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Abbreviations
AdoCbl	� 5′-Deoxyadenosyl-Cbl
ALAT	� Alanine aminotransferase
Cbl	� Cobalamin/vitamin B12
CNCbl	� Cyano-Cbl
HOCbl	� Hydroxo-Cbl
MeCbl	� Methyl-Cbl
MMA	� Methylmalonic acid
TC	� Transcobalamin
T4	� Thyroxin
T3	� Triiodothyronine

Introduction

Vitamin B12 (cobalamin, Cbl) is essential for a normal 
neurological function and formation of blood cells. The 
vitamin is supplied via dietary animal products and increas-
ingly through food fortification or vitamin pills [1]. The 
Cbl forms present in foods are the coenzymes methyl- and 
5′-deoxyadenosyl-Cbl (MeCbl, AdoCbl). A brief exposure 
to light converts both coenzymes to hydroxo-Cbl (HOCbl), 
making HOCbl the ubiquitous food form of Cbl [2]. Cyano-
Cbl (CNCbl) is chemically stable, and it is the predominant 
Cbl form used in industrial Cbl products (food fortification 
and vitamin pills) [3]. The general concept is that HOCbl 
and CNCbl are comparable concerning their absorption and 
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tissue distribution patterns, while free Cbl is absorbed more 
efficiently than food bound Cbl (for a review see ref. [3]). 
Our recent data in normal rats challenge both of these state-
ments [4]. We compared 24-h oral absorption of CN[57Co]
Cbl (free or bound to bovine transcobalamin (TC), the Cbl 
binding protein in milk) and free HO[57Co]Cbl. We found 
no difference between TC-bound and free CN[57Co]Cbl, as 
well as no difference in the total absorption levels of the 
two Cbl forms. However, the liver HO[57Co]Cbl accumula-
tion was twice as high as the CN[57Co]Cbl accumulation. 
Notably, this result challenges the concept that CN[57Co]
Cbl and HO[57Co]Cbl behave alike and thereby are of equal 
value for treatment/prevention of Cbl deficiency.

The current study was undertaken to investigate whether 
the observed differences in distribution of HOCbl and 
CNCbl also were mirrored in other tissues than liver and 
kidney and whether this distribution was dependent on Cbl 
status. In addition, we wanted to explore whether the food 
form of Cbl (HOCbl) was absorbed alike when adminis-
tered free or bound to bovine TC.

Materials and methods

Animals

Thirty male Wistar rats (Taconic Bioscience Inc., Den-
mark) were used for the experiments; 7 weeks old, weigh-
ing approx. 200  g upon arrival to the animal facilities. 
The rats were housed in pairs in standard cages (Mak-
rolon 1291 H type III H, 800 cm2, Tecniplast, Italy) with 
free access to food and tap water. The room temperature 
was 19–20 °C and the humidity 60% with a 12/12 h light/
dark cycle. Bedding material (asp chips, Tapvei, Finland) 
and soft paper wool (LBS biotech, United Kingdom) were 
changed daily. Rats were kept for 2  weeks, during which 
half (n = 15) were randomized to a Cbl-deficient diet 
(Altromin C1024, Brogaarden, Denmark) and the other half 
(n = 15) to the control diet (Altromin C1000, Brogaarden, 
Denmark). The calorie contents of the two diets were equal, 
but the Cbl-deficient diet contained less cellulose and corn 
starch and more sucrose compared with the control diet. 
The manufacturer assessed Cbl content by using the tabu-
lated values for Cbl in different food sources. Therefore, we 
quantified Cbl in the diets by extracting 0.3 g of solids with 
1.5 mL of water. After centrifugation, Cbl was measured in 
the supernatant employing a Cobas 6000 (Roche Diagnos-
tics). During the analysis, all Cbl is converted to CNCbl; 
thus, the Cbl content was calculated employing the molecu-
lar weight for CNCbl, MW: 1355. The mean of two inde-
pendent measures is shown (Cbl-deficient diet: <0.5 (<0.5, 
<0.5) µg/kg, control diet: 60 (69, 51) µg/kg).

All experiments were conducted in agreement with EU 
Directive 2010/63/EU on animal experiments.

Study design and experimental procedures

The study design is depicted in Fig.  1. Each of the three 
subgroups received approx. 150,000  cpm (0.21 pmol) of 
free CN[57Co]Cbl, free HO[57Co]Cbl or HO[57Co]Cbl in 
complex with recombinant bovine TC (all dissolved in a 
0.15 mol/L solution of sodium chloride). The exact amount 
of administered radioactivity (in cpm) was calculated based 
on measurement of the administered volume and the cpm 
present in 1 mL of the administered solution.

Twenty-four hours prior to sacrifice, 1  mL of the Cbl 
solution was administered by gastric gavage. Following the 
oral Cbl dose, the rats were transferred to separate meta-
bolic cages for 24 h. The rats were anesthetized with iso-
flurane gas, and blood samples were collected by cardiac 
puncture into lithium-heparin tubes. Afterwards the rats 
were sacrificed by cervical dislocation. The liver, kid-
neys, spleen, heart, small intestine, muscle (thigh), brain 
as well as 24-h urine and faeces were collected, weighed 
and stored at −80 °C until further processing. Blood sam-
ples were centrifuged (9  min, 1850  g), and plasma was 
separated and stored at −20 °C until analysis. Blood collec-
tion failed in 9 rats (two depleted rats receiving HO[57Co]
Cbl, one depleted rat receiving CN[57Co]Cbl, five normal 
rats receiving HO[57Co]Cbl and one normal rat receiving 
CN[57Co]Cbl).

Reagents and biochemical methods

Commercially available preparations of CN[57Co]Cbl 
(1.75 μCi/mL and 0.41 μCi/pmol Cbl) were used (MP Bio-
medicals, Ohio, USA, Catalogue no. 06B-430000). Radio-
active CN[57Co]Cbl was converted into HO[57Co]Cbl by 
photoaquation in an acidic medium under nitrogen bub-
bling as previously described [4]. The purity of the conver-
sion product was analysed by HPLC employing an in-house 
method [5] and found to be >95% both at the time of pro-
duction (data not shown) and after storage under condi-
tions, known to ensure stability of the product (pH 6.0 at 
4 °C) [6] for 5 months (Fig. 2).

TC was expressed as previously described [7, 8]. 
HO[57Co]Cbl complexed with TC was prepared by incubat-
ing a 10% molar excess of TC with HO[57Co]Cbl for 1 h.

[57Co]Cbl (cpm) was measured by gamma counter (2470 
Wizard2 Automatic Gamma Counter, Perkin Elmer, USA).

For quantification of tissue [57Co]Cbl accumulation, all 
tissues were thawed on ice, were cut into smaller pieces 
if necessary and were transferred to tubes for the gamma 
counter. All tubes were counted to obtain the whole-organ 
cpm. Intestines and contents were cut and counted together. 
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24-h faeces and 1  mL urine from each rat were counted. 
For the calculation of total plasma radioactivity, cpm/mL 
plasma and estimates of total plasma volume were used [9]. 
For calculation of the total muscle cpm, cpm/g of muscle 
and an estimate of the total skeletal muscle mass based on 
body weight were used [10]. All results were expressed as 
a fraction of the total administered dose of [57Co]Cbl per 

animal. Additional parameters were employed for analysis 
of the refined kinetics analysis; see supplementary material.

Six deficient and six normal rats were chosen randomly 
for the analysis of endogenous Cbl. The samples were 
thawed on the day of processing. From homogenous tis-
sues, random 250 mg was used (liver, muscle and spleen). 
From heterogeneous tissues, the apex of the heart, a quar-
ter of a kidney and mixed cerebrum were used (250 mg). 
We added 750  μL of Na-acetate buffer (0.4  mol/L, pH 
4.4) to the individual tissue samples and homogenized at 
6800 rpm in three cycles of 20 s with 30 s pauses between 
cycles (Precellys 24, Bertin Technologies). After homog-
enisation, 20  μL KCN (30  mmol/L) was added, and the 
mixtures were boiled (100 °C) for 10  min. Supernatants 
for quantification of Cbl were collected after centrifuga-
tion (40 min; 20,000×g) and stored at 4 °C until analysed. 
The results were expressed as pmol Cbl per g of tissue or 
whole-organ Cbl (pmol; after multiplying by organ weight). 
Extraction of endogenous Cbl was >90% as judged from 
independent experiments, where we added HO[57Co]Cbl to 
the homogenates prior to further treatment, and counted the 
amount of label remaining in the final supernatant.

To exclude confounding by a difference in biomarkers, 
we analysed markers of thyroid, liver and kidney function 
as well as markers of lipid metabolism, as outlined below.

We employed standard laboratory methods for analysing 
total Cbl (ADVIA Centaur CP immunoassay System, Sie-
mens Healthcare Diagnostics, Denmark), triiodothyronine 
(T3), thyroxine (T4), alanine aminotransferase (ALAT), 

Fig. 1   Study design. Cbl 
Cobalamin, CNCbl CN[57Co]
Cbl, HOCbl HO[57Co]Cbl, TC 
bovine transcobalamin
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Fig. 2   HPLC profile of HO[57Co]Cbl after 5-month storage at pH 
6.0, 4 °C. Fractions were measured by gammacounter. The result 
is shown in full drawn line. For comparison, the elution profile 
of CN[57Co]Cbl is shown in dashed line. HO HO[57Co]Cbl, CN 
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total cholesterol, triglyceride, carbamide (Cobas 6000, 
Roche Diagnostics) and methylmalonic acid (MMA) (6500 
QTRAP mass spectrometer, AB Sciex, with a Shimadzu 
HPLC-system).

Data analysis and statistical considerations

Our initial analysis showed no difference between rats 
receiving HO[57Co]Cbl (free or bound to bovine TC) and 
no differences when comparing CN[57Co]Cbl with each 
HO[57Co]Cbl group alone, data not shown. Therefore, the 
two HO[57Co]Cbl groups were pooled (Figs. 1, 4). We used 
GraphPad Prism for Mac OS X, Version 6.0 e, for data 
analysis. T test was used in the comparison of two groups. 
During analysis of ratios, the mean values of endogenous 
Cbl (or radioactivity from CN[57Co]Cbl or HO[57Co]Cbl) 
in a tissue and plasma were expressed as (tissue Cbl)/
(plasma Cbl). The standard error of the obtained value 
was assessed from the relevant equation for propagation 
of uncertainties: RSE2

X/Y ≈ RSE2
X + RSE2

Y (RSE, relative 
standard error). All tests were considered statistically sig-
nificant, when two-tailed p values were <0.05.

Theory of kinetic analysis

The following nomenclature was used in the schemes 
(Fig. 3) and the below equations. Capitalized characters A, 
B, C, etc. denote the mass quantities of cobalamin present 
in different compartments (e.g. the intestinal walls, blood, 

tissues) with the volumes (masses) of VA, VB, VC. Lower-
case characters a, b, c, etc. correspond to the concentra-
tions in the respective compartments. Exchange of Cbl is 
described by the “true” rate constants (e.g. kab, kba …) for 
concentrations and the “apparent” rate constants (e.g. k∗AB,
k∗BA…) for masses. The sequence of subscript characters 
(e.g. in k∗AB or k∗BA) shows the direction of transfer (e.g. 
VA → VB or VB → VA).

Figure  3a depicts several examples of the considered 
kinetic schemes. Scheme  1 shows an equilibrium (e.g. 
kxy = kyx and x = y), where the law of mass action stipulates 
the following expression:

Scheme 2 depicts the identical exchange reaction, where 
the masses (e.g. X = x·VX) are used instead of the concen-
trations. Here different volumes of compartments (VX ≠ VY) 
cause an uneven distribution of the ligand quantities (X ≠ Y) 
despite the equality of concentrations at kxy = kyx and x = y. 
Such situation requires the new equation of mass balance 
(Eq. 2).

Scheme 3 in Fig. 3a is an approximation that describes 
a unidirectional Cbl transport from the “excreting com-
partment” of the intestinal walls (pool A) to the blood pool 
(B) and afterwards to different tissues (pool C subdivided 

(1)kxy ⋅ x = kyx ⋅ y.

(2)

k∗
XY

⋅ X = k∗
YX

⋅ Y; k∗
XY

= kxy
VY

VX + VY

; k∗
YX

= kyx
VX

VX + VY

Fig. 3   The considered kinetic schemes and simulations. a Schemes 1 
and 2 show the equilibrium exchange between two compartments and 
consider the concentration transfer (No. 1) and the total mass transfer 
(No. 2), respectively. The equal concentrations of x and y in Scheme 1 
(kxy = kyx) give different masses of X and Y in Scheme 2 (k∗

XY
≠ k

∗
XY
) 

if the two compartments have different volumes. Scheme 3 describes 
a unidirectional mass transfer of a metabolite between differ-
ent compartments (metabolite pools A, B and C). b Simulations 
of Cbl distribution between the pools A, B and C (A0 = 50%). Solid 
lines correspond to the “plausible model” with k∗

AB
= 0.2 h

−1 and 

k
∗
BC

= 0.4 h
−1. Curves C1 and C2 show two examples of Cbl accu-

mulation in the two arbitrary organs 1 and 2 (from the tissue pool 
C) characterized by the mass transfer constants of k∗1 = 0.1 h

−1 
and k∗2 = 0.2 h

−1, respectively. Short-dashed curves show changes 
in the kinetic records of B and C after decrease in the overall tissue 
accumulation constant 

(

k
∗
BC

= 0.3 h
−1
)

. Dotted curves show the 
analogous changes at its increase 

(

k
∗
BC

= 0.6 h
−1
)

. The thin long-
dashed curve for the metabolite B depicts the time record for blood 
Cbl at a decreased transfer rate from the intestinal walls to plasma 
(

k
∗
AB

= 0.15 h
−1
)
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into C1, C2, etc). It should be noted that this approximat-
ing model of irreversible transport results in A and B = 0 
at t → ∞, and it cannot be applied to an equilibrium. The 
scheme uses the apparent rate constants dependent on the 
compartment volumes (k∗j = kj ⋅ Vj∕SVj). The kinetic equa-
tions of Scheme 3 can be presented as follows:

where A0 is the amount of Cbl in the first compartment 
(pool A) at the start of transfer; k∗AB and k∗BC are the appar-
ent constants of transitions A → B and B → C, respectively 
(where C = SCi, k

∗
BC = Sk∗i); k

∗
i is the apparent rate 

constant of transfer from the pool B to a particular com-
partment Ci; t is the apparent time of transportation equal 
to the real time after oral administration of Cbl minus 1 h 
(t = treal – 1 h) to start the reactions from Cbl accumulated 
in the intestinal walls.

The possible curves of Cbl transfer from the intestinal 
walls A to blood and tissues (A → B → C) are presented 
in Fig.  3b. The shown records illustrate the expected 
shapes and the amplitudes of Cbl simulated for several sets 
of k∗AB and k∗BC. The Supplementary materials present 
more details concerning the theory and the assessment of 
constants.

Results

We studied rats fed for 2  weeks on a control diet (60  µg 
Cbl/kg) or a diet with a reduced Cbl content (<0.5 µg Cbl/
kg).

(3)A = A0 ⋅ e
−k∗

AB−t

(4)B = A0

k∗
AB

k∗
BC

− k∗
AB

(

e
−K∗

AB−t − e
−K∗

BC−t

)

(5)

Ci = A0

k∗
i
k∗
AB

k∗
BC

− k∗
AB

[

1

k∗
AB

(

1 − e
−k∗

AB−t

)

−
1

k∗
BC

(

1 − e
−k∗

BC−t

)

]

,

The basic characteristics of the normal and the defi-
cient groups are displayed in Table  1. After 2  weeks on 
the Cbl-deficient diet, the rats showed biochemical signs 
of impaired Cbl status. Plasma Cbl values were sevenfold 
lower and MMA was approximately 30% higher in the defi-
cient group compared with the normal group. The mean 
body weight of deficient rats was significantly lower (286 g; 
range 266–298) than that of normal rats (297  g; range 
274–318), p = 0.02. We found no significant differences in 
the organ weights (not shown) or in the analysed biomark-
ers of liver, endocrine or kidney functions (Table 1).

Table 2 displays tissue Cbl content of endogenous Cbl 
in both normal and deficient rats. The most dramatic differ-
ences were found in the kidneys, where Cbl was 93% lower 
in deficient compared with normal rats. The differences 
observed in other tissues were less pronounced.

We studied the 24-h absorption and tissue distribution 
of orally administered CN[57Co]Cbl (free) and HO[57Co]
Cbl (free or TC-bound). No differences were observed for 
free HO[57Co]Cbl compared with TC-bound HO[57Co]
Cbl regardless of the Cbl status of the rats (Figs.  4, 5). 
The results are in agreement with our previous studies for 
CN[57Co]Cbl [4], and we therefore conclude that Cbl (free 
or bound to TC) is absorbed and distributed alike. There-
fore, in our present study, we combined data for uptake of 
free and TC-bound HO[57Co]Cbl. Figures  4 and 5 show 
the fractions of orally administered [57Co]Cbl accumu-
lated in each organ after 24  h. The data for muscle and 
plasma (% of the administered cpm per g and mL, respec-
tively) should be multiplied by 102 ± 1.3 g and 10.2 ± 0.3 
mL (mean ± SD) to give the whole-organ counts. Total 
absorptions of HO[57Co]Cbl and CN[57Co]Cbl (equal to 
the administered dose minus the cpm recovered in intes-
tines and faeces) accounted for approx. 55% of the total 
administered dose with no significant difference between 
the groups (Fig. 5).

Distributional differences between the tissues, dependent 
on both Cbl status and administered [57Co]Cbl form, were 

Table 1   Basic characteristics 
for normal and Cbl-deficient 
rats

Rats were kept on a control diet (60 µg Cbl/kg) or Cbl-deficient diet (<0.5 µg Cbl/kg) for 2 weeks prior to 
sacrifice. Results are expressed as mean and (range). p = exact p-values for comparison of the adjacent col-
umns by two-sided t tests
a Blood sampling failed in 3 deficient and 6 normal rats

Deficientan = 12 Normalan = 9 p

Cbl (pmol/L) 190 (140–300) 1330 (1250–1480) <0.0001
MMA (μmol/L) 0.88 (0.67–1.15) 0.67 (0.54–0.82) 0.0003
T3 (nmol/L) 1.7 (1.5–2.0) 1.9 (1.7–2.2) 0.06
T4 (nmol/L) 72 (64–84) 74 (62–96) 0.78
ALAT (U/L) 20 (9.0–29) 23 (9.0–35) 0.15
Carbamid (mmol/L) 6.7 (4.6–8.2) 7.0 (5.8–7.9) 0.44
Triglyceride (mmol/L) 1.5 (1.0–2.2) 1.7 (1.0–2.9) 0.48
Total cholesterol (mmol/L) 2.5 (2.1–3.4) 2.3 (1.7–2.9) 0.42
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observed. Notably, deficient rats accumulated threefold less 
[57Co]Cbl in the kidneys, but approximately twofold more 
in all other organs compared with normal rats. Significantly 
more HO[57Co]Cbl than CN[57Co]Cbl accumulated in the 
liver, while comparable amounts were found in the spleen 
and heart. Curiously, more CN[57Co]Cbl than HO[57Co]
Cbl entered muscles and brain and remained in plasma.

We also explored the kinetics of [57Co]Cbl uptake; the 
theoretical background and detailed discussion of which 
may be found in the supplementary material. This points 
out that the tissue/plasma ratio of [57Co]Cbl concentrations 
is a simple, but illustrative tool to evaluate the basic fea-
tures of transport kinetics. The ratio for each tissue either 
reflects its exchange rate constants at the equilibrium 
(kin/kout, plasma  ↔  particular tissue) or is proportional to 
a combination of several forward rate constants (intes-
tine → plasma, plasma → all tissues, plasma → particular 
tissue) at a transient state. The analysis of ratios for endog-
enous Cbl (Fig. 6, open bars) shows quite high values and 
indicates a considerable shift towards Cbl accumulation 
in all organs of both normal (Fig.  6a) and Cbl-deficient 
(Fig.  6b) rats. Alignment of normal and deficient rats 
shows that vitamin deficiency decreases the kidney/plasma 
Cbl ratio significantly. All other tissues exhibited the oppo-
site tendency, implying that the fractional uptake of circu-
lating Cbl was higher in these tissues. In other words, the 
deficient rats exhibit a lower in/out transfer balance for the 
assumed “Cbl depository” kidney, but a higher in/out bal-
ance for any “Cbl-utilising” organ when compared with 
normal rats.

The relatively low values of transient tissue/plasma 
ratios for [57Co]Cbl 24 h after administration (Fig. 6, closed 
bars, HO/CN[57Co]Cbl) indicate that the quasi-equilibrium 
state was not reached within in 24  h. In normal rats, the 
spleen ratios are relatively close to the equilibrium val-
ues, while particularly the brain and muscle ratios have not 
reached the equilibrium values. Most tissues exhibit com-
parable figures for HO[57Co]Cbl and CN[57Co]Cbl (with a 
small, yet frequent preference for HO[57Co]Cbl). However, 

in the liver, HO[57Co]Cbl uptake is more efficient than 
CN[57Co]Cbl uptake.

Discussion

We present data on endogenous Cbl and newly absorbed 
[57Co]Cbl in both normal and Cbl-deficient rats. We 
employed two types of analyses to evaluate the dynamics 
of the Cbl distribution. First, we assessed [57Co]Cbl accu-
mulation in tissues. Second, we estimated the exchange bal-
ance between plasma and tissues (expressed via the ratio 
of mean Cbl concentrations: tissue/plasma). The analyses 
have some limitations because endogenous Cbl was meas-
ured in only six deficient and six normal rats. Plasma values 
were lacking in 9 animals; thus, the analysis of the transient 
state was undertaken for 21 of the 30 rats. Yet, we do not 
consider these limitations to detract from the value of our 
results since variations observed within each group of rats 
were small. We used the tissue/plasma ratio as a proxy for 
the exchange fluxes between the two compartments. This is 
obviously a simplification of more complex processes, but 
a reasonable picture can be outlined as long as we stick to a 
relative (and partially qualitative) assessment of data.

We induced Cbl depletion in rats by keeping them on a 
Cbl-deficient diet for 2  weeks. Plasma Cbl, MMA meas-
urements and the endogenous Cbl content in kidneys (the 
Cbl storage organ in rats [11, 12]) confirmed the deficient 
state. In accordance with previous data [12, 13], Cbl deple-
tion was manifest in all tissues (most pronounced in kid-
neys). We found 93% lower Cbl levels in deficient kidneys 
compared with normal kidneys. This value is comparable 
with the values reported for rats exposed to a deficient diet 
for up to several months [13–15]. In contrast, the differ-
ence in liver Cbl was remarkably smaller. Our rats showed 
only 30% lower liver Cbl levels in deficient compared with 
normal rats after 2 weeks. In literature, a more prolonged 
Cbl restriction led to a 60% decrease after 2 months or 54% 
after 3 months on the diet [12, 13].

Table 2   Tissue contents of 
endogenous Cbl in normal and 
Cbl-deficient rats

Rats were kept for 2 weeks on a Cbl-deficient diet or control diet prior to sacrifice. Results are expressed as 
mean and (range)

Deficient n = 6 Normal n = 6

pmol Cbl/g Whole-organ Cbl (pmol) pmol Cbl/g Whole-organ (pmol)

Liver 20 (18–27) 270 (210–330) 29 (28–30) 370 (325–400)
Kidneys 85 (73–97) 190 (165–225) 1160 (1000–1270) 2400 (2110–2900)
Spleen 10 (9–12) 8 (6–10) 25 (24–29) 20 (15–25)
Heart 28 (27–28) 29 (24–40) 49 (47–51) 51 (47–54)
Brain 13 (12–15) 24 (21–28) 23 (23–24) 45 (43–47)
Muscle 6 (5–8) 635 (465–775) 10 (8–11) 1010 (885–1140)
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We explored the 24-h absorption and tissue distri-
bution of orally administered HO[57Co]Cbl compared 
with CN[57Co]Cbl in both normal and deficient rats. In 
accordance with our previous data on normal rats [4], we 
observed comparable absorption levels of the two [57Co]
Cbl forms in both normal and deficient rats. Interestingly, 
the tissue distributions of absorbed [57Co]Cbl showed 
noticeable differences between deficient and normal rats 

as well as between HO[57Co]Cbl and CN[57Co]Cbl. The 
liver uptake of HO[57Co]Cbl was more than twice that of 
CN[57Co]Cbl, while the brain accumulated more CN[57Co]
Cbl than HO[57Co]Cbl, especially in deficient rats. These 
results confirm and expand previous findings [4, 16, 17] 
about higher accumulation of HO[57Co]Cbl in the liver and 
of CN[57Co]Cbl in the kidney. Now we show that tissue 
accumulation patterns apparently fall into three categories: 
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Fig. 4   Tissue [57Co]Cbl accumulation in normal and deficient rats 
24 h after oral administration of CN[57Co]Cbl (n = 5 in each group) 
or HO[57Co]Cbl (n = 10 in each group). Depicted are fractions of 
the administered [57Co]Cbl present in the selected organs per whole 
organ or per g of muscle. Horizontal lines show the mean values. 

Scatter symbols indicate the values for the individual rats. Filled sym-
bols normal; open symbols deficient; grey symbols TC-HO[57Co]Cbl. 
Probabilities of pairwise comparison of the adjacent scatter plots by 
the t test are indicated. Cbl Cobalamin, CNCbl CN[57Co]Cbl, HOCbl 
HO[57Co]Cbl, TC bovine transcobalamin
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Fig. 5   Tissue [57Co]Cbl accumulation in normal and deficient rats 
24 h after oral administration of CN[57Co]Cbl (n = 5 in each group) or 
HO[57Co]Cbl (n = 10 in each group). Depicted are fractions of admin-
istered [57Co]Cbl present in plasma (per mL), whole intestines (incl. 
contents), urine and total absorption. Total absorption  =  (adminis-
tered dose minus cpm in ‘intestines and contents’ and faeces)/admin-

istered dose. Horizontal lines show the mean values. Scatter symbols 
indicate the values for the individual rats. Filled symbols normal, 
open symbols deficient, grey symbols TC-HO[57Co]Cbl. Probabilities 
of pairwise comparison of the adjacent scatter plots by t test are indi-
cated. Cbl Cobalamin, CNCbl CN[57Co]Cbl, HOCbl HO[57Co]Cbl, 
TC bovine transcobalamin

Fig. 6   Ratios (mean tissue Cbl/mean plasma Cbl) of endogenous 
Cbl (pmol/g)/(pmol/mL) (open bars, n = 6 normal and, n = 6 defi-
cient) and labelled Cbl (cpm/g)/(cpm/mL), accumulated 24  h after 
administration of oral HO[57Co]Cbl (spotted bars, n = 5 normal and 
n = 8 deficient) or CN[57Co]Cbl (closed bars, n = 4 normal and n = 4 
deficient) in rats kept on a Cbl control (a) or a deficient (b) diet for 

2  weeks. The mean ratio (bar) and ± SEM (vertical whisker lines) 
are indicated. Dashed horizontal lines are depicted to simplify com-
parison of bars. Probabilities of pairwise comparison of the adjacent 
bars by t test are indicated. X-axis indicates the organs examined. 
Y-axis indicates tissue/plasma ratio, log-scale. Cbl Cobalamin, CNCbl 
CN[57Co]Cbl, HOCbl HO[57Co]Cbl, TC bovine transcobalamin
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tissues with a preference for HO[57Co]Cbl (liver), tissues 
accumulating comparable amounts of HO[57Co]Cbl and 
CN[57Co]Cbl (the spleen and heart; and the kidney of defi-
cient rats), and tissues with a preference for CN[57Co]Cbl 
(brain and muscle; and the kidney of normal rats).

Most previous studies investigated distribution of paren-
terally administered Cbl, which complicates the compari-
son of our results with earlier data. However, Adams et al. 
compared oral absorptions of labelled CNCbl, HOCbl and 
MeCbl in 63 patients [14]. Administration of 1 μg resulted 
in mean whole-body retentions of 56% (HOCbl) and 49% 
(CNCbl) after 16 days, which is comparable to our figures 
obtained 24  h after Cbl supplementation. Interestingly, 
these values confirm that HOCbl and CNCbl show a com-
parable uptake in humans, too.

It should be stressed that higher or lower tissue loads 
with either one or the other [57Co]Cbl form are not a reflec-
tion of the individual tissue kinetics, but the result of a 
combination of parameters for all tissues (see the supple-
mentary material for more details). Presenting this subject 
in a nutshell: if a ligand X vs. Y has low ability to enter e.g. 
the liver, the “remaining” quantity of X in the blood will 
overload all other tissues. In other words, higher uptake 
levels of CN[57Co]Cbl vs. HO[57Co]Cbl in, e.g. the mus-
cles and brain (Fig.  4e, f) do not necessarily equal faster 
CN[57Co]Cbl accumulation, but might reflect a slower 
transport of this ligand into other tissues (e.g. liver). Keep-
ing this in mind, we undertook an analysis of Cbl ratios 
(tissue/plasma), which provides a more adequate descrip-
tion of the true kinetics of Cbl distribution.

First of all, we observed lower tissue/plasma ratios for 
newly administered [57Co]Cbls (24  h) than for endog-
enous Cbl in both normal and deficient rats (Fig.  6). We 
believe that this finding indicates that the equilibrium is 
not reached, and that [57Co]Cbl uptake is still in progress. 
In the spleen of normal rats, tissue/plasma ratios for newly 
absorbed [57Co]Cbl came closest to the near-equilibrium 
level, which suggests a rather fast Cbl turnover in this organ 
(high kin and a relatively high kout). The largest difference 
in tissue/plasma levels between endogenous and newly 
absorbed [57Co]Cbls was seen in muscle and brain, which 
probably implies a slower Cbl turnover in these organs.

The observations for plasma Cbl warrant further com-
ments, because in both deficient and normal rats the 24-h 
plasma samples contain more CN[57Co]Cbl than HO[57Co]
Cbl. Several explanations, as well as combinations of 
explanations, are possible if we take the time of measure-
ment into account (well after the peak of plasma [57Co]Cbl 
at 4  h for rats [15]). For example, a slower CN[57Co]Cbl 
clearance (plasma →  tissues) is a self-suggesting reason, 
see Fig.  3b (short-dashed modelling curve for B-metabo-
lite). Slower CN[57Co]Cbl transportation from intestine to 
plasma is another feasible explanation, because a “tailing” 

of plasma [57Co]Cbl over time is expected in such case 
(thin, long-dashed curve in Fig. 3b). Finally, a faster back-
ward CN[57Co]Cbl excretion from tissues to plasma (i.e. a 
better retention of HO[57Co]Cbl compared with CN[57Co]
Cbl in the tissues) may be in play. In the latter situation, the 
bars for “transient” CN[57Co]Cbl in Fig. 6 may correspond 
to a “worsened” near-equilibrium balance (more [57Co]
Cbl outside) rather than to the decelerated forward trans-
portation. The suggestion of a better HO[57Co]Cbl reten-
tion could be true if HO[57Co]Cbl is more easily converted 
into the active coenzyme Cbl forms. Regarding this subject, 
Uchino et  al. described a threefold higher conversion of 
HOCbl than CNCbl to Ado-Cbl in rat liver 24 h after intra-
venous injection [16]. Other authors found that serum-Cbl 
increased faster [18, 19] and remained at a higher level for 
a longer period of time after intramuscular HOCbl injection 
than after CNCbl injection [18]. Additionally, whole-body 
retention was higher [20] and urinary excretion lower [19, 
21] after HOCbl than after CNCbl injection.

From a biological point of view, it is easy to accept that 
affinity for the naturally occurring Cbl may be higher than 
for the synthetic form with a resulting higher accumula-
tion of HO[57Co]Cbl in tissues compared with CN[57Co]
Cbl. In addition, HO[57Co]Cbl is much more susceptible to 
reduction (a necessary step in conversion to the cofactors) 
than CN[57Co]Cbl. It is therefore remarkable that brain 
and muscle tissue accumulate more CN[57Co]Cbl than 
HO[57Co]Cbl in both normal and deficient rats (Fig. 4e, f). 
Yet, CN[57Co]Cbl “overloading” of the brain and muscle 
may be the direct consequence of “underloading” in other 
tissues.

Analysis of ratios in Fig. 6 (especially for deficient rats, 
Fig.  6b) reveals higher ratios for HO[57Co]Cbl than for 
CN[57Co]Cbl in a number of tissues (though with different 
levels of significance). A higher ratio in the non-equilib-
rium state (Fig.  3a, Scheme  3) requires a faster transpor-
tation at one or more forward steps (intestine →  plasma; 
plasma → all tissues; plasma → particular tissue). A higher 
ratio at the equilibrium (Fig. 3a, Scheme 1) means a shift 
towards tissue accumulation (plasma ↔ particular tissue). 
Whatever the reason might be, HO[57Co]Cbl appears to be 
a better choice for faster load into most tissues and/or better 
internalization percentage. Similar ratio bars for CN[57Co]
Cbl vs. HO[57Co]Cbl for brain and muscle (Fig. 6) appar-
ently indicate a lacking preference for the vitamin form.

[57Co]Cbl flux balance (expressed by its tissue/plasma 
ratio) shows a much lower fractional accumulation in defi-
cient than in normal kidneys, while this parameter increases 
in all other organs. Usually, rat kidneys accumulate large 
quantities of Cbl disregarding the small size of this organ. 
The difference between kidney and other tissues may relate 
to kidney ultra-filtration and reabsorption of the transco-
balamin-Cbl complex by the megalin receptor present in 
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proximal tubules [22]. The kidney has a high capacity to 
accumulate ultra-filtrated Cbl, which is likely to be directly 
related to plasma Cbl concentration. Additionally, the Cbl 
dynamics of the kidney supports its role as a Cbl storage 
organ. A higher plasma [57Co]Cbl in deficient rats will 
cause a higher kidney [57Co]Cbl ultrafiltration. This also 
implies a higher reabsorption of [57Co]Cbl in the proximal 
tubules of deficient rats since the same level of urine [57Co]
Cbl was found in the two groups (p = 0.94). However, less 
[57Co]Cbl is withheld in deficient kidneys at 24  h, which 
indicates an increased export from the kidneys to plasma, 
maintaining a sufficient Cbl supply of other tissues. Kidney 
[57Co]Cbl excretion to urine did not deviate significantly 
between the two [57Co]Cbl forms. In summary, kidney 
[57Co]Cbl accumulation, distribution and excretion into 
urine change according to the current Cbl status. A regu-
lated Cbl export in kidneys has been suggested in the lit-
erature [12], but has, to the best of our knowledge, never 
previously been reported.

In conclusion, our study demonstrates differences in Cbl 
distribution dependent on both the current Cbl status and 
the administered Cbl form. It is well recognized that both 
forms of Cbl are eventually converted to the two coenzyme 
forms of Cbl [16], but an earlier clinical study showed 
that in humans the major part of CNCbl is absorbed with-
out conversion to other forms [23]. Our results warrant a 
long-term investigation to clarify the differences in tissue 
distribution of administered HO[57Co]Cbl compared with 
CN[57Co]Cbl in order to establish their efficacy for supple-
mentation and treatment.
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