +86-1377-081-1631

Received: 15 March 2019; Accepted: 10 April 2019; Published: 16 April 2019
����������
�������

Abstract: Due to the fast speed and high efficiency, discriminant correlation filter (DCF) has drawn
great attention in online object tracking recently. However, with the improvement of performance,
the costs are the increase in parameters and the decline of speed. In this paper, we propose a novel
visual tracking algorithm, namely VDCFNet, and combine DCF with a vector convolutional network
(VCNN). We replace one traditional convolutional filter with two novel vector convolutional filters in
the convolutional stage of our network. This enables our model with few memories (only 59 KB) trained
offline to learn the generic image features. In the online tracking stage, we propose a coarse-to-fine
search strategy to solve drift problems under fast motion. Besides, we update model selectively
to speed up and increase robustness. The experiments on OTB benchmarks demonstrate that our
proposed VDCFNet can achieve a competitive performance while running over real-time speed.

Keywords: object tracking; convolutional neural network; discriminant correlation filter

1. Introduction

Visual object tracking is one of the fundamental problems in computer vision with numerous
applications [1,2], such as cameras surveillance and human–computer interaction. A typical setting
of object tracking is tracking an unknown object in a video sequence, while a single labeled target
is provided as a bounding box in the first frame [3,4]. Several trackers design the feature models to
represent targets and predict targets by searching for the image region to choose the most similar
one. It proves that more accurate feature representations will lead to better tracking performance [5].
To match object appearance accurately, recent tracking algorithms focus on proposing effective
representation schemes, such as points, texture [6], histograms, optical flow, or perceptual hashing [7].
However, object tracking is still a challenging problem since the object appearance tends to change and
be disturbed by surroundings from frame to frame.

Recently, convolutional neural network (CNN) has been applied to various computer vision tasks
such as image classification, object detection and so on. This attributes largely to CNN powerful feature
representations. Several state-of-the-art CNN-based tracking methods [8–13] have been proposed in
recent years. CNN-SVM [8] takes the feature maps of a pre-trained CNN as feature descriptors to learn
discriminative target appearance models by using an online Support Vector Machine. CNT [9] uses
a large amount of auxiliary data to train online a shallow convolutional network for visual tracking
without offline training. For encoding target’s structural information, the auxiliary data is obtained
by extracting patches from the target region as adaptive contextual filters. To take advantage of
large-scale visual tracking data, MDNet [10] proposes to pre-train deep CNN in multi domains,
where domains correspond to individual training sequences. In Ref. [11], Chi et al. exploits the
hierarchical features in different layers of a deep model and design a dual structure to obtain better

Sensors 2019, 19, 1818; doi:10.3390/s19081818 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7514-8876
https://orcid.org/0000-0003-0416-4769
http://dx.doi.org/10.3390/s19081818
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/8/1818?type=check_update&version=2

Sensors 2019, 19, 1818 2 of 14

feature representation from various streams. Besides, some works [12,13] also utilize the Siamese
network to learn template matching without online updating while possessing high tracking speed.
GOTUON [12] employs the Siamese network and regresses directly to the location of the target object
with no online training required. Furthermore, SiamFc [13] builds a fully-convolutional Siamese
network to learn the similarity function of the two inputs. With the large online training samples and
enormous parameters, these trackers have achieved great performance. However, keeping real-time
speed and small memory are also vital for visual tracking as well as accuracy and robustness.

By solving a ridge regression problem efficiently in Fourier frequency domain, DCF-based
trackers [14–18] have achieved a great balance between performance and speed recently. MOSSE [14] is
a famous pioneering work that first employs DCF to object tracking. By exploiting the single-channel
gray features, MOSSE can operate more than 600 FPS. CSK [15] adopts circulation matrices to fast
learning and detection with the Fast Fourier Transform. In Stape [16], Bertinetto et al. combine a color
statistics-based model to get complementary cues in a ridge regression framework. By learning DCF
based on a scale pyramid representation, DSST [17] reaches accurate scale estimation. To deal with
the tracking drift, Reference [18] proposes an adaptive updating strategy which uses cosine similarity
together with two peak-to-sidelobe ratios and max response of scale tracker as confidence metrics
for failure detection. Several recent works [19–21] have combined CNN with the fast shallow tracker
based on correlation filters. HCF [19] extracts hierarchical convolutional features from the pre-trained
VGGNet and puts the features into correlation filters to regress the response map. In order to take full
advantage of features from different CNN layers, HDT [20] utilizes an adaptive Hedge method to hedge
several weak trackers into a stronger one. In Reference [20], several weak trackers are constructed
by using correlation filters where each one is trained with pre-trained VGGNet features from one
layer. To learn the convolutional features and perform the correlation tracking process simultaneously,
Discriminant Correlation Filters Network Tracker (DCFNet) [21] treats DCF as a special correlation
filter layer added in a Siamese network to learn the convolutional features.

In this work, we choose DCFNet [21] as our baseline approach. Common DCF approaches use the
features from a CNN pre-trained for a different task, leading to the problem that the features extracting
process and the correlation tracking process are independent. The architecture of DCFNet [21] is
similar to SiamFc [13], which builds a fully-convolutional Siamese network. Siamese network employs
the same CNN to extract features of two image patches and combine their representations using
a similarity metric. The difference between DCFNet [21] with SiamFc [13] is the similarity metric.
DCFNet treats DCF as a special correlation filter layer to serve as the similarity metric and output
a probability heatmap of target location. In the convolutional stage of DCFNet [21], Wang et al. set
the network lightweight (75 KB) which consists of two convolutional layers without pooling layers.
However, we observe that DCFNet [21] fixes the search region the same size as the exemplar region.
It is probably limited by the special correlation filter layer where a Hadamard product is used between
the features of search patch and correlation filter. This will lead to the problems that the exemplar
region contains too much surrounding information or the search region is not large enough to search
for a large displacement object.

In this paper, we propose a novel light-weighted tracking algorithm, namely VDCFNet,
and combine VCNN with DCF. Similar to DCFNet [21], we also treat DCF as a correlation filter
layer added in a Siamese convolutional network to learn objects’ similarity in Fourier frequency
domain. The benefit of this is that we can train an end-to-end network for visual tracking. We introduce
the VCNN to simplify the network and reduce parameters. Specifically, we replace one traditional
convolutional filter with two novel vector convolutional filters in the convolutional stage of our
network. In spite of fewer parameters and a slimmer model, we still take full advantage of the light
network to extract objects’ representations. In the online tracking stage, we propose a coarse-to-fine
search strategy, which can get a great balance between stability and accuracy to solve the fixed search
region problem. By updating the model selectively, our tracker ignores the disturbance in short time
and pays more attention to the long-term changes. All these mentioned strategies keep our tracker

Sensors 2019, 19, 1818 3 of 14

tracking targets robustly compared with DCFNet [21], as shown in Figure 1. These enable our tracker
to run at the speed of about 50 FPS during tracking, which still achieves a competitive performance
compared to other state-of-the-art trackers.

Sensors 2019, 19, x FOR PEER REVIEW 3 of 14

tracking targets robustly compared with DCFNet [21], as shown in Figure 1. These enable our tracker
to run at the speed of about 50 FPS during tracking, which still achieves a competitive performance
compared to other state-of-the-art trackers.

Figure 1. A comparison of our method with the baseline approach of DCFNet [21]. The attributes of
three sequences correspond to fast motion (top row), occlusion and deformation (middle row), and
motion blur (bottom row). Thanks to these strategies mentioned above, our tracker can track a target
successfully.

The main contributions of this paper are as follows:

1. We introduce the VCNN to reduce the parameter set of appearance representation.
2. A coarse-to-fine search strategy is proposed to solve drift problems under fast motion.
3. A robust online update strategy is introduced to ignore the low confidence disturbance.

The remainder of this paper is organized as follows: Section 2 gives the details of our proposed
approach. Then, Experimental results are further analyzed in Section 3. Finally, Section 4 concludes
this work.

2. Materials and Methods

In this section, we first demonstrate our overall method briefly. Secondly, we introduce the
vector convolutional operator and present the architecture of our lightweight Siamese network. Then,
we briefly formulate the discriminant correlation filter operation in the DCF layer. Afterward, the
coarse-to-fine search strategy is illustrated. Finally, we show the online model update strategy.

2.1. Overview

In the convolutional stage of our network, we propose the VCNN to reduce the parameter set of
appearance representation. In addition, we also treat DCF as a special correlation filter layer added
in a Siamese network. In the online tracking stage, we propose a coarse-to-fine search strategy, which
can get a great balance between stability and accuracy to solve drift problems under fast motion and
motion blur.

As a whole, we input into the Siamese network a search region from the current frame and an
exemplar region from the first frame, and the network output the location and scale of the predicted
target. To achieve this, we train a Siamese vector convolutional network purely offline with video
sequences to compare the labeled target with the search regions. Two branches network share the
same parameters and extract generic features to be compared with each other. The location of the
target can be predicted by searching for the coordinate of the maximum value in the final probability
heatmap, as shown in Figure 2.

Figure 1. A comparison of our method with the baseline approach of DCFNet [21]. The attributes
of three sequences correspond to fast motion (top row), occlusion and deformation (middle row),
and motion blur (bottom row). Thanks to these strategies mentioned above, our tracker can track
a target successfully.

The main contributions of this paper are as follows:

1. We introduce the VCNN to reduce the parameter set of appearance representation.
2. A coarse-to-fine search strategy is proposed to solve drift problems under fast motion.
3. A robust online update strategy is introduced to ignore the low confidence disturbance.

The remainder of this paper is organized as follows: Section 2 gives the details of our proposed
approach. Then, Experimental results are further analyzed in Section 3. Finally, Section 4 concludes
this work.

2. Materials and Methods

In this section, we first demonstrate our overall method briefly. Secondly, we introduce the
vector convolutional operator and present the architecture of our lightweight Siamese network.
Then, we briefly formulate the discriminant correlation filter operation in the DCF layer. Afterward,
the coarse-to-fine search strategy is illustrated. Finally, we show the online model update strategy.

2.1. Overview

In the convolutional stage of our network, we propose the VCNN to reduce the parameter set of
appearance representation. In addition, we also treat DCF as a special correlation filter layer added in
a Siamese network. In the online tracking stage, we propose a coarse-to-fine search strategy, which can
get a great balance between stability and accuracy to solve drift problems under fast motion and
motion blur.

As a whole, we input into the Siamese network a search region from the current frame and
an exemplar region from the first frame, and the network output the location and scale of the predicted
target. To achieve this, we train a Siamese vector convolutional network purely offline with video
sequences to compare the labeled target with the search regions. Two branches network share the same
parameters and extract generic features to be compared with each other. The location of the target can

Sensors 2019, 19, 1818 4 of 14

be predicted by searching for the coordinate of the maximum value in the final probability heatmap,
as shown in Figure 2.Sensors 2019, 19, x FOR PEER REVIEW 4 of 14

Figure 2. Our method architecture.

2.2. Network Architecture

2.2.1. Vector Convolution Operator

We introduce a vector convolution operator in order to reduce parameters and save memory. To
design a compact CNN for reducing parameters and computational costs, some works [22,23] have
been proposed for object recognition. In Reference [22], separating 3×3 convolutions filters into two
1×1 convolutions filters is utilized in the Inception architecture. Replacing 3×3 convolutions with 1×1
convolutions was used in Reference [23] to create a very compact neural network and can achieve
high accuracy with approximately 50× reduction of parameters. Our work is similar to these works
as the reason that we compact the convolutional filters in the network. However, our compacted
operator is the vector convolutional filters 1×n, n×1. Specifically, we separate every traditional
convolutional filter into two vector convolutional filters in the convolutional stage of our network.
As shown in Figure 3, a common convolutional filter denoted as numel@ n n depth× × , is split into
two vector convolutional filters which are denoted as (numel / 2) @ n 1 depth× × and
numel@1 n (numel / 2)× × , respectively. Although we add convolutional layers, our proposed vector
convolutional operation saves approximately 20% memory compared with DCFNet [21] (75 KB). The
larger the size of traditional convolutional filters become, the more arguments the vector
convolutional operation will reduce. In spite of fewer parameters and a slimmer model, we still take
full advantage of the light network to extract objects’ representations. The performance of our new
convolutional model will be discussed further in the experimental section.

Figure 2. Our method architecture.

2.2. Network Architecture

2.2.1. Vector Convolution Operator

We introduce a vector convolution operator in order to reduce parameters and save memory.
To design a compact CNN for reducing parameters and computational costs, some works [22,23] have
been proposed for object recognition. In Reference [22], separating 3×3 convolutions filters into two
1×1 convolutions filters is utilized in the Inception architecture. Replacing 3×3 convolutions with
1×1 convolutions was used in Reference [23] to create a very compact neural network and can achieve
high accuracy with approximately 50× reduction of parameters. Our work is similar to these works as
the reason that we compact the convolutional filters in the network. However, our compacted operator
is the vector convolutional filters 1×n, n×1. Specifically, we separate every traditional convolutional
filter into two vector convolutional filters in the convolutional stage of our network. As shown in
Figure 3, a common convolutional filter denoted as numel@n × n × depth, is split into two vector
convolutional filters which are denoted as (numel/2)@n× 1× depth and numel@1× n× (numel/2),
respectively. Although we add convolutional layers, our proposed vector convolutional operation saves
approximately 20% memory compared with DCFNet [21] (75 KB). The larger the size of traditional
convolutional filters become, the more arguments the vector convolutional operation will reduce.
In spite of fewer parameters and a slimmer model, we still take full advantage of the light network to
extract objects’ representations. The performance of our new convolutional model will be discussed
further in the experimental section.

Sensors 2019, 19, 1818 5 of 14
Sensors 2019, 19, x FOR PEER REVIEW 5 of 14

Figure 3. Our proposed vector convolutional operation.

2.2.2. Siamese Network

Our lightweight Siamese network contains two branches of CNNs, named as exemplar branch
and searching branch. In this model, we input the labeled target region and search regions of the
exemplar branch and searching branch, respectively, which extract the high-level representations
from the two image patches. Since our purpose is to compare the search regions with the labeled
object, we need to compute the similarity of the two features maps resulted from the two branches.
To achieve this, a DCF layer receives the outputs of two branches to compute their correlation
response map. Finally, the output of the Siamese network is a probability heatmap, which returns a
high score if the two images depict the same object. Specifically, the convolutional stage in our
tracking model consists of four vector convolutional layers. Besides, ReLU non-linearities only follow
the second vector convolutional layer. We add an LRN layer at the end of the convolutional layers to
restrict the magnitude of feature map values. More detailed network settings are given in table 1.

Table 1. The architecture of Siamese network. Each network branch consists of four vector
convolutional layers (vconv). The output of each layer is denoted as ‘ channel@size size× ’, where

channel means the number of feature maps. The convolutional filters are denoted as ‘
numel@ width height depth× × ’, where numel means the number of convolutional filters and
width,height,depth means the size of convolutional filters.

Layer Convolutional Filter Stride Exemplar
Branch

Searching Branch

Input 3 @ 125 × 125 3 @ 125 × 125
vconv1 32 @ 3 × 1 × 3 1 32 @ 123 × 125 32 @ 123 × 125
vconv2 64 @ 1 × 3 × 32 1 64 @ 123 × 123 64 @ 123 × 123
Relu

vconv3 32 @ 3 × 1 × 64 1 32 @ 121 × 123 32 @ 121 × 123
vconv4 32 @ 1 × 3 × 32 1 32 @ 121 × 121 32 @ 121 × 121

2.2.3. DCF layer

We use DCF as a special layer like DCFNet [21]. In the standard discriminant correlation filters,
we train a discriminative regression on the features of the object patch M N D(x) × ×ϕ ∈ , which has a
Gaussian function label 2 2 2y(m, n) exp(((m M / 2) (n N / 2)) / 2)= − − + − σ . The correlation filter w can be
obtained by solving the following minimization problem:

Figure 3. Our proposed vector convolutional operation.

2.2.2. Siamese Network

Our lightweight Siamese network contains two branches of CNNs, named as exemplar branch
and searching branch. In this model, we input the labeled target region and search regions of the
exemplar branch and searching branch, respectively, which extract the high-level representations from
the two image patches. Since our purpose is to compare the search regions with the labeled object,
we need to compute the similarity of the two features maps resulted from the two branches. To achieve
this, a DCF layer receives the outputs of two branches to compute their correlation response map.
Finally, the output of the Siamese network is a probability heatmap, which returns a high score if
the two images depict the same object. Specifically, the convolutional stage in our tracking model
consists of four vector convolutional layers. Besides, ReLU non-linearities only follow the second
vector convolutional layer. We add an LRN layer at the end of the convolutional layers to restrict the
magnitude of feature map values. More detailed network settings are given in Table 1.

Table 1. The architecture of Siamese network. Each network branch consists of four vector convolutional
layers (vconv). The output of each layer is denoted as ‘channel@size× size’, where channel means the
number of feature maps. The convolutional filters are denoted as ‘numel@width × height × depth’,
where numel means the number of convolutional filters and width, height, depth means the size of
convolutional filters.

Layer Convolutional Filter Stride Exemplar Branch Searching Branch

Input 3 @ 125 × 125 3 @ 125 × 125
vconv1 32 @ 3 × 1 × 3 1 32 @ 123 × 125 32 @ 123 × 125
vconv2 64 @ 1 × 3 × 32 1 64 @ 123 × 123 64 @ 123 × 123

Relu
vconv3 32 @ 3 × 1 × 64 1 32 @ 121 × 123 32 @ 121 × 123
vconv4 32 @ 1 × 3 × 32 1 32 @ 121 × 121 32 @ 121 × 121

2.2.3. DCF Layer

We use DCF as a special layer like DCFNet [21]. In the standard discriminant correlation filters,
we train a discriminative regression on the features of the object patch ϕ(x) ∈ RM×N×D, which has

Sensors 2019, 19, 1818 6 of 14

a Gaussian function label y(m, n) = exp(−((m−M/2)2 + (n−N/2)2)/2σ2). The correlation filter w
can be obtained by solving the following minimization problem:

w = argmin
w

∑
m,n

∥∥∥w•ϕ(x) − y(m, n)
∥∥∥2

+ λ‖w‖2 (1)

where • means circular correlation and the constant λ ≥ 0 is the regularization parameter.
The minimization problem in Equation (1) can be solved in each feature channel by using fast
Fourier transformation (FFT). Here, we let the capital letter Y denote the discrete Fourier transform
F(y). The solution can be achieved as Ref. [14]:

Wd =
ϕd(x) �Y∗∑D

k=1 ϕ
k(x) � (ϕk(x))∗ + λ

(2)

In Equation (2), ∗ represents the conjugate operator and � denotes the Hadamard product.
For a search region z in the new frame, the predicted target can be located by searching for the
coordinate of the maximum value in the probability heatmap g, see Ref. [14] for more details.

g = F −1

 D∑
l=1

(Wd)
∗
�ϕd(z)

 (3)

WhereF −1 denotes the inverse FFT transform. The objective function can be formulated as follows:

L(θ) = ‖g− y‖2 + γ‖θ‖2

s.t. g = F −1
(

D∑
d=1

(Wd)
∗
�ϕd(z, θ)

)
Wd =

ϕd(x, θ)�Y∗∑D
k=1 ϕ

k(x, θ)�(ϕk(x, θ))∗+λ

(4)

According to Ref. [24], we can calculate the derivative per-element as follows since the operations
in the forward pass only contain Hadamard product and division:

∂L
∂g∗uv

=

(
F

(
∂L
∂g

))
uv

(5)

2.2.4. Coarse-to-Fine Search

As we mentioned above, the search region has the same size as the exemplar region which is
limited by the special correlation filter layer, leading to the problem that the search region is not
big enough to search for a large displacement object. In order to adapt to the fast moving situation,
our tracking model evaluates search regions K times in two manners, named as coarse search and fine
search, as shown in Figure 4. In the coarse search stage, we only search for the object within one region
centered at the previous target location and get a coarse predicted location. In the fine search stage,
the scale and more precise location are achieved through evaluating regions centered at the coarse
predicted location. The coarse-to-fine search can be considered as an iterative process that the accuracy
tends to be better as the iterations increase. In practice, we found that searching twice can get a great
trade-off between speed and accuracy. Note that the coarse-to-fine search is conducted in the same
tracking model. Considering our light and slim model, the increase of time-consumption caused by
the coarse-to-fine search can be ignored in a way.

In the coarse searching stage, we crop and scale two image patches, one is centered at the
labeled object in the first frame and the other one is centered at the previous target in the current
frame. The network output a probability heatmap in which the coordinate of the highest score
locates the predicted target object. On the basis that the search region centers at the previous target,

Sensors 2019, 19, 1818 7 of 14

the displacement of the target will be obtained through multiplying the coordinate of the highest
score by the entire stride of the network. In this stage, we only search for the object within one region
of 2.5 times its previous size. In addition, a traditional cosine window, whose role comes from the
periodicity assumption of the FFT, is used to learn the DCF filter.

After the coarse search, we assume that the tracking model finds the location near the real object,
as shown in Figure 4. Then, our tracking model evaluates search regions centered at the coarse
predicted location again. Besides, we change the traditional cosine window to a looser one. In practice,
we discover that a looser cosine window can improve the tracking results and reduce the iterations of
researching indirectly. In the fine search stage, multiple scales are evaluated at once by assembling
a mini-batch of scale transformation regions.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 14

predicted location again. Besides, we change the traditional cosine window to a looser one. In
practice, we discover that a looser cosine window can improve the tracking results and reduce the
iterations of researching indirectly. In the fine search stage, multiple scales are evaluated at once by
assembling a mini-batch of scale transformation regions.

Figure 4. The overall coarse-to-fine search mechanism.

2.2.5 Online Model Update

Since the feature maps of our network are still large, maintaining a large new sample set is
computationally expensive. After predicting the new target position, we re-crop the image patch
center at the new target position from the current frame for updating the correlation filter. In practice,
the optimization problem in Equation (2) can be formulated in an incremental mode as in Ref. [19].

 d d d
t t 1 (x) ∗

−= (1−α) +α⋅ YΑ Α ϕ (6)

 Dd d k k
t t 1 k 1

(x) ((x))∗
− =

= (1− α) + α ⋅ Β Β ϕ ϕ (7)

 d
d t
t d

t

=
+ λ
AW

B
 (8)

where the parameter α ≥ 0 is the learning rate and t is the frame index. The advantage of this
incremental update is that we do not have to sample the online training set to update our whole
network.

As we mentioned above, the value in the heatmap denotes the similarity score between the label
target and region patch in a new frame. If tracking failure or disturbance situation occur, the score
will be lower, as shown in Figure 5. In this work, we regard the maximum value in the heatmap as a
confidence score of the predicted target. Given the tracking result in frame n, if the score is lower than
the threshold, our tacker will treat it as a disturbance by the unexpected situation, e.g., illumination
variation, occlusion, deformation and so on. In this case, the tracking result will not update our
model.

Figure 4. The overall coarse-to-fine search mechanism.

2.2.5. Online Model Update

Since the feature maps of our network are still large, maintaining a large new sample set is
computationally expensive. After predicting the new target position, we re-crop the image patch
center at the new target position from the current frame for updating the correlation filter. In practice,
the optimization problem in Equation (2) can be formulated in an incremental mode as in Ref. [19].

Ad
t = (1−α)Ad

t−1 + α ·ϕ
d(x) �Y∗ (6)

Bd
t = (1−α)Bd

t−1 + α ·
D∑

k=1

ϕk(x) � (ϕk(x))
∗

(7)

Wd
t =

Ad
t

Bd
t + λ

(8)

where the parameter α≥ 0 is the learning rate and t is the frame index. The advantage of this incremental
update is that we do not have to sample the online training set to update our whole network.

As we mentioned above, the value in the heatmap denotes the similarity score between the label
target and region patch in a new frame. If tracking failure or disturbance situation occur, the score
will be lower, as shown in Figure 5. In this work, we regard the maximum value in the heatmap as
a confidence score of the predicted target. Given the tracking result in frame n, if the score is lower than
the threshold, our tacker will treat it as a disturbance by the unexpected situation, e.g., illumination
variation, occlusion, deformation and so on. In this case, the tracking result will not update our model.

Sensors 2019, 19, 1818 8 of 14
Sensors 2019, 19, x FOR PEER REVIEW 8 of 14

Figure 5. Our tracking results on a typical sequence. The y-axis indicates the maximum value in the
heatmap. The tracking results are reliable most of the time. Occasionally, e.g. frame #372 and frame
#1000, the scores become low because occlusion and deformation situations occur.

3. Results and Discussion

In this section, we evaluate our VDCFNet with some state-of-the-art tracking algorithms on OTB
[3,4]. Then, we further analyze the contribution of each component in our system. The results
demonstrate that our VDCFNet can achieve a competitive performance with other state-of-the-art
trackers.

3.1. Implementation Details

Training image pairs are obtained by cropping exemplar and search patches that are centered
on the objects in annotated videos. The images are chosen from two frames of a video sequence within
the near frames. In detail, we choose training videos from three datasets, including NUS-PRO [25],
TempleColor128 [26] and UAV123 [27]. Especially, we remove the sequences that overlap with the
test set and the parts beyond 500 frames in every video, leading to 114,672 frames. For each video,
we choose each pair of frames at least 15 frames apart and within 60 frames. We crop the image pairs
of 1.5× padding size in order to allow the network to receive some contextual information
surrounding the object. Then, we resized the cropped patches to 125 × 125 × 3 to the network. During
the training stage, we apply SGD with a momentum of 0.9, fix the weight decay γ to 0.0005, and set
the learning rate to 1×10−5. The network is trained for 50 epochs with a mini-batch size of 16, leading
to a 59 KB tracking model. In the updating model stage, we fix the online learning rate α to 0.002
and set the update selection threshold to one-third of the maximum score in the second frame. The
regularization coefficient λ is set to 1e-4 and the Gaussian spatial bandwidth is set to 0.1. To handle
scale variations, we use a patch pyramid with scale factors of { 1,0,1}1.03 − to search for the object over
three scales. At the same time, we penalize scale changing with a factor of 0.98 to provide damping.
During testing time, we set the searching iteration K to 2 in the coarse-to-fine searching stage. In other
words, our tracker coarse searches once and the fine searches once.

The proposed VDCFNet is implemented in MATLAB 2014b with MatConvNet [28]. All
experiments are conducted on a machine with Intel Core i5-3470 at 3.2 GHz, 16GB RAM and a single
NVIDIA GeForce GTX 1080 GPU. Our online tracking method operates at 50 frames-per-second
when searching three scales. The source code is available on
https://github.com/WalkWander/VDCFNet.

Figure 5. Our tracking results on a typical sequence. The y-axis indicates the maximum value in the
heatmap. The tracking results are reliable most of the time. Occasionally, e.g., frame #372 and frame
#1000, the scores become low because occlusion and deformation situations occur.

3. Results and Discussion

In this section, we evaluate our VDCFNet with some state-of-the-art tracking algorithms on OTB [3,4].
Then, we further analyze the contribution of each component in our system. The results demonstrate that
our VDCFNet can achieve a competitive performance with other state-of-the-art trackers.

3.1. Implementation Details

Training image pairs are obtained by cropping exemplar and search patches that are centered on
the objects in annotated videos. The images are chosen from two frames of a video sequence within
the near frames. In detail, we choose training videos from three datasets, including NUS-PRO [25],
TempleColor128 [26] and UAV123 [27]. Especially, we remove the sequences that overlap with the test set
and the parts beyond 500 frames in every video, leading to 114,672 frames. For each video, we choose each
pair of frames at least 15 frames apart and within 60 frames. We crop the image pairs of 1.5× padding
size in order to allow the network to receive some contextual information surrounding the object. Then,
we resized the cropped patches to 125 × 125 × 3 to the network. During the training stage, we apply SGD
with a momentum of 0.9, fix the weight decay γ to 0.0005, and set the learning rate to 1×10−5. The network
is trained for 50 epochs with a mini-batch size of 16, leading to a 59 KB tracking model. In the updating
model stage, we fix the online learning rate α to 0.002 and set the update selection threshold to one-third
of the maximum score in the second frame. The regularization coefficient λ is set to 1 × 10−4 and the
Gaussian spatial bandwidth is set to 0.1. To handle scale variations, we use a patch pyramid with scale
factors of 1.03{−1,0,1} to search for the object over three scales. At the same time, we penalize scale changing
with a factor of 0.98 to provide damping. During testing time, we set the searching iteration K to 2 in the
coarse-to-fine searching stage. In other words, our tracker coarse searches once and the fine searches once.

The proposed VDCFNet is implemented in MATLAB 2014b with MatConvNet [28]. All experiments
are conducted on a machine with Intel Core i5-3470 at 3.2 GHz, 16GB RAM and a single NVIDIA GeForce
GTX 1080 GPU. Our online tracking method operates at 50 frames-per-second when searching three scales.
The source code is available on https://github.com/WalkWander/VDCFNet.

https://github.com/WalkWander/VDCFNet

Sensors 2019, 19, 1818 9 of 14

3.2. Experiment Analysis

3.2.1. Dataset

The OTB [4] is a popular benchmark for visual tracking which contains 100 tracking sequences.
One-hundred tracking videos are defined as bounding box annotations with 11 different attributes,
including illumination variation (IV), scale variation (SV), occlusion (OCC), deformation (DEF), motion
blur (MB), fast motion (FM), inplane rotation (IPR), out-of-plane rotation (OPR), out-of-view (OV),
background clutters (BC), and low resolution (LR). We follow the protocol in References [3,4] and
report the results based on success plots and precision plots for evaluation.

3.2.2. Comparison on OTB

To evaluate our proposed method performance, we compare our proposed VDCFNet with another
eight state-of-the-art tracking algorithms, including CNN-SVM [8], SiamFc [13], CSK [15], Staple [16],
DSST [17], HDT [20], DCFNet [21], and Struck [29]. Especially, compared with the baseline method
DCFNet [21], the results would show the advantages and disadvantages of our algorithm. As the
framework in our algorithm is a Siamese network, we choose the most famous Siamese network-based
method like SiamFc [13]. Besides, we also select some popular DCF-based methods like CSK [15],
Staple [16], DSST [17], and HDT [20] for evaluation.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 14

3.2. Experiment Analysis

3.2.1. Dataset

The OTB [4] is a popular benchmark for visual tracking which contains 100 tracking sequences.
One-hundred tracking videos are defined as bounding box annotations with 11 different attributes,
including illumination variation (IV), scale variation (SV), occlusion (OCC), deformation (DEF),
motion blur (MB), fast motion (FM), inplane rotation (IPR), out-of-plane rotation (OPR), out-of-view
(OV), background clutters (BC), and low resolution (LR). We follow the protocol in References [3,4]
and report the results based on success plots and precision plots for evaluation.

3.2.2 Comparison on OTB

To evaluate our proposed method performance, we compare our proposed VDCFNet with
another eight state-of-the-art tracking algorithms, including CNN-SVM [8], SiamFc [13], CSK [15],
Staple [16], DSST [17], HDT [20], DCFNet [21], and Struck [29]. Especially, compared with the baseline
method DCFNet [21], the results would show the advantages and disadvantages of our algorithm.
As the framework in our algorithm is a Siamese network, we choose the most famous Siamese
network-based method like SiamFc [13]. Besides, we also select some popular DCF-based methods
like CSK [15], Staple [16], DSST [17], and HDT [20] for evaluation.

Figure 6. Distance precision and overlap success plots for OPE (one pass evaluation) of OTB2013 [3]
and OTB2015 [4] benchmarks. The numbers in the legend indicate the representative precisions at 20
pixels for precision plots and the area-under-curve scores for success plots.

Figure 6 shows the results of VDCFNet in the metric of OPE on OTB2013 [3] and OTB2015 [4].
In particular, SiamFc_3s [13] denotes the SiamFc [13] method and evaluates three scales. In Figure 6a
and Figure 6c, the numbers in the legend denote the representative precisions at 20 pixels. In the case
that the target may be too small relative to 20 pixels, we suggest readers pay more attention to the

Figure 6. Distance precision and overlap success plots for OPE (one pass evaluation) of OTB2013 [3]
and OTB2015 [4] benchmarks. The numbers in the legend indicate the representative precisions at
20 pixels for precision plots and the area-under-curve scores for success plots.

Figure 6 shows the results of VDCFNet in the metric of OPE on OTB2013 [3] and OTB2015 [4]. In particular,
SiamFc_3s [13] denotes the SiamFc [13] method and evaluates three scales. In Figure 6a,c, the numbers in the
legend denote the representative precisions at 20 pixels. In the case that the target may be too small relative to

Sensors 2019, 19, 1818 10 of 14

20 pixels, we suggest readers pay more attention to the success plots and the overall performance of precision
plots in Figure 6. Our proposed method with fewer parameters (59 KB) performs favorably against other
state-of-the-art methods in the metric of OPE on OTB2013 and OTB2015 benchmarks. Our tracking model
leads to 7.7% gains in success plots on OTB2015 compared with DSST using HOG features. With the more
robust search strategy and online update strategy, the proposed method performs better compared to the
recent DCFNet [21]. In Figure 6d, our VDCFNet tracker can achieve a significant improvement in OPE.

To further analyze the trackers’ performance, we also report the results on different challenge
attributes on OTB2013, such as fast motion, occlusion, motion blur, etc. Figure 7 demonstrates the OPE
for six main video attributes. In addition, Table 2 shows the results of all 11 attributes. Compared
with the other trackers, our approach achieves smooth performance on all attributes. It is probably
the reason that our tracker performs competitively on the overall score. In particular, our method is
effective in handling fast motions. Compared with DCFNet [21], our method leads to 11.6% gains in
motion blur attribute and 11.2% gains in fast motion attribute.

Table 2. The score of success plot on OTB2013 [3]. The bold fonts indicate the best performance.

Name IV SV OCC DEF MB FM IPR OPR OV BC LR Overall
Score

Ours 0.558 0.579 0.595 0.573 0.555 0.575 0.557 0.573 0.578 0.574 0.514 0.613
SiamFc_3s 0.532 0.599 0.597 0.541 0.516 0.542 0.570 0.589 0.635 0.546 0.499 0.608
DCFNet 0.574 0.615 0.624 0.558 0.497 0.517 0.569 0.589 0.668 0.559 0.500 0.604

HDT 0.553 0.523 0.601 0.627 0.614 0.569 0.578 0.583 0.569 0.610 0.551 0.602
CNN-SVM 0.555 0.513 0.562 0.640 0.565 0.541 0.570 0.581 0.571 0.593 0.461 0.574

Staple 0.568 0.551 0.593 0.618 0.541 0.503 0.580 0.575 0.547 0.576 0.438 0.600
DSST 0.561 0.546 0.531 0.506 0.455 0.420 0.563 0.535 0.462 0.517 0.408 0.554
Struck 0.418 0.425 0.404 0.393 0.433 0.450 0.436 0.425 0.459 0.458 0.372 0.470
CSK 0.361 0.350 0.358 0.343 0.305 0.301 0.394 0.381 0.349 0.421 0.350 0.395

Sensors 2019, 19, x FOR PEER REVIEW 10 of 14

success plots and the overall performance of precision plots in Figure 6. Our proposed method with
fewer parameters (59 KB) performs favorably against other state-of-the-art methods in the metric of
OPE on OTB2013 and OTB2015 benchmarks. Our tracking model leads to 7.7% gains in success plots
on OTB2015 compared with DSST using HOG features. With the more robust search strategy and
online update strategy, the proposed method performs better compared to the recent DCFNet [21].
In Figure 6d, our VDCFNet tracker can achieve a significant improvement in OPE.

To further analyze the trackers’ performance, we also report the results on different challenge
attributes on OTB2013, such as fast motion, occlusion, motion blur, etc. Figure 7 demonstrates the
OPE for six main video attributes. In addition, Table. 2 shows the results of all 11 attributes.
Compared with the other trackers, our approach achieves smooth performance on all attributes. It is
probably the reason that our tracker performs competitively on the overall score. In particular, our
method is effective in handling fast motions. Compared with DCFNet [21], our method leads to 11.6%
gains in motion blur attribute and 11.2% gains in fast motion attribute.

Table 2. The score of success plot on OTB2013 [3]. The bold fonts indicate the best performance.

Name IV SV OCC DEF MB FM IPR OPR OV BC LR
Overall
Score

Ours 0.558 0.579 0.595 0.573 0.555 0.575 0.557 0.573 0.578 0.574 0.514 0.613
SiamFc_3s 0.532 0.599 0.597 0.541 0.516 0.542 0.570 0.589 0.635 0.546 0.499 0.608
DCFNet 0.574 0.615 0.624 0.558 0.497 0.517 0.569 0.589 0.668 0.559 0.500 0.604

HDT 0.553 0.523 0.601 0.627 0.614 0.569 0.578 0.583 0.569 0.610 0.551 0.602
CNN-
SVM 0.555 0.513 0.562 0.640 0.565 0.541 0.570 0.581 0.571 0.593 0.461 0.574

Staple 0.568 0.551 0.593 0.618 0.541 0.503 0.580 0.575 0.547 0.576 0.438 0.600
DSST 0.561 0.546 0.531 0.506 0.455 0.420 0.563 0.535 0.462 0.517 0.408 0.554
Struck 0.418 0.425 0.404 0.393 0.433 0.450 0.436 0.425 0.459 0.458 0.372 0.470
CSK 0.361 0.350 0.358 0.343 0.305 0.301 0.394 0.381 0.349 0.421 0.350 0.395

Figure 7. The success plots for six challenge attributes, including fast motion, motion blur,
background clutter, occlusion, scale variation, and low resolution.

3.2.3. Ablative Analysis

We also conduct the ablative analysis on OTB2013 [3]. In Table 3, the configuration of ablative
analysis is listed in detail. We implement and evaluate several variations of our VCNN architecture
with the same hyper-parameters in both training and testing stages. The effectiveness of our
proposed VCNN is examined by comparison with the different vconv layers (vconv1-dcf, vconv2-

Figure 7. The success plots for six challenge attributes, including fast motion, motion blur, background
clutter, occlusion, scale variation, and low resolution.

3.2.3. Ablative Analysis

We also conduct the ablative analysis on OTB2013 [3]. In Table 3, the configuration of ablative
analysis is listed in detail. We implement and evaluate several variations of our VCNN architecture
with the same hyper-parameters in both training and testing stages. The effectiveness of our proposed
VCNN is examined by comparison with the different vconv layers (vconv1-dcf, vconv2-dcf, vconv3-dcf
and vconv5-dcf), where vconv1 denotes 2 VCNN layers, vconv2 denotes 4 VCNN layers, vconv3
denotes 6 VCNN layers, and vconv5 denotes 10 VCNN layers; all the vconv filters are 3 × 1, 1 × 3 with

Sensors 2019, 19, 1818 11 of 14

16 or 32 numels, and dcf denotes the DCF layer. To verify objectively, we also test the normal same
convolutional layers architectures (conv1-dcf, conv2-dcf, conv3-dcf, and conv5-dcf), where all the conv
filters are 3 × 3 with 32 numels. Unlike image classification, the performance decreases with the layers
going deeper. We partly attribute this effect to the decreased spatial resolution in the deeper layers.
Intuitively, better spatial resolution is more helpful for locating the target accurately, which is crucial
for the tracking problem. It is also probably that our training set is not enough for training the deeper
network. Regarding the process speed, although we add more layers to the network, the VCNN
constructions still perform competitively with the normal convolutional network. This is mainly
because there is no need for backpropagation which costs most of the computing time in our tracking
stage. In terms of parameter numbers, compared with conv3-dcf, the vconv3-dcf utilizes VCNN
construction to gain a 58.8% smaller quantity of parameters and achieve even better performance
under the CLE metric.

To evaluate the contribution of each part in our algorithm, we also investigate three additional
versions of our tracking algorithm—VDCFNet without update selection and finetune model every
frame (VDCF-update), VDCFNet without coarse-to-fine search (VDCF-without-search), and VDCFNet
with normal convolutional operation (VDCF-cnn). Our entire algorithm performs better than all
the variations. In addition, each component in our algorithm is beneficial to improve performance.
The detailed results are illustrated in Figure 8.

Table 3. Ablation study of our method VDCFNet with different VCNN architecture compared with
normal CNN architecture on OTB2013 using mean overlap precision (OP) at the threshold of 0.5,
mean distance precision (DP) at 20 pixels, mean center location error (CLE), mean speed, and quantity
of parameters.

Tracker OP DP CLE FPS Parameters

vconv1-dcf 0.88 0.84 11.56 65.04 1728
conv1-dcf 0.89 0.84 11.52 65.94 896

vconv2-dcf 0.86 0.80 13.06 53.62 4848
conv2-dcf 0.87 0.79 12.98 54.46 10144

vconv3-dcf 0.81 0.72 14.02 41.04 7968
conv3-dcf 0.82 0.76 14.38 43.26 19392

vconv5-dcf 0.57 0.51 17.68 33.12 14208
conv5-dcf 0.60 0.57 16.76 30.84 37888

Sensors 2019, 19, x FOR PEER REVIEW 11 of 14

dcf, vconv3-dcf and vconv5-dcf), where vconv1 denotes 2 VCNN layers, vconv2 denotes 4 VCNN
layers, vconv3 denotes 6 VCNN layers, and vconv5 denotes 10 VCNN layers; all the vconv filters are
3 × 1, 1 × 3 with 16 or 32 numels, and dcf denotes the DCF layer. To verify objectively, we also test the
normal same convolutional layers architectures (conv1-dcf, conv2-dcf, conv3-dcf, and conv5-dcf),
where all the conv filters are 3 × 3 with 32 numels. Unlike image classification, the performance
decreases with the layers going deeper. We partly attribute this effect to the decreased spatial
resolution in the deeper layers. Intuitively, better spatial resolution is more helpful for locating the
target accurately, which is crucial for the tracking problem. It is also probably that our training set is
not enough for training the deeper network. Regarding the process speed, although we add more
layers to the network, the VCNN constructions still perform competitively with the normal
convolutional network. This is mainly because there is no need for backpropagation which costs most
of the computing time in our tracking stage. In terms of parameter numbers, compared with conv3-
dcf, the vconv3-dcf utilizes VCNN construction to gain a 58.8% smaller quantity of parameters and
achieve even better performance under the CLE metric.

To evaluate the contribution of each part in our algorithm, we also investigate three additional
versions of our tracking algorithm—VDCFNet without update selection and finetune model every
frame (VDCF-update), VDCFNet without coarse-to-fine search (VDCF-without-search), and
VDCFNet with normal convolutional operation (VDCF-cnn). Our entire algorithm performs better
than all the variations. In addition, each component in our algorithm is beneficial to improve
performance. The detailed results are illustrated in Figure 8.

Table 3. Ablation study of our method VDCFNet with different VCNN architecture compared with
normal CNN architecture on OTB2013 using mean overlap precision (OP) at the threshold of 0.5,
mean distance precision (DP) at 20 pixels, mean center location error (CLE), mean speed, and quantity
of parameters.

Tracker OP DP CLE FPS Parameters
vconv1-dcf 0.88 0.84 11.56 65.04 1728
conv1-dcf 0.89 0.84 11.52 65.94 896

vconv2-dcf 0.86 0.80 13.06 53.62 4848
conv2-dcf 0.87 0.79 12.98 54.46 10144

vconv3-dcf 0.81 0.72 14.02 41.04 7968
conv3-dcf 0.82 0.76 14.38 43.26 19392

vconv5-dcf 0.57 0.51 17.68 33.12 14208
conv5-dcf 0.60 0.57 16.76 30.84 37888

Figure 8. Performance evaluation of our proposed method without each part on OTB2013.

3.2.4. Qualitative Evaluation

Figure 8. Performance evaluation of our proposed method without each part on OTB2013.

Sensors 2019, 19, 1818 12 of 14

3.2.4. Qualitative Evaluation

Figure 9 shows the tracking results of some state-of-the-art trackers: SiamFc_3s [13], DSST [17],
DCFNet [21], and the proposed method VDCFNet on 10 challenging sequences from OTB100. In terms
of fast motion, our tracker performs better than DCFNet [21] in Couple, Jumping and Deer sequences.
In practice, our tracker fails to search for the target at frame #91 in Couple sequence. This is due to
the large displacement of the target caused by the fast motion of the camera. Despite this failure,
our tracker search back soon as show at frame #101 in Couple sequence. This may owe largely to our
coarse-to-fine search strategy because search twice expands the search region.

For the Blurbody sequence, when heavy motion blur occurs, the DCFNet method fails to follow
the target at frame #228 as it is disturbed by updating mode every frame. Especially the tracking model
receives the bad update information when the tracking results drift. It becomes worse and worse as
shown at frame #13 and #304 in the Jumping sequence. Only SiamFc [13] method and ours were able
to track successfully. Compared with SiamFc [13] using the huge training dataset and deeper network,
our method performs well with a shallow network.

In terms of in-plane rotation and scale variation, our algorithm performs better than the other
three methods in the Vase sequence. Regarding the occlusion, SiamFc [13] and DSST [17] fail to track
the object in Divid3, Girl and Basketball sequences. For the Divid3 sequence, the object occludes by
a tree at frame #191. SiamFc [13] lost the target and stayed in the previous position. It is probably
limited by the cosine window added at the response map in SiamFc [13] which increases the center
weight and decreases the boundary weight. Benefitting from the property of DCF module and a large
search region, our proposed tracker was able to overcome the disturbance caused by occlusion.

Sensors 2019, 19, x FOR PEER REVIEW 12 of 14

Figure 9 shows the tracking results of some state-of-the-art trackers: SiamFc_3s [13], DSST [17],
DCFNet [21], and the proposed method VDCFNet on 10 challenging sequences from OTB100. In
terms of fast motion, our tracker performs better than DCFNet [21] in Couple, Jumping and Deer
sequences. In practice, our tracker fails to search for the target at frame #91 in Couple sequence. This
is due to the large displacement of the target caused by the fast motion of the camera. Despite this
failure, our tracker search back soon as show at frame #101 in Couple sequence. This may owe largely
to our coarse-to-fine search strategy because search twice expands the search region.

For the Blurbody sequence, when heavy motion blur occurs, the DCFNet method fails to follow
the target at frame #228 as it is disturbed by updating mode every frame. Especially the tracking
model receives the bad update information when the tracking results drift. It becomes worse and
worse as shown at frame #13 and #304 in the Jumping sequence. Only SiamFc [13] method and ours
were able to track successfully. Compared with SiamFc [13] using the huge training dataset and
deeper network, our method performs well with a shallow network.

In terms of in-plane rotation and scale variation, our algorithm performs better than the other
three methods in the Vase sequence. Regarding the occlusion, SiamFc [13] and DSST [17] fail to track
the object in Divid3, Girl and Basketball sequences. For the Divid3 sequence, the object occludes by a
tree at frame #191. SiamFc [13] lost the target and stayed in the previous position. It is probably
limited by the cosine window added at the response map in SiamFc [13] which increases the center
weight and decreases the boundary weight. Benefitting from the property of DCF module and a large
search region, our proposed tracker was able to overcome the disturbance caused by occlusion.

Figure 9. Qualitative evaluation of proposed algorithm on 10 challenging sequences from OTB100
(from left to right and top to down are Divid3, Couple, Girl, Basketball, Cardark, Surfer, Vase,
Blurbody, Jumping, and Deer, respectively). The yellow number in the upper left corner indicates the
frame index.

3.2.5. Failure Analysis

However, we also discover a few failure cases as shown in Figure 10. For the Soccer
sequence, when there is heavy background clutter and long-term occlusions occur, it is a really
challenging job for our proposed tracker. Regarding the Coupon sequence, it is also difficult to
distinguish the similar object for our method. Besides, we discover that our tracker is not
sensitive to large rotation variation in some failure results such as MotorRolling sequence.
Although our method is able to track the target back later at frame #50 which is owed largely to
the coarse-to-fine search strategy, our tracker cannot handle the scale variation well after these

Figure 9. Qualitative evaluation of proposed algorithm on 10 challenging sequences from OTB100
(from left to right and top to down are Divid3, Couple, Girl, Basketball, Cardark, Surfer, Vase, Blurbody,
Jumping, and Deer, respectively). The yellow number in the upper left corner indicates the frame index.

3.2.5. Failure Analysis

However, we also discover a few failure cases as shown in Figure 10. For the Soccer sequence,
when there is heavy background clutter and long-term occlusions occur, it is a really challenging job
for our proposed tracker. Regarding the Coupon sequence, it is also difficult to distinguish the similar
object for our method. Besides, we discover that our tracker is not sensitive to large rotation variation
in some failure results such as MotorRolling sequence. Although our method is able to track the target
back later at frame #50 which is owed largely to the coarse-to-fine search strategy, our tracker cannot
handle the scale variation well after these failures in MotorRolling sequence. It is probably that our

Sensors 2019, 19, 1818 13 of 14

training set does not contain enough image pairs with the attribute of rotation variation. We will study
these issues in the future.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 14

failures in MotorRolling sequence. It is probably that our training set does not contain enough
image pairs with the attribute of rotation variation. We will study these issues in the future.

Figure 10. Failure cases on sequences from OTB100 (from left to right are Soccer, Coupon,
MotorRolling, and MotorRolling, respectively). The red bounding box is our proposed method results
and the green one indicates the ground truth. The yellow number at the upper left corner indicates
the frame index.

4. Conclusions

In this work, we have proposed a novel tracking algorithm combined with the vector
convolutional network with discriminant correlation filters. In the convolutional stage, we propose
novel vector convolutional filter to simplify the network and reduce parameters. In the online
tracking stage, we propose a coarse-to-fine search strategy to solve drift problems under fast motion.
In the online update model stage, a robust online update strategy is introduced to ignore the low
confidence disturbance. These enable our tracker to follow the target robustly with fewer parameters.
The experiments have shown that our proposed method can achieve a competitive performance
while operating over real-time speed.

Author Contributions: Y.L conceived of and performed the experiments, analyzed the data, and wrote the
paper. X.S proofread the manuscript. All the authors discussed the results and commented on the manuscript.

Funding: This research was financially supported by National Natural Science Foundation of China, (grant
number 11503010, 11773018), the Fundamental Research Funds for the Central Universities, (grant number
30916015103) and Qing Lan Project and Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging &
Intelligence Sense (3091601410405).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Smeulders, A.W.; Chu, D.M.; Cucchiara, R.; Calderara, S.; Dehghan, A.; Shah, M. Visual tracking: An
experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1442–1468.

2. Yang, H.; Shao, L.; Zheng, F.; Wang, L.; Song, Z. Recent advances and trends in visual tracking: A review.
Neurocomputing 2011, 74, 3823–3831.

3. Wu, Y.; Lim, J.; Yang, M.-H. Online object tracking: A benchmark. In Proceedings of the Computer Vision
and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013; pp. 2411–2418.

4. Wu, Y.; Lim, J.; Yang, M.-H. Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37,
1834–1848.

5. Wang, N.; Shi, J.; Yeung, D.-Y.; Jia, J. Understanding and diagnosing visual tracking systems. In
Proceedings of the Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 3101–3109.

6. Jin, Z.; Hou, Z.; Yu, W.; Chen, C.; Wang, X. Game theory-based visual tracking approach focusing on color
and texture features. Appl. Opt. 2017, 56, 5982–5989.

7. Shen, X.; Sui, X.; Pan, K.; Tao, Y. Adaptive pedestrian tracking via patch-based features and spatial–
temporal similarity measurement. Pattern Recognit. 2016, 53, 163–173.

8. Hong, S.; You, T.; Kwak, S.; Han, B. Online tracking by learning discriminative saliency map with
convolutional neural network. In Proceedings of the International Conference on Machine Learning, Lille,
France, 6–11 July 2015; pp. 597–606.

9. Zhang, K.; Liu, Q.; Wu, Y.; Yang, M.-H. Robust visual tracking via convolutional networks without training.
IEEE Trans. Image Process. 2016, 25, 1779–1792.

Figure 10. Failure cases on sequences from OTB100 (from left to right are Soccer, Coupon, MotorRolling,
and MotorRolling, respectively). The red bounding box is our proposed method results and the green
one indicates the ground truth. The yellow number at the upper left corner indicates the frame index.

4. Conclusions

In this work, we have proposed a novel tracking algorithm combined with the vector convolutional
network with discriminant correlation filters. In the convolutional stage, we propose novel vector
convolutional filter to simplify the network and reduce parameters. In the online tracking stage,
we propose a coarse-to-fine search strategy to solve drift problems under fast motion. In the
online update model stage, a robust online update strategy is introduced to ignore the low
confidence disturbance. These enable our tracker to follow the target robustly with fewer parameters.
The experiments have shown that our proposed method can achieve a competitive performance while
operating over real-time speed.

Author Contributions: Y.L. conceived of and performed the experiments, analyzed the data, and wrote the paper.
X.S. proofread the manuscript. All the authors discussed the results and commented on the manuscript.

Funding: This research was financially supported by National Natural Science Foundation of China, (grant
number 11503010, 11773018), the Fundamental Research Funds for the Central Universities, (grant number
30916015103) and Qing Lan Project and Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging &
Intelligence Sense (3091601410405).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Smeulders, A.W.; Chu, D.M.; Cucchiara, R.; Calderara, S.; Dehghan, A.; Shah, M. Visual tracking:
An experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1442–1468. [PubMed]

2. Yang, H.; Shao, L.; Zheng, F.; Wang, L.; Song, Z. Recent advances and trends in visual tracking: A review.
Neurocomputing 2011, 74, 3823–3831. [CrossRef]

3. Wu, Y.; Lim, J.; Yang, M.-H. Online object tracking: A benchmark. In Proceedings of the Computer Vision
and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013; pp. 2411–2418.

4. Wu, Y.; Lim, J.; Yang, M.-H. Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37,
1834–1848. [CrossRef] [PubMed]

5. Wang, N.; Shi, J.; Yeung, D.-Y.; Jia, J. Understanding and diagnosing visual tracking systems. In Proceedings
of the Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 3101–3109.

6. Jin, Z.; Hou, Z.; Yu, W.; Chen, C.; Wang, X. Game theory-based visual tracking approach focusing on color
and texture features. Appl. Opt. 2017, 56, 5982–5989. [CrossRef] [PubMed]

7. Shen, X.; Sui, X.; Pan, K.; Tao, Y. Adaptive pedestrian tracking via patch-based features and spatial–temporal
similarity measurement. Pattern Recognit. 2016, 53, 163–173. [CrossRef]

8. Hong, S.; You, T.; Kwak, S.; Han, B. Online tracking by learning discriminative saliency map with
convolutional neural network. In Proceedings of the International Conference on Machine Learning,
Lille, France, 6–11 July 2015; pp. 597–606.

9. Zhang, K.; Liu, Q.; Wu, Y.; Yang, M.-H. Robust visual tracking via convolutional networks without training.
IEEE Trans. Image Process. 2016, 25, 1779–1792. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/26353314
http://dx.doi.org/10.1016/j.neucom.2011.07.024
http://dx.doi.org/10.1109/TPAMI.2014.2388226
http://www.ncbi.nlm.nih.gov/pubmed/26353130
http://dx.doi.org/10.1364/AO.56.005982
http://www.ncbi.nlm.nih.gov/pubmed/29047921
http://dx.doi.org/10.1016/j.patcog.2015.11.017
http://dx.doi.org/10.1109/TIP.2016.2531283
http://www.ncbi.nlm.nih.gov/pubmed/26890870

Sensors 2019, 19, 1818 14 of 14

10. Nam, H.; Han, B. Learning multi-domain convolutional neural networks for visual tracking. In Proceedings
of the Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4293–4302.

11. Chi, Z.; Li, H.; Lu, H.; Yang, M.-H. Dual deep network for visual tracking. IEEE Trans. Image Process. 2017,
26, 2005–2015. [CrossRef] [PubMed]

12. Held, D.; Thrun, S.; Savarese, S. Learning to track at 100 fps with deep regression networks. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 749–765.

13. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H. Fully-convolutional siamese networks for
object tracking. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
8–16 October 2016; pp. 850–865.

14. Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation
filters. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA,
13–18 June 2010; pp. 2544–2550.

15. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. Exploiting the circulant structure of tracking-by-detection with
kernels. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012;
pp. 702–715.

16. Bertinetto, L.; Valmadre, J.; Golodetz, S.; Miksik, O.; Torr, P.H. Staple: Complementary learners for
real-time tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, USA, 27–30 June 2016.

17. Danelljan, M.; Häger, G.; Khan, F.; Felsberg, M. Accurate scale estimation for robust visual tracking.
In Proceedings of the British Machine Vision Conference, Nottingham, UK, 1–5 September 2014.

18. Kang, W.; Liu, G.; Jia, M. REMOVED: Adaptive correlation filters for robust object tracking. Pattern Recognit.
2017, 72, 484–493. [CrossRef]

19. Ma, C.; Huang, J.-B.; Yang, X.; Yang, M.-H. Hierarchical convolutional features for visual tracking. In Proceedings
of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3074–3082.

20. Qi, Y.; Zhang, S.; Qin, L.; Yao, H.; Huang, Q.; Lim, J.; Yang, M.-H. Hedged deep tracking. In Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 4303–4311.

21. Wang, Q.; Gao, J.; Xing, J.; Zhang, M.; Hu, W. DCFNet: Discriminant Correlation Filters Network for Visual
Tracking. arXiv, 2017; arXiv:1704.04057.

22. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual
connections on learning. arXiv, 2016; arXiv:1602.07261v2.

23. Iandola, F.N.; Moskewicz, M.W.; Ashraf, K.; Han, S.; Dally, W.J.; Keutzer, K. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and <1 mb model size. arXiv, 2016; arXiv:1602.07360.

24. Boeddeker, C.; Hanebrink, P.; Drude, L.; Heymann, J.; Haeb-Umbach, R. On the computation of complex-valued
gradients with application to statistically optimum beamforming. arXiv, 2017; arXiv:1701.00392.

25. Li, A.; Lin, M.; Wu, Y.; Yang, M.-H.; Yan, S. Nus-pro: A new visual tracking challenge. IEEE Trans. Pattern
Anal. Mach. Intell. 2016, 38, 335–349. [CrossRef] [PubMed]

26. Liang, P.; Blasch, E.; Ling, H. Encoding color information for visual tracking: Algorithms and benchmark.
IEEE Trans. Pattern Anal. Mach. Intell. 2015, 24, 5630–5644. [CrossRef] [PubMed]

27. Mueller, M.; Smith, N.; Ghanem, B. A benchmark and simulator for uav tracking. In Proceedings of the
European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 445–461.

28. Vedaldi, A.; Lenc, K. Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd
ACM International Conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 689–692.

29. Hare, S.; Golodetz, S.; Saffari, A.; Vineet, V.; Cheng, M.-M.; Hicks, S.L.; Torr, P.H. Struck: Structured output
tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2096–2109. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIP.2017.2669880
http://www.ncbi.nlm.nih.gov/pubmed/28212087
http://dx.doi.org/10.1016/j.patcog.2017.06.033
http://dx.doi.org/10.1109/TPAMI.2015.2417577
http://www.ncbi.nlm.nih.gov/pubmed/26761738
http://dx.doi.org/10.1109/TIP.2015.2482905
http://www.ncbi.nlm.nih.gov/pubmed/26415202
http://dx.doi.org/10.1109/TPAMI.2015.2509974
http://www.ncbi.nlm.nih.gov/pubmed/26700968
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Overview
	Network Architecture
	Vector Convolution Operator
	Siamese Network
	DCF Layer
	Coarse-to-Fine Search
	Online Model Update

	Results and Discussion
	Implementation Details
	Experiment Analysis
	Dataset
	Comparison on OTB
	Ablative Analysis
	Qualitative Evaluation
	Failure Analysis

	Conclusions
	References

